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Abs t rac t .  In electronic communications and in access to systems, the 
issue of authentication of the Sender S of a message M, as well as of the 
message itself, is of paramount importance. Recently S. Goldwasser has 
raised the additional issue of Deniable Authentication where the sender 
S authenticates the message M to the Receiver's (R) satisfaction, but 
can later deny his authorship of M even to an Inquisitor INQ who has 
listened to the exchange between S and R and who gains access to all 
of the the secret information used by S and R. We present two prac- 
tical schemes for Deniable Authentication of messages M of arbitrary 
length n. In both schemes the Receiver R is assured with probability 
greater than 1 - 2 -k, where k is a chosen security parameter, that M 
originated with the Sender S. Deniability is absolute in the information 
theoretic sense. The first scheme requires 2.4kn XOR operations on bits 
and one public key encoding and decoding of a short message. The second 
scheme requires the same number of XOR operations and k multiplica- 
tions rood N, where N is some fixed product of two large primes. A key 
new feature of our method is the use of a Shannon-style error correction 
code. Traditional authentication for a long message M starts by hashing 
M down to a standard word-size. We expand M through error correc- 
tion. The first Deniable Authentication method is provably valid for any 
encryption scheme with minimal security properties, i.e. this method is 
generic. The second Deniable Authentication method is provably valid 
under the usual assumption that factorization is intractable. 

Background and New Results 

The question of authentication of transmitted messages is of paramount  im- 
portance. When a Sender S communicates with a receiver R and sends him a 
message M, it does not suffice for R to authenticate (identify) S in order to 
know that  M has actually originated with S. An Adversary AD can actively tap 
the line between S and R, and after R has authenticated the sender S, AD can 
block the Sender's transmission and inject his own message ~r to R. 

There is also an obvious need for Deniable Authentication (DA). In electronic 
voting schemes DA is a tool for providing freedom from coercion. In negotiations 
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over the Internet it may be desirable for S to be able to make price offers M to 
R in a manner that prevents R from showing the offer to another party in order 
to elicit a better offer. Namely, R cannot prove to the third party that S has 
made the offer contained in M. It should be noticed that the manner in which 
the Internet and Electronic Commerce are evolving, call for the widespread use 
of public-key signatures and for public-key based schemes for establishing shared 
secret keys. 

The usual approach to creating Message Authentication Code (MAC) as- 
sumes that S and R share a secret key K. The message M is hashed down to 
a fixed block size b by use of a hash function H(K, M) which folds the key K 
into the hashing process. The Sender S then sends (M, H(K, M)) to R who 
verifies the tag H(K, M). Alternatively, S digitally signs H(M), where H is a 
known hash function, using a public key signature Sgns(H(M)) , and R verifies 
Sgns(H(M)). 

There are a number of difficulties associated with this approach. To be effi- 
cient we need fast hash functions H and fast digital signatures. When it comes 
to the construction of MAC schemes that are provably secure (based on an as- 
sumption such as intractability of factoring), one has to use particularly compute 
intensive hash functions such as the beautiful scheme proposed in [8, 3]. 

As to deniability of authorship of M, it is obvious that a scheme using digital 
signatures in a straightforward manner has in consequence also strict undenia- 
bility, which is the purpose of digital signatures. 

As mentioned in the abstract, our schemes are highly efficient, are provably 
secure, and provide information theoretic deniability. We shall outline our solu- 
tions after discussing previous work and background. 

Previous Work. Because of the significant practical importance of Message Au- 
thentication, there is a very extensive literature on MACs. This literature deals 
with theoretical as well as with practical issues of authentication. For long mes- 
sages, hashing down to a short message is the first step. In the papers that 
aim at creating MACs for actual systems use, there is strong emphasis on rate, 
i.e. speed, of the hashing process. Let us mention here as representative im- 
portant examples the papers by Wegman and Carter [14], Bellare, Cauetti and 
Krawczyk [1], Halevi and Krawczyk [9], and Krawczyk [10]. The papers, as well 
as for example Schneier's book [12], contain a wealth of references to the litera- 
ture on authentication. The present practical MACs do not require interaction. 
The message M, with some authenticating tag, is sent by the Sender to the 
l~eceiver who verifies the tag. The Deniable Authentication schemes presented 
here do require, after transmission of the message, a small number of additional 
message rounds. The additional messages are of size at most O(k log n), where 
M is the the length of the message to be authenticated, and k is the security 
parameter. On the other hand, these schemes do not require pre-shared secret 
keys for S and R. In this setting interaction seems to be necessary for Deniable 
Authentication. We feel that the cost of interaction is not onerous. 

Canetti et. al. [2] solve a problem closely related to the Deniable Authenti- 
cation problem, namely the problem of deniable encryption, in a model where 



301 

the Inquisitor INQ listens to the transmission between S and and R. In their 
model the Sender is identified in the sense that  the eavesdropper knows that  he 
is listening to a conversation between S and R. The only issue for him is to be 
able to prove what the contents of that  conversation was. The sender S sends an 
encrypted message E(M)  = C to R, where E is the a probabilistic encryption 
function. INQ, who knows C, can then go to S a n d / o r / ~  and interrogate them 
as to the value of M. [2] providedeniable encryption in the sense that  S or R 
can produce any other message M so that  C = E(M) .  If one assumes a secret 
one-time pad of length IM[ = n which is shared by R and S, then the problem 
is trivial. The challenging problem arises in a setting where only public keys 
and the corresponding private keys held by the participants are used. The [2] 
solution provides only polynomially secure deniability and the Inquisitor INQ is 
limited to polynomial computing power. If INQ can compel every participant in 
the protocol to reveal their private keys then deniability collapses. The protocol 
is compute intensive. 

In a new paper [4], Dwork et al address the deniable authentication of mes- 
sages as an application of concurrent zero knowledge proofs. They  require a 
t iming constraint that  they call an (a,  j3)-assumption on the response time of 
processes. Their  solutions directly apply to messages M shorter than the public 
keys used and are compute intensive. 

New Results. Coming to our solutions, we assume a model in which the Sender 
S and the Receiver R are connected by an insecure link. The adversaries in the 
schemes we construct include an Impostor who tries to impersonate S and send 
to R a message ~ / a p p e a r i n g  to originate from S. The Impostor can also be a 
Person In the Middle (PIM), sitting on the link between S and R, intercepting 
the traffic between them and injecting messages of his own. In essence, the PIM 
can employ the Sender S as an oracle in his a t tempt  to fool R. Thus general 
chosen message attacks should also be protected against. 

When discussing deniability of authentication, we assume that  the commu- 
nication between S and R is such that  listening to the transmission does not 
identify S. For example, S may use a notebook computer and a modem at a 
public telephone. We allow an Inquisitor INQ who listens on the line to the ex- 
change between S and R. INQ later comes to S and R and compels them to 
reveal all the secret data, such as encryption/signature keys, used in the pro- 
tocol. Even so, INQ cannot prove that  the message M was authored by S. It 
follows that  the Receiver R himself cannot prove after the fact to a third party 
that  M was authored by S. Also, the INQ cannot impersonate R to S and elicit 
from S an authenticated message M to R. This seems to be impossible if INQ 
has the capabilities of a Person In the Middle , but  our schemes do have this 
property as well. 

The central tool in our schemes is the use of an error correction code C. Let us 
assume messages M comprising n bits. We assume that  C(M)  = Yl, Y~,.. . ,  Y~ 
has the property that  if M r M then the Hamming distance between C(M)  
and C(/l:/) is greater than m/4, i.e. C(M)  and C(M)  differ at more than m/4  
indices. For our purposes we choose a code C which is very efficient to encode. 
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We never have a need to decode C(M). Also, in our application S and R need 
to compute only a fixed number 2.4k of (randomly chosen) bits of C(M). 

For our first Deniable Authentication scheme we assume a public key en- 
cryption function Es for S (who, of course, possesses the corresponding secret 
decryption function Ds). The Sender S sends M to R. They then create a ran- 
dom sequence Y = i l , . . . ,  ik of k different indices between 1 and m. The bits of 
C(M) at these indexes are computed by S and by R. Sender S then deniably 
authenticates these bits as well as Y to R. Thus Deniable Authentication of the 
long message M is reduced to Deniable Authentication of a short message. 

For our second Deniable Authentication scheme we assume a publicly avail- 
able Directory containing certain public keys for each potential  Sender. The 
sender S wants to transmit messages M = XlX2 . . .  zn, where each xi is a bit. 

We again employ the error correction code C which codes M into C(M) = 
yly2. . .Ym, where m = cn (say m = 5n) and the Hamming distance between 
any two code words Y1 and ]I2 is am.  With m = 5n we ensure a > 1/4. The  
code C is publicly known and is used by every Sender. 

The public Directory contains C and a number N = p �9 q chosen as a prod- 
uct of two large primes, and where the factorization of N is not known to R 
(and possibly not to S either). Every potential sender S randomly chooses 
ao, al, go, . . . ,  grn in Z~r, computes their squares mod N, and publishes those 
squares Ao, A1, Go,., Gin, in the Directory. In the full paper we give a version of 
our protocol that  allows to reduce the size of each Sender's Directory entry from 
m +  2 to log 2m + 2. 

The Sender S sends M to R. To authenticate M as having originated with 
S, the Receiver R randomly chooses L = d .  k (where d > 1 depends only on c, 
i.e. on the code C; for c = 5 we have d = 2.4) indices i l , . . . ,  iL between 1 and 
m (the size of the error correcting coded message C(M) = YlY2.. .  Yrn). He then 
computes Yil, �9 �9 -, Yin" For the code C that  we' use, each such computation of a 
Yi, requires just  n XOR operations on bits regardless of c. 

The Receiver/~ then conducts an L-round interaction with S. Roughly speak- 
ing, in round j the Receiver R verifies that  yij is the i j- th bit in the code word 
of a message that  S has actually sent him. The precise details and the proof 
of authentication are given in the full paper. Each round requires four multipli- 
cations mod N by the sender and by the receiver. If we want a more compact 
Directory with just  log 2 m + 2 words for each Sender, then the above 4 is replaced 
by log 2 m + 3. However, precomputation by the Sender and by the Receiver (in 
case R will receive many authenticated messages from S), will again reduce the 
number of multiplications to 4. Note that the total number of multiplications 
2.4.4k = 9.6k for each participant, and is independent of the message length n. 

After this interaction, R knows, with probability of being cheated smaller 
than 2 -~ that  M has originated with S. This is provable on the assumption that  
factorization of N is intractable. 

We then prove that,  provided that  S does not conduct more than a fixed 
number of message-authentications simultaneously, our message authentication 
is deniable in the strong information-theoretic sense explained in the Abstract. 
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Under any reasonable t iming restrictions on concurrency, such as those in [4], 
we directly achieve deniability in the unbounded concurrency setting. 

The  intractabili ty of extracting square roots mod  N based on the intractabil-  
ity of  factoring N,  which lies at the heart  of our authentication scheme, was first 
introduced and used in [11]. Square roots mod  N are used for user authenti- 
cation and for digital signatures in [6] and in [5]. Zero Knowledge Proofs of  
languages involving squares mod  N and of knowledge of square roots mod  N 
are discussed in [7] and in [13]. 
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