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Abstract .  Recently, Ajtal discovered a fascinating connection between 
the worst-case complexity and the average-case complexity of some well- 
known lattice problems. Later, Ajtai and Dwork proposed a cryptosystem 
inspired by Ajtai's work, provably secure if a particular lattice problem 
is difficult in the worst-case. We present a heuristic attack (to recover 
the private key) against this celebrated cryptosystem. Experiments with 
this attack suggest that in order to be secure, implementations of the 
Ajtal-Dwork cryptosystem would require very large keys, making it im- 
practical in a real-life environment. We also adopt a theoretical point of 
view: we show that there is a converse to the Ajtai-Dwork security re- 
sult, by reducing the question of distinguishing encryptions of one from 
encryptions of zero to approximating some lattice problems. In partic- 
ular, this settles the open question regarding the NP-hardness of the 
Ajtai-Dwork cryptosystem: from a recent result of Goldreich and Gold- 
wasser, our result shows that breaking the Ajtal-Dwork cryptosystem is 
not NP-hard, assuming the polynomial-time hierarchy does not collapse. 

1 Introduct ion 

Lattices are discrete subgroups of some n-dimensional space and have been 
the subject of intense research, going back to Gauss, Dirichlet, Hermite and 
Minkowski, among others. More recently, lattices have been investigated from 
an algorithmic point of view and two basic problems have emerged: the short- 
est vector problem (SVP) and the closest vector problem (CVP). SVP refers to 
the question of computing the lattice vector with minimum non-zero euclidean 
length while CVP addresses the non-homogeneous analog of finding a lattice 
element minimizing the distance to a given vector. It has been known for some 
time that  CVP is NP-complete [12] and Ajtal has recently proved that  SVP is 
NP-hard for polynomial random reductions [3]. 

The celebrated LLL algorithm [18] provides a partial answer to SVP since it 
runs in polynomial time and approximates the shortest vector within a factor of 
2 n/~ where n denotes the dimension of the lattice. This has been improved to the 
bound (1 + e) n by Schnorr [21]. Babai [6] gave an algorithm that  approximates 
the closest vector by a factor of (3/V~) n. The existence of polynomial bounds 
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is completely open: CVP is presumably hard to approximate within a factor 
0 0 . 9 9  . 2(1 g n) as shown m [5] but a result of Goldremh and Goldwasser [14] suggests 

that unless the polynomial-time hierarchy collapses, this inapproximability result 
cannot be extended to v ~ .  

Recently, in a beautiful paper, Ajtai [2] found the first connection between the 
worst-case and the average-case complexity of SVP. He established a reduction 
from the problem of finding the shortest non zero element u of a lattice provided 
that it is "unique" (i.e. that it is polynomially shorter than any other element of 
the lattice which is not linearly related) to the problem of approximating SVP 
for randomly chosen instances of a specific class of lattices. This reduction was 
improved in [8]. Later, Ajtai and Dwork [4] proposed a cryptosystem inspired 
by Ajtai's work and proved that it was provably secure under the assumption 
that the "unique" shortest vector problem considered above is difficult in the 
worst-case. 

Again, from a theoretical point of view, the achievement in the Ajtal-Dwork 
paper is a masterpiece. However, its practical significance is unclear. This is 
partly due to the fact, exemplified by RSA, that the success of a cryptosystem 
is not only dependent on the computational hardness of the problem on which 
it is based, but also on the performances that it displays in terms of speed, key 
size, expansion rate, etc. It is also related to the fact that, so far, use of lattices 
in cryptography has been directed at successfully breaking schemes [1, 22, 7, 17, 
10, 24, 16, 9]: experiments have shown that lattice reduction algorithms behave 
surprisingly well and can provide much better approximations to SVP or CVP 
than expected. 

At this point, it was natural to ask whether or not the security level offered 
by the Ajtai-Dwork cryptosystem is exactly measured by the hardness of approx- 
imating lattice problems. In other terms, is there a converse to the Ajtai-Dwork 
security result ? The present paper shows that this is actually the case by reduc- 
ing the question of distinguishing encryptions of one from encryptions of zero 
to approximating CVP or SVP (recall that AD encrypts bits). More precisely, 
we prove that if one can approximate CVP within a factor cn l'3s, then one can 
distinguish encryptions with a constant advantage d, where c and d are related 
constants. This is especially interesting in view of the result of Goldreich and 
Goldwasser quoted above since it seems to rule out any form of NP-hardness for 
AD, which was an open question. We prove a similar result for SVP, with a more 
restrictive factor. This shows that AD is essentially equivalent to approximating 
the shortest vector within a polynomial ratio and allows to reverse the basic 
paradigm of AD: for dimensions where lattice reduction algorithms behave well 
in practice, AD is insecure. 

This opened the way to a practical assessment of the security of AD for 
real-size parameters. We answer this question by presenting a heuristic attack 
suitable for implementation. First experiments showed that this attack was able 
to recover the private key in a short time for small parameters. Current experi- 
ments suggest that the attack is feasible even for real-size parameters: in order 
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to be secure, implementations of the Ajtai-Dwork cryptosystem would require 
very large keys. 

The remainder of the paper is organized as follows. In section 2, the Ajtai- 
Dwork cryptosystem is described. Section 3 presents our heuristic attack (to 
recover the private key) and practical experiments. Sections 4 and 5 deal with 
a converse to the Ajtai-Dwork security theorem. Section 4 uses a CVP approxi- 
mation oracle, while section 5 uses a SVP approximation oracle. The reduction 
obtained in section 4 shows that breaking the Ajtai-Dwork cryptosystem is not 
NP-hard if the polynomial-time hierarchy does not collapse. Due to lack of space, 
section 4 and 5 do not include full proofs. These can be found in [20]. The ap- 
pendix includes the missing proofs. 

2 T h e  A j t a i - D w o r k  C r y p t o s y s t e m  

In this section we recall the construction of Ajtai and Dwork [4], with the no- 
tations and the presentation of [15]. For any e between 0 and 1 ~, we denote by 
Z -4- e the set of real numbers for which the distance to the nearest integer is at 
most e. We denote the inner product of two vectors in the Euclidean space R n 
by (x,y). Given a set of n linearly independent vectors wl , . . .  ,wn, the paral- 
lelepiped spanned by the w~'s is the set P(wx,. . .  ,wn) of all linear combinations 
of the wi's with coefficients in [0,1[. Its width is the minimum over i of the 
Euclidean distance between wi and the hyperplane spanned by the other wj's. 
Reducing a vector v modulo a parallelepiped P(wl , . . . ,  wn) means obtaining a 
vector v' E P such that v' - v belongs to the lattice spanned by the wi's, which 
we denote by v' = v (mod P). To simplify the exposition, we present the scheme 
in terms of real numbers, but we always mean numbers with some fixed finite 
precision. Given a security parameter n (which is also the precision of the binary 
expansion for real numbers), we let m = n 3 and Pn = 2 nl~ We denote by Bn 
the big n-dimensional cube of side-length Pn. We also denote by Sn the small 
n-dimensional ball of radius n -s.  

Given n, the private key is a uniformly chosen vector u in the n-dimensional 
unit ball. For such a private key, we denote by 7-/u the distribution on points in 
Bn induced by the following construction: 

1. Pick a point a uniformly at random from {x E Bn : (x, u) E Z}. 
2. Select ~ l , . - . ,  6n uniformly at random from Sn. 
3. Output the point v --- a + ~ i  6~. 

The public key is obtained by picking the points wl , . . . ,  wn, v l , . . . ,  vm indepen- 
dently at random from the distribution 7/u, subject to the constraint that the 
width of the parallelepiped w = P(wl , . . . ,  wn) is at least n-2pn (which is likely 
to be satisfied, see [4]). 

Encryption is bit-by-bit. To encrypt a '0', uniformly select bl , . . . ,  bm in {0,1}, 
and reduce the vector ~i~l  blvi modulo the parallelepiped w. The vector ob- 
tained is the ciphertext. The ciphertext of '1' is just a randomly chosen vector in 
the parallelepiped w. To decrypt a ciphertext x with the private key u, compute 
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7" = (x,u). If 7" E Z 4- n -~, then x is decrypted as '0', and otherwise as '1'. 
Thus, an encryption of '0' will always be decrypted as '0', and an encryption 
of T has a probability of 2n -1 to be decrypted as '0'. These decryption errors 
can be removed (see [15]). The main result of [4] states that  a probabilistic al- 
gorithm distinguishing encryptions of a '0' from encryptions of a '1' with some 
polynomial advantage can be used to find the shortest nonzero vector in any 
n-dimensional lattice where the shortest vector v is unique, in the sense that  
any other vector whose length is at most nSllvll is parallel to v. 

3 A P r a c t i c a l  A t t a c k  

We describe in this section a heuristic at tack to recover the private key. We 
first present the ideas underlying our attack, the attack itself and then the ex- 
periments. Let (u, w l , . . .  ,Wn,Vl , . . .  ,vm) be a set of keys. For any real/3 > O, 
denote by A~ the m-dimensional lattice (in R n+m) spanned by the columns of 
the following matrix: 

i l  : 0 
. . .  0 1 

Each (vi,u) belongs to Z 4- n-T: let 1I/ be the closest integer to (v~,u). The 
following result shows that short vectors in Aa give information on the Vi's: 

T h e o r e m  1. L e t x  = t(/3(Asvl + . . . +  A,~vm),A1, . . . ,Am) be a point of A~, the 
A, 's being integers. I f  nT]]E~l Aivi]] -I- E ~ I  la, I < n 7, then E,m=l AiVi = O. In 

2 1 14 pa ie,,lar, thi, equality is ,a'tT;l ed if  >__ and I1 11 < 

- - 7  m Proof. By definition of the v,'s, I(E~n=l ~,v, ,u)  - E ~ I  )t,V~ < n E i = l  I)~'1 �9 
If I ( E ~ I  aivi, u)l < 1 - n -7 E ~ I  IAil, then the integer E ~ I  ail~ is zero since 
it is strictly less than 1 in absolute value. As Hull < 1, a stronger condition is 

--7' rn  IlY'~ml Aivill < 1 - n ~i=1 I~il by the Cauchy-Schwarz inequality, and this 
proves the first statement. Squared, it becomes: 

rn  2 m m 

i }Ail. 
= i = 1  i = 1  

But IAi} < A 2 since the ~i's are integers. This gives a new stronger condition: 

rrt 2 Irt 

"=  i = 1  

n 1 4  /~,7 

which is satisfied as soon as/~2 > 2n7---- 1 and [[xl[ < V ~ L - -  T. t:] 
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The  following combinatorial results suggest that  A~ contains many sufficiently 
short vectors. 

T h e o r e m  2. For all ~ > O, there exists N such that the following holds for all 
n > N .  Let ( i l , i 2 , . . .  ,ira,} be a subset of ( 1 , 2 , . . . , m } .  If  re' >_ (1 +e)n21og2 n, 
then there exist A1, A2, . . . ,  Am, (not all zero) in { - 1 ,  0,1} such that 

+ + . . .  +.x,,,,,,,.,., II-< 
Proof. Let a = n~ log 2 n and ~i = [n~viJ. Each vector ~i has integral entries 
in the set { - n a p n , . . . , n a p n } .  Consider all combinations of vi l , . . . ,0 i .~ ,  with 

coefficients in {0,1}. There are 2 m' such combinations. But  there are at most 
(2m~napn + 1) n distinct values for such combinations. By the pigeon-hole prin- 

ciple, it follows that  if 2 m' > (2m%~p~ + 1) n , then there exist hi ,  A2, . . . ,  )~,~, 
(not all zero) in { - 1 , 0 ,  1}, such that  AlVa1 + A2v/2 + "'" + ~rn'~i~, = 0. Hence: 

]Ek=l 
n ~  'P 

k = l  

--c~ m n 3 . 5 - - n / l o g  2 n .  whose norm is less than n ~ k = l  x/~ = Furthermore,  

log 2 (2m'napn + 1) n < n log z (2m') + an log 2 n + n log 2 Pn + n log 2 (1 + 1) 

_< 2n + 3n log 2 n + n 2 + n 2 log z n 

We conclude since 2n+3n  log 2 n+nZ+n z log 2 n +  < ( l + e ) n  2 log2 n for sufficiently 
large n. Q 

C o r o l l a r y  3. For all e > O, there exists N such that for all n >_ N and all 
> O, there exist at least n 3 - (1 + e)n 2 log 2 n linearly independent lattice points 

in AO, with norm less than V n  3 + ~2nT-2n/l~ 

We now use the notion of an orthogonai lattice introduced in [19]: if L is a lattice 
in Z n, the orthogonal lattice L • is defined as the set of points in Z n that  are or- 
thogonal to all the lattice points. Consider the vector V in Z rn whose coordinates 
are the ~ ' s .  Theorem 1 shows that  sufficiently short vectors of A~ correspond 
to  vectors in V • which is a m -  1 dimensional lattice in Z m. Corollary 3 shows 
tha t  many such short vectors exist. We conjecture that  there exist at least m - 1 
sufficiently short and linearly independent vectors in AB. 

If one knows m - 1  linearly independent vectors in V • then one can determine 
the one-dimensional lattice (V•177 one can find a vector V' E Z m generating 
(V• • There exists ~ e Z such that  V = ~V ~. If all the ~ ' s  are coprime (which 
happens with overwhelming probability), then e = -~1. Since one can exchange 
- u  for u, one can assume that  e = 1. And if one knows the V~'s, one can 
obtain an approximation of the private key u by solving a linear system. This 
is because each (v~, u) ~ V~ gives rise to a linear equation whose unknowns are 
the coordinates of u. If A is the matr ix  representing (Vl , . . . ,  vn) with respect 
to the canonical basis, then the multiplication of A -1 by the vector formed by 
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V1 , . . . ,  Vn is an approximation of u (one does not need to know all the ~ ' s ,  
n of them are enough). The approximation is good because (vi, u) is close to 
I~ (difference less than n -7 in absolute value) and the coefficients of A -1 are 
very small (we omit the details but one can justify that  they are roughly around 
p~-i in absolute value, because the coefficients of A can almost be considered as 
independent and uniformly distributed over ] - ,on, pnD. 

The attack is the following: 

1. Obtain vectors in V l by finding short linear combinations of the vi's using 
lattice reduction algorithms. 

2. When enough vectors in V • are found, compute (V• • and ~V. 
3. Solve the linear system A.u ~ = W to obtain an approximation u ~ to the 

private key u, where A is the matrix representing v l , . . .  ,Vn and W is the 
vector formed by V1, . . . ,  Vn. 

For step 1, we do not reduce a complete lattice AZ (whose dimension m 
might be too large): we only keep m ~ random columns and reduce them. There 
are heuristic arguments explaining why one can still expect to find short linear 
combinations with only m ~ vectors vi's instead of m. Due to lack of space, we 
omit the details here: it is related to the fact that,  given a low-dimensional lattice, 
a reduced basis for the corresponding orthogonal lattice is much smaller than 
for the lattice itself (see [19]). To find enough vectors, one repeats the random 
selection of columns. Since short vectors are found in an apparently random 
fashion, one can expect to find as many vectors as wanted. 

For step 2, one has to compute a basis of the orthogonal lattice of a given 
lattice. To do so, one can use the polynomial time algorithm given in [19], which 
uses lattice reduction algorithms. But there is a more practical method here: 
since the orthogonal lattice is one-dimensional only, one can compute it by a 
basic cross product, that  is determinant computations. Actually one does not 
need to compute the complete cross product: n determinants suffice instead of m, 
because in step 3, only n coordinates of V are used. Note tha t  each determinant 
is a n log n-bit integer. 

We used the NTL library [23] to conduct our experiments. Timings are given 
for a 170 Mhz Ultra-SPARC-I. We used the floating point variant (double and 
quadratic precision) of the LLL algorithm as our lattice reduction algorithm: 
no stronger algorithms were needed. Only steps 1 and 2 are time-consuming. 
For n = 8, we reduced the complete 512-dimensional lattice A~: step 1 took 3 
hours, step 2 took less than half an hour and step 3 was immediate. The ap- 
proximation u ~ was matching u with the n-bit precision. For n = 32, we chose 
rn ~ = 300 : each reduction of a partial 300-dimensional lattice gave 60 vectors in 
V -L in less than 4 hours. Actually, this running time might be decreased, as a 
complete LLL reduction is unnecessary. Hence, one could expect to find enough 
vectors in less than 100 days on a single machine, and the computations can 
easily be parallelized (each random combination of 300 columns can be reduced 
independently) to reduce the running time. Step 2 requires the computation of 
32 determinants of huge but sparse matrices. The dimension of these matrices is 
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32,767, and there are less than 300 non-zero entries per line, making the com- 
putation feasible. Assuming tha t  step 2 determined the Vi's, step 3 immediately 
gave a perfect approximation of u. 

Hence a successful attack even for n = 32 looks feasible. Note that  at  least 
n 5 logn bits are required to store the public key (the vi's): for n = 32, this 
amounts to 20 megabytes, and the ciphertext for each bit is 6144 bits long. This 
shows that  the Ajtai-Dwork cryptosystem is hardly practical even with marginal 
security. 

4 D e c i p h e r i n g  w i t h  a C V P - o r a c l e  

We define an (n, k)-CVP-oracle to be any algorithm which, given a point x E R n 
and a n-dimensional lattice L, outputs a lattice point c~ E L such that  for every 
/3 E L: dist(x, a) < kdist(x,/3), where dist denotes the Euclidean distance. Each 
oracle call made by a Turing machine contributes by a single unit to the overall 
complexity of the machine. 

Using such an oracle, we will see how one can distinguish in probabilistic 
polynomial time ciphertexts of '0' from ciphertexts of T ,  thanks to some prop- 
erties of the keys. To any choice of the keys, we associate a particular lattice. 
Given a ciphertext, one can build a vector such that:  if the ciphertext is a cipher- 
text  of '0', this vector is likely to be close to the lattice ; and if the ciphertext is 
a ciphertext of '1', this vector is unlikely to be close enough. To check whether 
this vector is close enough, one calls an oracle. 

4.1 Vu lne rab l e  keys  

T h e o r e m  4. For sufficiently large n, for any ex and ez in ]0, 1[, any set of 
keys (u, wl,  . . . , Wn, Vl, . . . , Vm) picked at random as described in Ajtai-Dwork's 
protocol satisfies the following with probability at least (1 - el)(1 - e2): 

n 

dist(Z, (u, wj)) 2 < 27r (1) 
- -  n 1 6 6 1  

j=l  

E bivi,w < n4p2n (2) 
j=l - -  2 ~ 2  

where wJ- denotes the unit vector orthogonal to the hyperplane spanned by the 
other wj 's, and the expectation is with respect to a uniform random choice of 
(b l , . . . ,bm)  in (0,1} m. 

We show how to prove this result, which will be used afterwards. Let u be a 
non-zero private key: Ilu[I g 1. We start with a technical lemma: 

L e m m a  5. Let 5 be a randomly chosen point from Sn. Then E[{u, 6)] -- 0 and 

Var[(u,6)] = ' "'--"~, where Wn = fo /2s in  n OdO is the n-th Wallis integral. 



230 

Proof (Sketch). The expectation E[(u, 5)] is clearly zero. To compute the vari- 
ance, we can assume that u = (HUH, 0, 0 , . . . ,  0) since Sn is invariant by rotation. 
We obtain: 

n--8 
f_  x2 Y.-l( /n-16 _ =2) var[(u, 5)1 = Ilull = d=, 

o_ .  

where Vn(r) denotes the volume of the n-dimensional ball of radius r. The result 
follows after a few simplifications using Wallis integrals. [] 

This leads to a more general result: 

L e m m a  6. Let v be a randomly chosen point from the distribution 7"lu. Then: 

2~r 
E [dist(Z, (u, v)) 2] _< 

(n + 2)n 16" 

Proof (Sketch). Write v = a + ~ i  • where the 5i's are independently chosen with 
uniform distribution over Sn. Apply the previous lemma with 5i as 5. Conclude 
as W 2 < 21r/n and HuH _< 1. [] 

Denote by X the random variable ~j~=l dist(Z, (u, wj))  2, where the wj 's  are 
chosen according to Ajtai-Dwork's rules. From the previous lemma: 

n 27r 2zr 
E[X] = ~ E [dist(Z, (u, wj)) 2] < n (n + 2)n 1B <- n 16" 

j = l  

By Markov's inequality, it follows that (1) is satisfied with probability at least 
1 - 61 over the choice of w l , . . . ,  wn. 

Now, we assume that the the wj's are fixed and satisfy (1). We will prove 
that  for sufficiently large n, when ( v i , . . . ,  vm) and (b i , . . . ,  bin) are independently 
picked at random as described in Ajtai-Dwork's protocol, 

E < (3) 
j----i ~i----I / J 2 

Thus, by Markov's inequality, (2) is satisfied with probability at least 1 -62 over 
the choice of Vl,..., vm, which completes the proof of Theorem 4. 

To prove (3), it suffices to prove that for sufficiently large n, for all choice of 
(bl,..., bin), (3) is satisfied with respect to a random choice of (vl,..., vm). The 
core of this result is the following basic lemma: 

L e m m a  Y. Let t on the n-dimensional unit sphere. Let s be a randomly chosen 
point (with uniform distribution) from the hypercube Bn. Then E[(s, t)] = 0 and 
E[(s, t) 21 = p /3. 
Proof (Sketch). Decompose s and t with respect to the canonical basis to express 
the dot product (s, t). The result follows from a short computation, using the fact 
that  the coordinates of s are independent random variables uniformly distributed 
over ] - Pn, +Pn[. [] 
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Now, we fix b l , . . . ,  bm in {0,1} and denote by X the random variable of (3), for 
which we want to bound the expectation. 

Assume first that the vi's are independent random variables uniformly dis- 
tributed over the hypercube Bn. Then, applying Lemma 7 several times: 

E[X] = b~E[{vi, w f )  21 < n m  < 
j = l  / = i  - -  - -  3 " 

To conclude, we show how to take care of the actual distribution of the vi's. 
Let a denote a point chosen at random from {x E Bn : {z, u) E Z}. Let A be 
randomly chosen in [0,1[. Then, the sum a + ~u is uniformly distributed over 
an n-dimensional volume Cn, which differs from Bn by points y such that the 
segment [y, y + u] crosses the border of Bn. Such points are within distance 1 
of this border. It follows that one can bound the volume of the difference of Bn 
and Cn by 2npnn -1. Replacing the uniformly distributed variable vi by ai + Aiu 
chosen according to the above distribution, one sees that E[X] is modified by at 
most n- 1 n 2nPn /Pn X n(mpnVrd) 2 = 2n9pn since each {v~,wj L) is less than PnVrn. 
Noting that the actual vi is obtained from some instance of ai by adding a small 
perturbation vector 5i, and that 2ngpn = o(n4p2/3) as n grows, we obtain for 
sufficiently large n, 

2 nap2 
E[X] <_ n 4 ~ ( 1  + 1/2) < 

2 

4.2 Deciphering 

For any real/3, let LZ be the n + m-dimensional lattice (in R 2n+m) spanned by 
the columns of the following matrix: 

1 0 . . .  0 
... 

... 

�9 . . .  n 2 v ~  

" ' .  0 

0 n2v~, 

The following proposition shows that a ciphertext of '0' is, in some sense, close 
to this lattice. 

Propos i t ion  8. Let ~ > 0 and (U, Wl , . . . ,Wn , • I , . . . ,Vm)  satisfying (2). A ei- 
phertext x of '0' satisfies with probability at least 1 - e: for all ~ > O, 

r 
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Proof. Any ciphertext x of '0' is of the form x = ~"=t  bivi + EjL10lJW.i where 
bi E {0, 1) and aj  E Z. We prove that the vector X = t(~x,O) is close enough to 
the lattice point Y = t(fix, a l , . . .  ,an,bt, . . .  ,bin). We have aj  = [0jJ where the 
0 i 's are defined by: ~i~1 bivi = ~jn= 1 Ojwj. Since the width of the parallelepiped 
P(wt , . . .  ,wn) is at least n-2pn, we have: 

E a~ <_ E O~ < -  bivi, w . 
j=l j=l -- p2 j=l i=I 

Applying Markov's inequality to (2), we obtain with probability at least 1 - 
over the choice of bi, . . . ,  bin: 

n n4 n4#2 n8 
E . i <  • = �9 
j=i - ~n 2e2e 2~2r 

Therefore: dist(X, L~) < dist(X, Y) <_ x--- nan 5 1 + ^ 1  n4. 
Z ~ 2 6  

[] 

Somehow, there is a converse to the previous proposition: 

Proposition 9. Let e > 0 and (u, wl , . . .  ,wn,vl, . . . ,Vm) satisfying (1). Let y 
be a point in the parallelepiped w = P(wl , . . . ,  Wn). 

I fdis t ((~oY),L~) < e , ~ n  s then(u,y) E Z : k e ( l + ~ ( l + n - ~ ) )  
- V 2 1 r  

Proof. The vector fly is of the form/~ ( m n ) )-~i=i bivi + ~']~j=i ajwj +e, where fief[ 2 
m n 2 and Y]~i=i b2n5 + Y]4=i c~j are both less than eUcini6/(2~r). Thus, 

m n 

] 6 1  S dist(Z, (u, y) ) < E Ibildist(Z' (u, v,) ) + Z lajldist(Z' (u' wi) ) § -~ V ~ n  . 
i=I j=l 

By the Cauchy-Schwarz inequality and the fact that each (vi,u) E Z :k n -7, 
the first term is bounded by ~/s2elnll/(2~r) • ~ - 6 ~ .  Also, the 
second term is less than: 

I ~ 
E a ~ •  E dist(Z, (u, wj))2. 
j = l  j----1 

We know that the first term of this product is less than r  s. And (1) 
bounds the second term. We conclude from all the inequalities obtained. [] 

If we collect these two propositions, we obtain a probabilistic reduction: 
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T h e o r e m  10. There exists N such that for all a, al ,  a2 > O, there exists a 
polynomial time Turing machine taking a public key and a ciphertext x as an 
input and making a single call to a (n + m,  n 4 -(s~+~, +a2)/2 / [V~( 1 + 2n - a  -a2)])_ 
CVP-oracle which outputs a yes/no answer such that: for all n > N ,  if the 
keys are picked at random as described in Ajtai-Dwork's protocol, then with a 
probability of at least (1 - n - a 1 ) ( 1  - n - a ~ ) ,  

- If  x is a ciphertext of '0', the answer is yes with probability at least 1 -  n -~.  
- I f  x is a ciphertext of '1 ', the answer is yes with probability at most 3n -a.  

Proof. We let el = n -a l  and e2 = n - ~  �9 For sufficiently large n (independently 
of al  and a2), (1) and (2) are satisfied with probability at least (1 - el)(1 - e2) 
over the choice of the public key by Theorem 4. We let e = n - a  and /~ = 
4nSv/~-/(2~r). Calling once the CVP-oracle above, we obtain a lattice point 

E L~ such that ,  for all 7 E L~: 

e ~  n4dist (7 ,  ( ~ 0 x ) ) .  d i s t ( ~ ' ( f l O X ) )  <- x / l + l / ( 2 e 2 d )  

The machine outputs  'yes' if and only if: 

If x is a ciphertext of '0', Proposition 8 then ensures that  the answer is 'yes' with 
probability at least 1 - e .  Now, if this inequality is satisfied, Proposition 9 implies 
that: (u, x) e Z �9 e(1 + �88 + �88 = Z �9 3e. But  this happens with probability at 
most 3e if x is a ciphertext of '1'. [] 

5 D e c i p h e r i n g  w i t h  a S V P - o r a c l e  

We now show how to use SVP-oracles. Given a n-dimensional lattice L, an (n, k)- 
SVP-oracle outputs  a point ~ e L such that for every f l e  L: Ilall < kl}/~ll. The 
main result of this section is the following: 

T h e o r e m  11. Let 0, 7 > 0 such that 5~ 2 + 20 < 2. For all o'1,o" 2 > 0, there 
exists N > O, a E ]0 ; 3 + 3/5[ and a polynomial time oracle Turing machine 
calling a (n 2+'~, n~ such that: for all n > N ,  if the keys are picked 
at random as described in Ajtai-Dwork's protocol, then with a probability of at 
least (1 - n - ~ l ) ( 1 -  n-a2),  the machine distinguishes encryptions of '0' from 
encryptions of '1 ' with polynomial advantage n -a.  

Note: recall that  the advantage e of a distinguishing algorithm A is such that 

1 
P[A answers correctly] > ~ + ~. 

We will need a technical improvement over the computations of section 4 which 
reads as the following generalization of Theorem 4, proved in the appendix. The 
key to the improvement is to replace Markov's inequality by moments inequali- 
ties, using the multinomial formula. 
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T h e o r e m  12. Let k be a positive integer. There exists M1 and M2 such that 
for su~ciently large n: for any choice of 61 and 62 in ]0, 1[, any set o.f keys 
(u, wl,  . . . , wn, Vl, . . . , vm) picked at random as described" in Aflai-Dwork's pro- 
tocol satisfies the following with probability at least (1 - 61)(1 - 62): 

n 

dist(Z, (u, wj)) 2 < nl6EMll/"--"-~l (4) 
j=l 

E E b ,  v , , w f  < n4kp2M2 (5) 
./=I ~ i=1 62 

This leads to the following results: 

L e m m a  13. For all k, there exists M3 such that: if (u, w l , . . .  ,wn, v l , . . .  ,v,n) 
satisfies (5), then a random ciphertext y of '0' is, with probability at least 1 - 63, 

n of the form y = ~im=1 biv~ + ~ j = l  aiwi ,  where bi E {0, 1}, a j  E Z and 

n 

2 < M3n8 1 (~263)1/k (6) 
j=l 

Proof (Sketch). Apply Markov's inequality to the random variable of (5), then 
extract k-th roots. Conclude with M3 = M~/k, by bounding the sum of the a~ 
as in the proof of Proposition 8. D 

Ciphertexts of '0' satisfying (6) are called good ciphertexts. Note that it is pos- 
sible to produce good ciphertexts, given the public key, by a polynomial time 
algorithm. 

L e m m a  14. For all k, there exists M4 such that: if (u, w l , . . . , w a , v l , . . . , V m )  
satisfies (~), then any good ciphertext y of '0' satisfies 

1 
dist(Z, (u, y)) < Ma n 4 ( 8 1 6 2 ~ 3 ) 1 / 2 1  r �9 

Proof (Sketch). Decompose y with the bi's and the c~j's. Conclude by Cauchy- 
Schwarz thanks to (6) and (4), with M4 -- 1 + ~ .  r3 

We now fix some constants. Since 28 + ~ < 2, there exist strictly positive 
71,72,a3,k,$ such that 

28+ ~ +7~ + A +  l ( a ~  +a2  +a3)  < 2, 

with: 
4/5 > 3'2 > 71 > 7, 71 < 7 ~- ~, and ~3 > 2(2 + 7 + "Y1). 

We let 61 = n -r , 62 = n -~= and 63 = n -~8. We assume that the keys satisfy (4) 
and (5) (which happens with probability at least (1 - 61)(1 - 62) for sufficiently 
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large n). We will use our oracle as follows: let v = n 2+~ and consider a sequence 
(Yl, . . .  ,yv) of elements of P(wl , . . .  ,wn). Choose a random permutation p of 
{ 1 , . . . , v }  and apply the (n2+~,n~)-SVP-oracle to the lattice spanned by the 
columns of the following matrix, with/~ = n6nl+]: 

( Yi (1) <,,)) 0 g 
1 : 

0 
. . .  0 1 

The output  is a vector (z, ;~1,.. . ,  A~). Say that  Yi is hit if: 

o < i) , , , - , ( ,) l  < n 

The following two propositions (proved in the appendix) show tha t  ciphertexts 
of '0' and '1' behave differently. 

Proposition 15. If  y l , . . . ,  yv are ciphertexts of '1', then Yl is hit with proba- 
bility ~(n  -~').  

P r o p o s i t i o n  16. I/y1 is a ciphertext o/ '1' and Y2,... ,Y~ are good ciphertex~s 
oS '0" then yl is hit with probability O (n-~2). 

We show how to conclude. The distributions S~ = (Yl , . . . ,  Y~ : Yi is a cipher- 
text of '1') and T~ = (Yl,-.. ,Y~ : yl is a ciphertext of '1' and the others are 
good ciphertexts of '0') are distinguished by the test "Yl is hit" with advantage 
s -~1). Using the "hybrid technique" (see [13]), we introduce the distributions 
Si = (y l , . . .  ,yv : y l , . . .  ,yi are ciphertexts of '1' and y i + l , . . .  ,yv are good ci- 
phertexts of '0'). There exists i such that  Si-1 and Si are distinguished by the 
test with advantage: 

= 

One can check whether a given y is a ciphertext of '0' or ' r  by querying the 
answer of the test for (y 1,. �9 �9 Yi- 1, Y, Yi+ 1, �9 �9 �9 Yv) where y 1 , . . . ,  y l -  1 are random 
ciphertexts of '1' and Yi+l , . - - ,yv are random good ciphertexts of '0'. Since 
the bad ciphertexts of '0' form a set of probability less than es = n -as where 
a3 > 2(2 + "y + ~1), the distinguisher has (for sufficiently large n) polynomial 
advantage n -~ if a > 2 + ~ + 31. But: 

2 + 7 + ~ 1  < 2 +  4 4 3 

Therefore, ~r can be chosen strictly less than 3 + 3/5, and the result follows. 
Note: the above construction is non-uniform. Eliminating the non-uniformity 
requires "sampling" the test for the various distributions Si (see [13]). 
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6 C o n c l u s i o n  

We have shown how to reduce the question of distinguishing encryptions of one 
from encryptions of zero in the Ajtai-Dwork cryptosystem to approximating 
CVP or SVP. For the sake of simplicity, our results were proved with the choice 
of constants from [15]. Of course, the method extends to a more general setting 
as well, with the same proofs. More precisely, if we let m = n c (instead of n a) 
and denote by S,~ the n-dimensional ball of radius n -d (instead of n-S), one 
can show that  with a (n + m, nd-(c+5)/2-(a~+~l+~2)/2 /[v/r(1 + 2n-~-~2)])-CVP- 
oracle, Theorem 10 remains valid. Theorem 11 also remains valid with a constant 
a in ]0 ; 2 + 2 ( 2 d -  (9 + c))/5[ if 8 and ~, are such that  ~ + 20 < d -  (9 + c)/2 and 
we use a (n 2+~, n~ In particular, the CVP-reduction implies that  
breaking the Ajtai-Dwork cryptosystem is unlikely to be NP-hard. 

We have also presented a heuristic attack to recover the private key, given 
only the public key. It has been successfully implemented in the case of small 
parameters, and latest expriments suggest that  the attack could be applied to 
real-life parameters in a reasonable time. This shows that  unless major improve- 
ments are found, the Ajtai-Dwork cryptosystem is only of theoretical importance. 
A c k n o w l e d g e m e n t s .  We would like to thank the anonymous referees for their 
helpful comments. 
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A A p p e n d i x  

A.1  P r o o f  o f  T h e o r e m  12 

The  pr6of is similar to the one of Theorem 4. Let u be a private key. For (4), we 
need to generalize Lemma  5 and 6. Let J be a randomly chosen point from Sn: 

4Wn f1(1 - y2)(n-~)/~y2kdy. 
E[<u, ~)~k] _< ~ Jo 

This integral is equal to I (n ,  k) = fo/2 sinnO cos 2k OdO. We have I(n, O) = W. 
and an integration by parts  shows that:  I(n, k) = 2k-1-, - ~ - l t n  + 2, k - 1). This 

implies I(n, k) < W,~(2k)!/n ~. Hence: 

4 ~ 27r(2k)! 
E[<u, 6)2~] <_ ~ x W~ < n17+ k . 
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The expectation would be equal to zero if there was an odd power instead of 2k. 
Now, let v = a + )'~i 5i be a randomly chosen point from the distribution 7/u. 
We have: 

E [dist(Z, (u, v)) 2k] < E (u, 51) . 

If we expand this product, we obtain a sum of m z~ terms. But all the terms for 
which some (u, 5i) has an odd exponent disappear. By the multinomial formula 
and the independence of the 5j's, this expectation is therefore equal to: 

n 

l-[ E 
il +'"+in =k ~=i  

27r(2ij)! (21r(2k)!) 2k 
We know that each product is less than I ' [  nlV+i~ <- nlTk+k . And: 

ij >0 

(2k)! (2k)! k! (2k)!nk 
Z <- = kf 

il +...+i,~ =k il +-..+i,~ =k 

Thus: 

(2k)! k 
S [d is t (Z , (u ,v ) )  2k] <_ --k-~.n • 

(27r(2k)!) 2k 
n l 7 k + k  

1 dkvt.2k{~k~12kW1 

Therefore: 

E 
k! n 

-< E jl! ":-in! H E [  d i s t ( z ' ( u 'w t ) )u j t ]  
j l + ' " + J . = k  l = l  

k! 1 (4kTr2k(2k)!2k+l)k 
< E j t ! ' . : . j n ! n l T k  jl +...+j, =k 

1 -< ~ (4k~r2k(2k)!2k+l) k 

Thus, by the moment inequality, (4) is satisfied with probability at least 1 - el 
with respect to the choice of Wl, . . . ,  wn, if we let M1 = 4krr2k(2k)! 2k+1. 

For (5), as in the proof of (2), we bound the expectation when the bi's are 
fixed. A first bound is obtained when the vi's are independent random variables 
uniformly distributed over the hypercube Bn. Then, we show that with the actual 
distribution of the vi's, the additional error is negligible, so that the bound of 
(5) is satisfied for sufficiently large n, thanks to Markov's inequality. 

For the first bound, we generalize Lemma 7 with the same tricks we used 
to generalize Lemma 5. Let t = ( t l , . . . ,  tn) be a vector in the n-dimensional 
unit sphere. Let s = ( s l , . . . ,  Sn) be a randomly chosen point with uniform 
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distribution from Bn. We have: 

If  we expand this product,  we obtain m 2k terms. But  all the terms for which 
some sj has an odd exponent disappear. We obtain by the multinomial formula: 

(2k)! .~ 
E[(s't)2k] = E (2il)17.:-(2in)! ~ [ (81t l )2 '1""  (Sn~Yt)2in] " 

, l  +. . .+,n =k 

And since the sj 's  are independent: 

E [ (81~ i )  2'1 "" (Sn~n)  2i'*] ,2/1 2in 2i i+. . .+2in 1 I 
�9 : ~ 1  " '"  tn #n 2il + 1 "'" 2in + 1" 

Therefore: 

(2k)! ~[(~, 0~1 = p2~ ./.2'1 . f2in 
E (2ii + 1)[- ' - (2in + 1)! ~I "" -" 

i l  + . " + i n  = k  

And this sum is less than: 

k (2k) l (2k)! k_! t2il ..f2i~ ( )!(t 2 + . . .  + t2)/, 
kl E i l ! " - i n l  1 " -n = = kl 

i l  + ' " + i n  =k  

Thus: 
(2k)! 2~ E [ ( s , 0  2k] <- - -~w P- �9 

And this expectation would be equal to zero if there was an odd power instead 
of 2k. Therefore, if we assume that the vi's are distributed uniformly over B , :  

E bivl,wf ~- E (2il)f:~.(2im)! H E[(vl'wf)2it] " 
i=1 i l + ' " + i m = k  ~=1 

We know that  each product is less than I T  (2Q)!p~ it < p~k(2k)!k. And: 
, f r  - 

(2k)! (2k)! 

i l  + . " + i m = k  

It follows that: 

i l  +...+i,.~=k 

k! _- (2k)!mk" 
i1!.-"ira! k[ 

E b, vi, w f  <_ p2k(2k)!k m k = p~k k! 
i=1 
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Therefore, if we denote by X the random variable (Y~qn 1 (~'~im_ 1 bivi, w~)~) k, the 
multinomial formula shows that: 

E[xI <_ HE 
jlq-...q-jn=k " = [_~t i = 1  

< Z Jl ! k! p2j, (2Jr) tj '+l m j, "'"J"!j,>0IX jt-i 
k! ~2k(2]v..~lk.l.l~k 

< ~ i t ! ""  jn. - -  - ' g  l '~n x-'*J" "'- 
j l  + '"+j .  =k 

(2k)! k < p2nk(2k)!k+lmk X - - ~ . n  

4k 2k (2k) [k+2 
<_ n Pn k[ 

With the actual distribution of the vi's, there is an additional term which is 
negligible, so that  the wanted bound is satisfied for sufficiently large n, with for 
instance: M4 = (2k + 1)[k+2/k!. 

A.2  P r o o f  o f  P r o p o s i t i o n  15 

We first need a combinatorial lemma: 

L e m m a  17'. For suJficiently large n, for all elements Yl , . . . , yv  in the paral- 
lelepiped P(Wl,. . .  ,Wn), there exist coe~cients Ai (not all zero) in { - 1 , 0 ,  +1} 
such that: 

Proof (Sketch). Same reasoning as in the proof of Theorem 2. [3 

L e m m a  18. Let A1,. . . ,Au be integers not all zero. If  y l , . . . ,y~ are chosen at 
random in the parallelepiped P(wl , . . . ,  Wn) then: 

P r  )~iYi <_ ~n  2 < ~ .  
i=1 - P'~ 

Proof. Assume that the inequality on the norm is satisfied. Write ~ ' = 1  Aiyi as 
~]=1 ~jwj. We have: I~jl < II Y~4v=l Aiyill • n2/pn <-- 1/(2pn). The probability 
is therefore bounded by the probability that each c~j is between -~-~-1 and 2-~.'1 

n lO ' S  Each yl is of the form ~l--1 #i,t ~ where the Pi,~ are independently chosen 
in [0, 1[ with uniform distribution. It follows that: a j  = ~ ' = 1  Ai#i,j. If Ai is 
non-zero, then )~i/s modulo 1 is uniformly distributed over [0,1[. Since the 
Ai's are not all zero, a j  modulo 1 is therefore uniformly distributed over [0, 1[. 
Furthermore, the a j ' s  are independent, and the result follows. [] 
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This probabilistic lemma is the core of the following result: 

L e m m a  19. Let r = "~1 -,~l. I f  y l , . . . ,  yv are chosen at random in P (wt ,  . . . , wn) 
then the probability that there exist ~1 , . . . ,  Av not all zero such that 

II ~y~ < v ~ _  0.1-_ (7) 

II(.Xl,...,,x,,)ll < "r 1+'~/2+~ (8) 
I{i : ~ r 0}1 < n 2-r' (9) 

is exponentially small (with respect to n). 

Proof. The number of non-zero (~1 , - . . , )~ )  satisfying (8) and (9) is at most 

(n2+~ ) (2n1+mr176 n2-" < (n2+'Y) n2-" (2nl+712+'r)n 2-' .  
n2-r 

Since 0 < 3, by Lemma 18, each vector has probability less than pn n to satisfy 
(7). This yields an overall probability less than (n2+7) n2-, (2nl+7/2+O)n2-'pnn. 
Taking logarithms we get: 

3' O)log,  n 1 ] - n '  n2-"  [(2 + 7) log2 n + (1 + ~ + + log2 n. 

Since 2 - r < 2, the leading term is - n  2 log 2 n and the result follows, t3 

Now, consider the output  (z, ;~l,...,)~v) of the oracle. By Lemma 17 and by 
definition of the oracle, Ilzll 2 and ~-]~iV=l )~2 are both less than: 

Therefore: 

II + . . . +  x,,.o,,c,,)ll < , no-o and II(,X,,...,,x,..)ll _< 

This means that  (7) and (8) are satisfied if we use the ypCi)'s instead of the yi's. 
Since the Ai's are not all zero and Yt,.-- ,Yv are ciphertexts of T ,  Lemma 19 
implies that  with overwhelming probability, (9) is not satisfied: at least n 2-r 
coefficients are non zero. By symmetry, the probability that  Yi is hit does not 
depend on i. Furthermore, (8) implies that  the number x of (A1, . . . ,  Av)'s such 
that  I)~il > n m/12+O+~ is such that: 

xn ~'+20+2)~ < 11()~1,..., Av)[[ 2 <_ 2n 2+3'+2s. 

Hence: 
x < 2n 2-2x. 

Since A > ~- (because 71 < 7 + A), this number is negligible with respect to n 2-r. 
Now, the probability that  ),i is hit is: 

n \ n--~-4 j = n ~ ~ 7  Q 
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A.3 P r o o f  of  Propos i t ion  16 

As in the proof of Proposition 15, consider the output (Z, Al, . . . ,Av) of the 
oracle. Hzl[ and [[(A1,..., Av)[I are still less than v/2n 1+e+~/2. And we have: 

v 
)tp-l(1)Yl = ~z  -- ~ ~p-l(i)y i. 

i=2 

Since Y2,... ,Y~ are good ciphertexts of '0', Lemma 14 implies that for all i > 2: 

1 
dist(Z, {u, yi)) <_ M4 n4(ele2e3)x/2k. 

Therefore, by the Cauchy-Schwarz inequality: 

dist Z, )~p-l(i)yi, u _< ~-"~.~n_l(i) x M~ 
i=2 i=1 n8 (ele2e3)l/k 

<__ v~nl+O+,Y/2M4nl+,y/2_ 4 1 
(~Ie253)1/2k 

0+~--2 
_< M4 (~152~3)1/2k n 

Furthermore: 
dist(Z, (z/~, u)) < V~n e-6. 

Therefore, for sufficiently large n: 

dist(Z, <)~p-X(1)Yl, I/>) ~ M4 (glg2-g3)l/2k n . 

If Ap-~(1) is a fixed integer, since Yl is a random vector in the parallelepiped, the 
latter inequality is satisfied with probability at most: 

~/3 0+~-2 
2M4 (glg293)l/2k n 

But if Yl is hit, then: 

I)~p-i(i)[ E {I, 2 , . . . ,  n�89176 ) . 

Hence, Yl is hit with probability at most: 

2V~ e+~-2~ ~/2+o+x 
2M4 (6192g3)l/2k n zn . 

As n grows, this is: 

( ) ( 1 )  ~) n2a+3"y/2+A-2+(~1+a2+as)/(2k) ~__ ~) @ �9 

And this concludes the proof. 


