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A b s t r a c t .  Mayers and independently Lo and Chau have shown that 
unconditionally secure quantum bit commitment is impossible. In this 
paper we show that under the assumption that the sender is not able 
to perform generalized measurements involving more than n qubits co- 
herently (n-coherent measurements) then quantum bit commitment is 
possible. A commitment scheme is 8-binding if for each execution there 
is an ~ E {0, 1} that cannot be unveiled with probability of success bet- 
ter than ~. Our bit commitment scheme requires the transmission of N 
qubits and is ~-binding, for any ~ > 0, if the committer can only carry 
out n-coherent measurements for some n E ~2(N). For some ~ > 0, 
the scheme is 2-~N-binding against n-coherent measurements for some 
n E ~2(vWN). The security against malicious receivers is unconditional. 

1 I n t r o d u c t i o n  

The first application of quantum mechanics in cryptography was proposed by 
Wiesner [34] in the late 1960's through what he called "quantum multiplexing". 
Classically, this primitive has been reinvented a decade later by Rabin [32] as 
one-out-of-two oblivious transfer. The power of oblivious transfer is known to 
provide the sufficient and necessary tool for solving the very general secure two- 
party computation problem[20,15]. In its original paper [34], Wiesner describes 
an at tack based on generalized quantum measurements against its own scheme. 
Although proven insecure, Wiesner's scheme requires a quantum attacker with 
technology far beyond what is achievable today. In 1984, Bennett  and Brassard 
proposed two new cryptographic applications of quantum mechanics: secret-key 
exchange and coin flipping by telephone [3]. Whilst the former is still strongly 
believed to be secure [25, 7] the latter was already known to be breakable using 
E P R  pairs [16, 3]. The proposed coin flipping protocol can be modified easily 
to implement a quantum bit commitment scheme that  can indeed be defeated 
by the same EP R  attack [9]. Unlike Wiesner protocol, the attack is conceivable 
using today's  technology [1]. Some at tempts to find a quantum bit commitment 
scheme not suffering the same weaknesses have then been made [9, 10]. In 1993, 
Brassard, Cr~peau, Jozsa and Langlois [10] proposed a quantum commitment 
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scheme (the BCJL scheme) that  was claimed to be unconditionally secure until 
Mayers discovered a subtle flaw in 1995 [26]. This was bad news considering Yao 
[35] had provided a proof that ,  under the assumption that  secure bit commitment 
scheme exists, the BBCS protocol [5] for quantum oblivious t ransfer(QOT) is 
secure. Despite BCJL was known to be insecure, it was still conceivable that  a 
secure quantum quantum bit commitment scheme could be found. 

The situation turned out to be a dead end when Mayers [29], and indepen- 
dently Lo and Chan [22], showed tha t  no quantum bit commitment whatsoever 
exists. It  was shown that  the EPR attack can be generalized against any quantum 
bit commitment provided the committer  can deal with large entangled quantum 
states. Different approaches have then been tried in order to escape the no-go 
theorem [13]. All these at tempts aimed at taking advantage of subtle assump- 
tions in the theorem statement. The common feature of most approaches is the 
use of a classical assumption that  has to hold only temporarily. The  goal being 
to build from such a temporary assumption a commitment scheme that  is both 
concealing and binding even after the assumption is withdrawn. Unfortunately, 
none of these at tempts has produced a scheme achieving more than what classi- 
ca] cryptography alone can provide. Quantum bit commitment is now known to 
be impossible in scenarios lying beyond the initial s tatement of the no-go theo- 
rem [11]. It naturally raises the question of what assumptions are needed in order 
for secure quantum bit commitment to exist and can these assumptions be made 
independent of the classical one whilst remaining meaningful? In other words, 
does quantum mechanics helps in providing secure two-party computation? 

In this paper we consider a physical limitation upon which the security of 
quantum bit commitment,  and QOT [35], can be based. The assumption does 
not restrict the computing power and therefore makes sense whether or not one- 
way functions exist in the classical world [19]. For, we restrict the ability of one 
par ty  to carry out arbi trary quantum coherent measurements. We say that  a 
measurement is n-coherent if it involves no more than n qubits coherently. We 
propose a variant of BCJL that  is shown to be secure under this restriction. One 
reason for considering this assumption is that  large coherent measurements are 
not known to be realizable by a reliable physical process. As an example, consider 
the simplest interesting case n -- 2. Perhaps the most important  2-coherent mea- 
surement that  is not 1-coherent is the Bell measurement which, together with the 
ability to produce EPR pairs, leads to quantum teleportation [6]. Interestingly, 
although quantum teleportation has been shown to work experimentally [8], the 
Bell measurements could only be approximated. It is in general more difficult to 
make several qubits interact in a measurement than producing entangled states 
[31,24,8]. Whereas E P R  pairs can be easily produced experimentally, measur- 
ing in the Bell basis requires more work. Even though Bell measurements will 
probably be accomplished in the near future, large coherent measurements are 
very challenging even in a controlled environment. The complexity and reliability 
required for the physical process implementing large n-coherent measurements 
might well not be achievable in a foreseeable future. A coherent measurement 
can be seen as an unitary transformation acting on the observed system plus an 
ancilla, followed by a standard Von Neumann measurement. This process is ex- 
actly what is meant by a quantum algorithm. The ability to perform n-coherent 
measurements suggests that  quantum computers working on n qubits can also 
be realized. However, it might be the case that n-qubits quantum computers ex- 
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ist but  n-coherent measurements against quantum protocols don't .  One reason 
could be that  quantum cryptography, unlike quantum computation, can take 
place in an extremely hostile environment for the survival of large entangled 
quantum states [17]. Our result shows that  large coherent measurements are 
necessary in order to apply Mayers' at tack against our scheme. A commitment 
scheme is ~-binding if for each execution there is a bit ~ E {0, 1} that  cannot be 
unveiled with probability of success bet ter  than 5. Our bit commitment scheme 
requires the transmission of N qubits and is ~-binding, for any 5 > 0, provided 
the committer  can only carry out n-coherent measurements for some n E I2(N). 
For some ~ > 0, the scheme is 2-a~r-binding against n-coherent measurements 
for some n E 12(x/N). The commitment is also shown to conceal unconditionally 
the committed bit. 

In section 2 we give the preliminary ingredients. Section 3 presents a variation 
of the BCJL protocol, called LJCB. In section 4 we introduce the definitions and 
tools about  quantum measurements and outcomes. In section 5, we define the 
class of n-coherent strategies against the binding condition. We show that  LJCB 
is binding against the class of n-coherent strategies for some n E 12(N) where N 
is the total  number of qubits sent through the quantum channel. In section 6, 
LJCB is shown to be unconditionally concealing. We conclude in section 7. 

2 Prel iminaries  

We write x ER X for "the element x is picked uniformly and randomly from 
n the set X ' .  Notation x | y for x, y E {0, 1} n means ~ i = 1  xi �9 y~. For sets X = 

{x0, x l , . . . ,  xn} and s E { 0 , . . . , n }  we write Xs for the s-th element xs in X.  
If y represents the outcome of some random experiment then we write y as the 
random variable associate with the experiment. We denote the Shannon entropy 
and information functions by H(y)  and I (y)  respectively. For any strings c, d E 
{0,1} n we define A(c, d)  as the Hamming distance between c and d.  When 
the context allows, we also write A(c, d)  as the set of distinct positions. For 
X C_ {1 , . . .  ,n} and b e {0, 1} n we denote by bx the substring of b defines for 
positions in X. 1 

2.1 Bi t  C o m m i t m e n t  

A bit commitment scheme allows Alice to send a piece of evidence to Bob that  
she has a hit x E {0, 1} in mind. Given what he receives, Bob cannot tell what 
x is. This phase of the bit commitment scheme is called the committing phase. 
After a while, Bob can ask Alice to unveil x in such a way that  it is not possible 
for her to unveil 1 - x without being detected. This phase is called the opening 
phase. The security of such a scheme is captured by the following definition: 

Def in i t ion  1. A bit commitment scheme is 

- statistically concealing if the information ~ the receiver gets about the com- 
mitted bit x E {0,1)_ after the committing phase (and before opening) is such 
that I(~W) _< 2 -~N /or some a > 0 and N a security parameter, 

1 If b, c, c' E {0, 1} ~ axe any n-bit string then bzx(c,c,) E {0,1} za(c'~') is the substring of 
b restricted to positions where c and d differ. 
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- $--binding for 0 < 5 < 1, if after the execution of the committing phase there 
exists ~ E {0,1} such that the probability to unveil ~2 with success is less than 
5, 

- 5-secure if it is both concealing and 5-binding. 

In this paper we are concerned with a slightly weaker form of the binding prop- 
erty than what is usually considered. Namely, we allow the sender to change 
her mind with some bounded probability of success 6. Nevertheless, a 5-secure 
bit commitment scheme is sufficient for secure quantum oblivious transfer[35, 5]. 
Mayers' theorem shows how to break any concealing commitment by construct- 
ing an attack allowing to reveal any bit with probability of success almost 1. The 
attack also applies for concealing but  5-binding commitment schemes whenever 
5 < 1 [28, 29]. 

2.2 Quantum Coding 

The essential quantum ingredient is the BB84 coding scheme [3]. In order to 

transmit the bit b = 0 one of the two non-orthogonal quantum states 10)+ = ( ~ )  

and {0)x = (~_~) i s  chosen and sent through the quantum channel 2. For the 

transmission of b = 1, the two non-orthogonal quantum states are I1)+ = ( ~ )  

(.) and I1)x = ~ . If for transmitting b E {0,1} the quantum state Ib)+ is 

chosen then we say that b is transmitted in rectilinear basis "+".  If b is encoded 
in Ib)x we say that  b is transmitted in diagonal basis "x" .  Let Pb be the quantum 
mixture associates with the transmission of bit b in a random basis 0 ER {+, x }. 
Let {3'o,~'1} be the unit vectors of the Breidbart  basis (i.e. ~'o = (cos 9,sin 9) 
and 71 = ( - s i n  9, cos 9))" We have, for any b E {0, 1}, that  (see [10] for more 
information) 

71" 7r 
Pb = COS 2 g{'Tb)('Tb[ + sin 2 g{71-b)(71-b[. (1) 

Equation 1 stands as long as the coding basis 8 is random and independent. 
One interpretation of equation 1 is that the BB84 coding scheme is inherently 
ambiguous. Given any outcome of any quantum measurement, the transmitted 
bit b cannot be known with probability better than cos2(9). The intrinsic entropy 
HVN(Pb) (Von Neumann entropy) about  b E {0,1} is 

ff . 27 f  HVN(Pb) = H(COS 2 ~ , s l n  ~ )  :> 0 . 4 1 5 7 6 1 1 8 8 3 .  (2) 

No possible outcome of any measurement can give more information about  b than 
1 -  HVN (Pb) simply because the quantum state does not carry more information 
than that.  For any X C { 1 , . . . , n }  and b E {0, 1} n we define pX(b) = | 
as the density matrix associates with bx when b is transmitted according to the 
BB84 coding scheme. As for equation 2 we have that 

~" , 27f  HVN(Pb x)  = # X .  H(cos  2 ~ , s m  ~)  >_ 0.4157611883. # X .  (3) 

2 Notation [b) for b E {0, 1} means Ib)+ which is the computational basis. 
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In addition, since p+ = p• it follows that  for all measurements no outcome gives 
information about  the transmission basis. 

2.3 G e n e r a l i z e d  Measurements  

It  is shown in [27] (see also section 2.2 of [33]) tha t  any possible measurement can 
be represented by a single IPP  (Inner Product  Preserving Operator)  transforma- 
tion from the initial space of states to a larger space of states followed by an ordi- 
nary von Neumann measurement on the latter. An m-outcome generalized mea- 
surement on a space V is described by m operators Mk : V --~ W k , k  = 1 , . . .  ,m,  
such that  if the initial state is Ir and the observed classical outcome is k then 
the state after the measurement, up to normalization, is M&Ir ). The  proba- 
bility to observe k when Ir is t ransmitted is IIMklr 2. The operator Mk is 
IPP  if it is represented as a matrix of orthonormal columns. An IPP operator  
M~ for the measurement of an n qubits system has 2 n columns. The value (k) 
is called the classical outcome for Mk. From Mk, we define the column vec- 
tor  �9 e((k)lb ) = Mklb)e containing the transition amplitudes from state Ib)e to 
any of the final state in Mk. The probability of observing (k) when Ib)e is the 
initial state is II~e((k)lb)ll 2. If the measurement is complete then Mk is one- 
dimensional and ~u((k)lb ) is not a vector but  a complex number. We use the 
IPP  representation because, as in [30], we want to analyze measurements acting 
on a fixed number n of qubits independently of the degree of freedom provided 
by appending an ancilla to the system (unlike the POVM model). When we say 
that  a measurement is n-coherent, we mean that  it measures a quantum state 
of dimension 2 n regardless the dimension of the ancilla. 

3 T h e  P r o t o c o l  

The protocol we describe works on the same principles than BCJL [10]. The  
main difference is the direction of the quantum transmission allowing Alice to 
commit. For this reason our scheme is called LJCB. Unlike the BCJL scheme, 
the commitment is made by choosing how to measure the received qubits. The  
commitment is initiated by Bob who sends to Alice N qubits in state Ib)0 for 
b ER {0,1} N and 0 ER {+, x} g.  For each qubits she receives, one of the two 
incompatible Von Neumann measurements + and x is chosen and the result is 
announced to Bob. Since the two measurements are incompatible, even knowing 
the outcome does not reveal all the information about which one has actually 
been done. Let C be an error-correcting code of length N,  dimension k and 
minimum distance d. The code C does not need to have an efficient decoding 
algorithm. In order to commit (see protocol 1), Alice picks c ER C, measures the 
i - th  photon ~rl with the Von Neumann measurement {+, • and announces 
the classical outcome fli E {0, 1}. Alice also chooses and announces a random 
r E {0, 1} n subject to r | c = x. This completes the committing phase. In order 
to open x (see protocol 2), Alice simply announces c and x allowing Bob to 
verify (for each ~r~) tha t  when she measured in the basis he had chosen then 
the announced outcome corresponds to the bit originally sent. In this paper, we 
assume a noiseless quantum channel allowing Bob to reject Alice's commitment 
as soon as one position i is found such that  0i = ci but  bi ~ fli. The case of a 
noisy quantum channel will be addressed in the final version. 
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Protoco l  1 ( c o m m i t ( x )  ) 

1: Bob picks and announces a random boolean generating matrix G ]or a linear 
[N, k, ~-code C with N and k chosen according to theorem 3, 
2: Alice picks m eR {0,1} ~, sets c Ea G .  m and picks r E1r {0, 1} N subject 
to c | r = x.  Alice announces r to Bob, 
3: Bob chooses randomly b 6n {0, 1} N and 8 6n {+, x} N, 

N 
4: DO 

- Bob sends a photon lrl in polarization state Ib~)ol, 
- Alice measures Iri in basis {+, x }c~ and obtains the classical outcome/31 E 

{o, 1}, 
5: Alice announces/3 = f ~ l , . . .  ,/3N to Bob. 

Protoco l  2 (open(r , /3 ,O,b)(c ,x)  ) 

1: Alice announces c and x to Bob, 
2: Bob accepts i f  and only if 

I. c E C ,  
$. (Vie {1, . . . ,  g})[Oi --- c/=~ bi =/3~] and 
3. x = c |  

4 T o o l s  

In this section, we give general properties applicable to any quantum measure- 
ment Alice may apply when she commits and opens the bit x. These properties 
are tools that  will be used to deal with Alice general strategy against the binding 
condition. 

When Alice commits, she measures the initial state Ib)e in order to get the 
classical outcome (r,/3). When she opens x, she refines her measurement and 
gets the final classical outcome (r,/3, c). The bit x needs not to appear in the 
final outcome description since it is uniquely defined as c | r. It is convenient to 
write (r,/3, v) to represent a partial outcome with an extra piece of information 
v E V for an arbitrary set V. The extra outcome v will be used in section 5 to 
model successive steps in Alice opening strategy. The final outcome (r,/3, c) is 
accepted by Bob if and only if c E C and the string b E {0,1} N is in the set 
S(/3, c,0) = {b e {0, 1}nl(Vi e {1,...,n})[O~ -- ci ~ bi =/3/]}. 

The following definition characterizes partial outcomes (r,/3, v) allowing to 
announce safely the codeword c. 

De f in i t i on  2. A partial result with classical outcome (r,/3, v) is (0, c ,p ) - sa fe  i f  
]or �89 < p < 1,0 E {+, x} n and c e {+, x} n we have 

P (b E S(/3, c, 0)1/3 =/3  A e = o A v -- v) >_ p. (4) 

We also say that (r,/3,v) is (c ,p ,q) -sa fe  i f  there exists a subset 0 C {+, • 
such that ~ > q and ]or each 0 e 0 the partial outcome (r,/3, v) is (O, c, p)-safe.  
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Suppose the result (r,~,v) is (0,c,p)-safe. The IPP operator implementing the 
measurement that produces (r, ~, v) can be written in terms of transition ampli- 
tudes given the following identity (see section 2.3): 

P(b  E S(~,c,O)l(r,~,v ) AO = O) = 
~b~s(~,~,o) I1~~ r, ~, v) lb)ll 2 
~bE{O,X}'~ II~~ r, f~,v)lb)ll 2 " 

This allows to rewrite equation 4 as 

ll~6((r,~,v)lb)LI 2 >_p ~ ll~~ ~. (~) 
bES(~,c,O) bE{O,1} T' 

If (r,f~,v) is (c,p,q)-safe then there exists O C {+, x} n such that ~ > q and 
equation 5 holds for all 6 E O. In section 5, we shall see that next definition char- 
acterizes the partial outcomes of n-coherent measurements Alice needs in order 
to attack the binding condition of LJCB. Lemma I will then put restrictions on 
what Alice can physically achieve. 

Defini t ion 3. Let 0 E {+, x }n, r, ~, c, c' E {0, 1} n. A partial result with classical 
outcome (r, ~, v) is (0, c, d,p)-promising if (r, ~, v) is (0, c,p)-safe and (0, c' ,p)- 
safe. We also say that (r, ~, v) is (c, c', p, q)-promising if there exists a subset 
O C_ {+, x} n such that ~ > q and for each 0 E 0 the partial outcome (r,~,v) 
is (0, c, d, p)-promising. 

Let S(f~, c, d, 0) = S(fl, c, 0) n S(j3, c', 0) be the set of initial strings b E {0, 1} n 
such that from (r, ;9) both c and d can be announced without error. Using 
equation 5, we easily get that (r,/9, v) is (0, c, F,p)-promising implies 

II~~ ~ >__ ( 2 p -  1) ~ II~a(<r,~,v)lb)ll 2. (6) 
bES(~,c,c',O) bE{0,1} n 

Next lemma shows that promising partial results don't always exist. 

L e m m a  1. Let c, c' E {0, 1}" be such that A(c, d) E J?(n) and let r, ~ E {0, 1} ". 
Then, there exists no (c, e',p, q)-promising partial result with classical outcome 
(r, 1~, v) whenever q(2p - 1) > Pmax = 0.586. 

Proof. Let O C {+, x} n be a set of basis such that ~ > q and for all 0 E O 
the partial outcome (r,/~,v) is (0, c, c',p)-promising. LFrom equation 6, for all 
8 E O ,  

e (b E S(Z,c,c',O)J(r,~,v) is (0, c, c',p)-promising) >_ 2 p -  1. 

By construction we also have that e (ba(e,c,) = fla(c,c,)[b E S(~, c, c', e)) = 1. It 
follows that 

P (ba(c,c,) = f~a(c,c,)[(r, fl, v) is (e,c,d,p)-promising) >__ 2 p -  1. (7) 

Since no measurement outcome gives information about the transmission basis 
0, we have that P (0 E Ol(r, fl)) > q. It follows from Bayes' law that 

e (b~(c,c,) = ~a(c,c,)l(r,~,v) is (c,F,p,q)-promising) >_ q(2p-  1). 
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The amount of uncertainty about ba(c,c,) can therefore be upper bounded as 
follows: 

H(ba(c ,c , ) l ( r ,  fl, v)  is (c, d ,  p, q)-promising ) 

2zx(c'=')--I times 

- " 2A(c'c') -- 1 " " '  " 2 - Z ~  -- 
< H ( q ( 2 p  - 1), 1 - q(2p - 1)) + (1 - q(2p - 1))A(c, c'). 

The above equation contradicts the lower bound expressed equation 3 since 
q(1 - 2p) > Pmax implies 

H(bza(c,c,)l(r,/3,  v) is (c, c', p, q)-promising ) <_ H(0.586, 0.414) + 0.414A(c, c') 

< 

when A(c, c') E JT(n) is large enough. [] 

In other words, any outcome (r, fl, v) that  is ( c , d , p , q ) - p r o m i s i n g  for p and q 
such that  q(2p - 1) > Praax, conveys more information about ba(c,c,) than what 
is allowed by equation 3. This holds regardless of the extra outcome v. 

5 T h e  B i n d i n g  C o n d i t i o n  

5.1 n - c o h e r e n t  O p e n i n g  St ra t eg ie s  

Alice's opening strategies are of the following form: 

- During the committing phase, Alice incompletely measures the N qubits in 
order to get the partial outcome (r,/3 / for r E {0, 1} N and fl E {0, 1} N. She 
announces r and j3 to Bob. 

- During the opening phase, Alice completes her previous measurement ac- 
cording to the bit z she wants to unveil. The outcome of the refinement is a 
codeword c E C and the unveiled bit x E {0, 1} is c | r = x. The final and 
complete outcome (r,/~, c) allows Bob to learn x. 

An opening strategy is n-coherent if all measurements performed by Alice dur- 
ing both phases are n-coherent. Unlike fully coherent strategies, a n-coherent 
strategy is made out of t > r~ ]  measurements depending only classically upon 
each others. Each possible measurement must be expressible as an IPP operator 
with no more than 2 n columns. However, the description of each IPP operator 
may depend upon some partial outcomes obtained from previous measurements 
and therefore can change dynamically as the opening strategy evolves. In or- 
der to model arbitrary n-coherent opening strategies, it is convenient to use a 
tree structure T~. Each node in T~ represents the current state and the next 
measurement to be applied. The relevant operations are quantum measurements 
and classical announcements. For the sake of simplicity, we only represent in 
T~ the opening part of Alice's strategy. In other words, the root of T~ repre- 
sents the first refinement Alice applies from the partial outcome (r, fl) when the 
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opening phase is initiated. We require that each measurement along any path 
P of T~ can be expressed as a set of measurements MR = {M1,. . . ,  Mr} where 
each M E MR, is an IPP operator of at most 2 n columns acting on a subset 
B C {1, . . . ,  N} of the received qubits. Without loss of generality we assume that 
all announcements are made at the very end of the measurement process i.e. they 
are leafs of T~. We also assume each internal node to define a binary outcome 
refinement. The outgoing edges are labelled according to the possible outcomes 
and lead to the next node. At the end of each path, a final announcement c E C 
is made. Each path P in T~ defines a complete final outcome (r,/3, c / which is 
the concatenation of all t measurement outcomes defined along P. Since each 
measurement Mi E A/Ip is applied to a block Bi C {1, . . . ,  N} of at most n 
qubits, P defines a partition B = {B1 , . . .  ,Bt}  such that for all i e {1 , . . . , t} ,  
#Bi  < n. Each measurement M~ may act coherently on photons {~rj}jeB ~. We 
call B the block decomposition of P and each B E B is called a block. The partial 
and final outcomes for a measurement M E J~4p acting on block B E B are 
denoted by (r, f~)B = (rB, ~B) and (r, ~, c)B = (rB, ~B, CB) respectively. It is 
also convenient to define the block decomposition B(d) at node d which is the 
block decomposition for measurements along the path from the root to node d. 

Once the measurement in node d is completed during the execution of T~ 
with root (r, ~), Alice gets the partial outcome (r,/3, v(d)l where v(d) represents 
the composite partial outcome (or view) for refinements down to d. We denote 
the final outcome by (r, ]3, c) with c E C dropping the irrelevant auxiliary view 
v(d). Let d' be a node in T~ reachable from d. We write (r, f~, v(d)) ~ (r,/3, v(d')) 
if the probability to go from d to d' in T~ is at least u. We write (r,/3, v(d)) 
(r,/3, v(s  to indicate that the probability of transition from d to d' is nonzero. 
We denote L(T~,  s) the set of nodes at level s in T~. 

Defini t ion 4. Let T~ be a n-coherent opening strategy from partial outcome 
(r,/3 I. We say that T~  is (u,7)-successful if there exists C* C_ C such that 
P (c e C*l(r, fl) A T~) >_ u and for all c e C*, P (b e S(O,/3, c) I(r , ~) A T~) > % 
Similarly, a node d in T~ is said to be (u,~)-successful/f the subtree T~(d) of 
T~  is (u, 7)-successful. 

Next lemma gives some simple properties any n-coherent opening strategy T~ 
must have. The proof is omitted but follows easily from the definition 4 and the 
above discussion. 

L e m m a  2. Let T~  be an n-coherent opening strategy with root (r,/5). Let 7 = 
1 -  ( 1 -  Q)(1 - q) for 0 < Q,q < 1 and let I > 0 be an integer. Let d E T~v and 
t = [91" The following holds: 

1. If d' is a son of d in T~ then #(B(d')  M B(d)) > t - 1, 
2. If (r,/3, v(d)) is both (c, Q, q)-safe and (c', ~, q)-safe then (r, ~, v(d)) is 

( c, c ~, ~, 2q - 1)-promising, 
3. I f  for B E B(d), (r,~,v(d))B ~ (r,/5,c)B and (r,/3,c)B is (c,~,q)-safe then 

<r,/3, v(d)>B is (c, Qu, q)-safe, 

4. if <r, ~).v(d)) ~-~ (r,/3, c) then 
(SB(d) C_ B(d))(VB e ff(d))[(r,/3,v(d))s 4 (r,/3,c) A #i f(d)  > t - l], 

5. i f P ( b  e S(O,Z,c)l(r,/3, c~) > 71 then 
(3V(d) c_ t3(d))(VB e V(d))[ (r ,# ,c )B  is (c, O,q)-safe ^ # ~ ( d )  > t - 1]. 
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5.2 LJCB is Binding  

In this section we prove that  whenever n is small with respect to C's minimum 
distance d, Alice cannot change her mind with arbitrary good probability of 
success. The smaller n is, compared to d, the better the probability is for Bob to 
detect Alice changing her mind. Next lemma shows that  any successful strategy 
allows to unveil only one c E C with good probability of success. The binding 
condition will then follow. 

d (~0 t , ~/~)-SUCCeSSfUl L e m m a  3. Let Q = 0.93,7 = 0.9937 and n ~_ 4-F~" If T~ is a 
n-coherent opening strategy from partial outcome (r, fl) then the following pred- 
icate holds, 

H(s) - [(Vd E L(T~, s))(3!c* E C) 

[(r,Z, v(d)) --+ (r,~,c*) A P (b E S(O, c*, ~)](r, ~, c*) ) >_ ~t]]. 

Proof. Let q = 0.91 be such that  7 = 1 - (1 - Q)(1 - q). Let t = iN] be a 
lower bound on the number of n-coherent measurements. The proof proceeds 
by mathematical induction. In the first place, it is easy to see that  H(0) holds 
since all nodes at level 0 are announcements. Second, assume H(s) holds, we 
show that  H(s + 1) also holds. Let d E L(T~, s + 1). Let d o and d 1 be the left 
and right son of d respectively. If T~(do) or T~(d 1) is not (Or, ~/t)_successful then 
H(s + 1) followed directly from H(s). Now suppose both T~(do) and T~(d 1) are 
(Qt,~/)-successful. By induction hypothesis, T~(do) and T~r(d 1) are such that  

(r,13,v(do)) Y~ (r,/~,c ~ and (r,~,v(dl)) Q-~ (r,~,c 1) respectively, for c~ I E C. 
If c o = c 1 then H(s+ 1) follows from H(s). Assume for a contradiction that  c o # 
c 1. Let/3(do) and ~(d 1) be defined according to lemma 2-4). We have that  for 
all w E {0, 1}, #/~(d w) >_ t - I. Let ~(do) and ~ ( d  1) be defined as in lemma 2-5) 
ensuring that  for all w E {0 ,1} ,#~(d  ~) >_ t - l .  Let I ~~ = B(dW)n~(d~)NB(d) be 
the set of blocks B E B(d) such that  (r,/3, v(d~))s  -~ (r, fl, c~~ and (r, ~, CW)B 
are (c~, Q, q)-safe. From property 2-1), we get that  # F  ~ _> t - 2(l + 1) and from 
lemma 2-3), all B E F ~~ are such that  (r, ~, v(d w)) B is (c~, ~2, q)-safe. Let F ~ = 
F ~ NF 1 be the set of blocks B E B(d) such that  (r,/3, v(d))B is (c ~  c~, ~2,2q-  1)- 
promising. Since both # F  ~ and # F  1 are greater than t - 2(l + 1) it follows that  
# F  ~ _> t - 4(l + 1). Let Bn = {B E B(d)[A(c~ E ~2(n)} be such that  

d # B n  _> 4 l+5  from the fact that  n _< 4-V~- From lemma 2-2), all B E Fa  -- (F~ 
F z ) N B n  are such that  (r, fl, v(d))s is o 1 (CB, cS ' Q2,2q -- 1)-promising in addition 
to A(c~  E ~2(n). To get a contradiction, it suffices to show that  Fa  is not 
empty since any B E Fa  is such that  (r, ~, v(d))s is 0 1 2 (cs, cs ,  ~ , 2 q -  1)-promising 
contradicting lemma 1 since (202-1)(2q-1) > Pma~. By the pigeonhole principle, 
since #(/3(d) \ F ~ < 4l + 4 and # B n  >_ 41 + 5, it must exist a block B E Bn 
tha t  is also in F ~ and therefore # F n  _> 1. We must conclude that  c o r c 1 is 
impossible and H(s + 1) follows. [] 

Next theorem uses lemma 3 in order to conclude that  LJCB is 6-binding for any 
6 > 0 and against all n-coherent opening strategies for some n E ~2(N). 

T h e o r e m  1. Let N be the number of BB8~ qubits transmitted. Let l > 0 be an 
integer. Let d E f2(N) be C's minimum distance. Protocol LJCB is 6(l)-binding 
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against any n-coherent opening strategy for 5(l) = 7 t + ~t provided n < d and - 4-~-~ 
~/, Q are defined as in lemma 3. 

Proof. Assume Alice can open any x E {0, 1} with an appropriate n-coherent 
opening strategy T~(x ) .  The trees T~(0) and T~(1) cannot be both (~/,71) - 
successful since otherwise the tree T~ with T~(0) and T~(1) as left and right 
subtree respectively will also be (QI,Tt)-successful. By construction, T~ has 
two codewords c o r c 1 such that for all x e {0,1} (r, fl) -~ (r,f~,c ~) and 
P (b e S(O,c=,fl)l(r,  fl, c=)) > V t contradicting lemma 3. It follows that there 
exists ~ e {0, 1} having probability less than 5(I) <_ (1 - Q~),?! + Ql < ~/t + Ql of 
being unveiled with success. [] 

6 T h e  C o n c e a l i n g  C o n d i t i o n  

In this section we show how to choose the code C such that Bob gets almost 
no Shannon information about the committed bit x. The technique is similar 
to the one introduced in [10] to deal with the concealing condition of BCJL. 
Here, we sketch the proof that LJCB is concealing along the same lines. We first 
define the density matrix pc that characterizes Bob's view about c E C given 
the announcement (r, f~). We then show that Bob's view about c is equivalent 
to receiving c through a noisy channel. This is done by introducing a fictitious 
protocol used by Alice to send c E C in such a way that Bob gets the same view 
than after the committing phase of LJCB. We finally show, using privacy am- 
plification techniques [4, 12], that the fictitious protocol conceals x and therefore 
so it is for LJCB. 

The most general attack for Bob is to prepare a quantum system initially in 
pure state Ir E //2 N | H s  where H2 N is the Hilbert space of N qubits and 
HB is an auxiliary Hilbert space helping Bob in its quest for x. The quantum 
state Ir can be written, for some I e IN, as Ir ----  ~l<_i<_I ailr A) | Ir where 
I1~ A) e H2N, I~) B) e HB and the ai's are complex numbers such that ~ i  lall 2 = 
1. We do not require ]r (resp. IcB)) to be orthogonal. Bob then sends PA = 
TrHB(Ir162 to Alice and keeps the remaining part PB = TrH2N(Ir162 for 
later use. Once fl, r e {0, 1} N have been announced, Bob determines an unitary 
transformation U(r, fl) which he applies to PB- The strategy is completed after a 
standard measurement M is finally applied to the final state U(r, ~)pBU(r,  fl)t. 
First, we show that Bob has no advantage in preparing PA in a mixed state. 
Consider that, instead of preparing state Ir as described above, Bob follows 
the procedure Simulate(C) defined as: 

1. Bob picks i e {1, . . . ,  I} with probability lail 2, 
2. Bob sends to Alice the quantum state Ir A) and keeps Ir B) for later, 
3. Bob waits for r,f~ e {0, 1} g and applies Ir B) = U(r, fl)lcB), 
4. Bob measures IcB) with measurement M .  

The above procedure gives exactly the same view than what Bob would get if he 
had prepared the entangled state Ir since Ir is a purification of Simulate(C) 
[18]. The density matrices, for Alice's and Bob's systems, before M is applied 
are identical in both cases. It follows that M behaves the same way in both 
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scenarios and therefore, if the initial preparation Ir helps Bob in cheating then 
so it is for S imula te(C) .  By the same argument, each qubit ~ri can be assumed 
in pure state Ir E H2 allowing us to restrict the analysis to Bob's strategy 
consisting of sending N qubits in state N |162 

Let Bob's qubits lri, for i e { 1 , . . . ,  N}, be in quantum state Ir = cos a i l0)+ 
s ina i l l )  where ai  is an arbitrary angle. For m,w e {0,1}, let p ~ C a i )  be the 
probability that  Alice observes the classical outcome m whenever Ir is measured 
in basis {+, x}y 2. We have that  pooCal) = cos 2 a i , p o l ( a i )  = sin 2 a i , p l o C a i )  = 
(cosai + s i n a i ) / 2  and pn (a i )  = (sinai  - cosal)2/2.  Let p~, be the density 
matrix describing what Bob gets when Alice chooses to measure lri in basis 

pie, (ai) = pc,0(ai)10)(01 + P~,I (ai) l l)( l l .  (8) 

The density matrix P= (a) associates with the commitment of bit x and given 
the polarization angles a = a l ,  a 2 , . . . ,  aN is such that  (see [10] for details) 

p x ( a )  = 
N 

E 2- § | Ca,). 
{c~C[c| i=l 

Consider the following fictitious protocol for transmitting c ER C from Alice 
to Bob. It is easy to verify that  the density matrix Px (a) corresponding to the 
transmission of a random codeword from C in fictitiousCx), satisfies ~xCa) = 

P r o t o c o l  3 ( f i c t i t i ous (x )  ) 

1-" Alice  chooses c ER C,  
2: For each i E {1,. . . ,  N } ,  Al ice  sends to Bob a photon Iri in state: 

- I f  cl =- 0 then she sends I0) with probability poo(a~) and sends I1) with 
probability pot ( al  ) , 

- I f  c~ = 1 then she sends I0) with probability p lo(a i )  and sends I1) with 
probability p n  (a~). 

3: Alice announces a random r e {0,1} N such that c | r = z .  

Protocol f ic t i t ious(x)  does not require the transmission of qubits. Classical 
communication is enough since only orthogonal states are sent. Given a,  Bob's 
view about c in LJCB is the same as if c was sent through a classical noisy 
channel. Let wi be the bit received by Bob in the i-th transmission. In general, 
for any c, w E {0, 1} and any actual view Vi up to the i-th transmission, we have 

P (ci = clYl)pc,(ai) 
P (el = c]wi = w ̂  ai  A ])i) = p (ci = 0[l]i)p0,(ai) + P (ci = l [ 1 ] i ) p l , ( a i ) "  (9) 

An easy calculation shows that  for any actual view l~i, the best choice for ai  
is c~i = ~ for some v E ~I. Whenever P (c i  = cp)i) = �89 any al  = ~ for 
v E ~1 works equally good. In order to simplify the analysis, we assume that  
C is a IN, k]-systematic random code. This ensures that  for all i E {1 , . . . ,  k}, 
P (ci = clVi) = �89 allowing us to set a i  = 0 without loss of generality. In addition, 
we also assume that  the redundancy part ~ E {0,1} N-& of c E C is sent perfectly 
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to Bob. This new procedure is called ficti t ious*(x) and is identical to protocol 3 
except that  C is systematic and only the message part  m E {0, 1} k of a codeword 
c is sent imperfectly. Obviously if Bob does not get much information when c is 
sent according to f ict i t ious* (x) then he gets no more information whenever c is 
received according to f ict i t ious(x) .  

The first step consists of finding a lower bound on Bob's R~nyi (or collision) 
entropy about c before Alice announces the redundancy part 5 and r E {0, 1} N 
in fict i t ious* (x). Setting ai = 0 in equation 9 gives that  for all c E {0, 1}: 

1 
P (ci = c[wi = 0 A ];i) >_ -~. (10) 

The subset of positions J C_ {i[wl = 0} is, except with negligible probability 
2 -~2k, such that  # J  _> P (wi = 0[];i) k - Ak = (3 _ A)k. Bob's R~nyi entropy 
R(c[l)) given the view 1) = Ul<i<klZi after the transmission of the k bits of 
message in c is such that,  

R(cI]; ) > - k (  3 - ~)lg 5 = 0.848(3 _ ~)k. (11) 

Next, Bob learns perfectly N - k  parity bits about cg. The situation is identical to 
receiving the bits in cj  over a binary symmetric channel with error probability �89 
plus u = N - k  parity bits. This situation has been analyzed extensively in [12]. It 
is shown that,  except with probability 2 -xk, the R~nyi entropy R(cl])A U = U) 
given the complete view V and the parity bits U satisfies: 

R(cI]; A U = U) >_ R(cII;) - 2u - 2Ak > 2.63k - 2N - 3Ak. (12) 

Equation 12 and the privacy amplification theorem (PAT) of [4] allows to con- 
clude that  the committed bit x = c | r is statistically hidden to Bob. 

T h e o r e m  2. There exists ~ > 0 such that except with negligible probability, the 

information Bob gets about x after the commit phase of LJCB is less than 2 - ~ g  
provided ~ > 0.77. 

Proof sketch. According to the PAT [4], the amount of Shannon information 
I ( x l V  A U = U A r = r) about x after the execution of f ict i t ious*(x) is such 
tha t  I (x l ] )  A U = U A r = r) <_ 2 - n ( c l U = v ^ v ) + l / l n 2 .  Plugging ~ > 0.77 and 

setting A small enough in equation 12 gives I ( x l l )  A U = U A r = r) <_ 2 - xN  
for some ~ > 0. This also holds for LJCB since f ict i t ious* (x) gives always more 
information about x. [:] 

7 C o n c l u s i o n  

Theorem 1 and 2 ensure that  LJCB can be tuned to provide both the binding and 
the concealing conditions. Using Gilbert-Varshamov bound (GVB) on random 
binary codes allows to conclude that  the same tuning can satisfy both conditions 
simultaneously. According to GVB [23], a random N x k matrix with -~ > 0.77 
defines a [N, 0.77N, 0.035N]-code except with negligible probability. Theorems 
1, 2 and GVB allow to conclude with our main result: 
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T h e o r e m  3. Let C be a IN, 0.77N] random binary code. Let l > 0 be an integer 
and let n < o.o3sN Protocol LJCB is J(1)-secure against all n-coherent opening 

- -  4 / - t - 5  " 

strategies for 7 = 0.9937, Q = 0.93 and J(l) = 7 t + ~l. 

The binding condition, which is the target of Mayers' attack, holds because if 
Alice could succeed in changing her mind, it would imply that some measurement 
outcomes have given more information than what is physically achievable. Even 
though our analysis gives n E I2(N) for any ~(1) > 0, the constant ~ ~ 0.035Jr 41q-5 
is small even for relatively large values of J(l). It is important for practical 
applications to improve the constants appearing in the statement of theorem 3. 

Bootstrapping the BBCS protocol with LJCB leads to secure QOT provided 
the receiver cannot carry out n-coherent opening strategies against the commit- 
ments [35]. In BBCS, the receiver must commit on measurement outcomes. Two 
commitments are produced for each of the N qubits received. ~From theorem 3 
and assuming each commitment requires the transmission of N qubits, we get 
that BBCS is secure against n-coherent measurements for some n E I2(v/-N). 
Moreover, one call to BBCS is sufficient to get a 2-aN-secure commitment 
scheme for some c~ > 0. The resulting commitment is therefore 2-aN-secure 
for some n E I2(v/-N) as well. This leads to our main open question: Is LJCB 
2-aN-binding against any n-coherent opening strategy for some n E ~2(N)? 

When used in BBCS, LJCB allows to realize QOT using only unidirectional 
quantum transmission. If QOT is used for quantum identification [14] then the 
scheme achieves unconditional security for the client and conditional security 
for the server. All quantum transmissions taking place are from the client to the 
server. This is interesting in practice because only the technology for sending 
photons (which is simpler than the one for receiving) is required for the client. 
However, in other scenarios it might be better to have a commitment scheme 
where the committer is sending the qubits. In such a case BCJL would be a 
better choice. Theorem 3 should also hold for BCJL but with different constants. 
It would be interesting to prove theorem 3 for BCJL as well. 

Different experiments in quantum information theory (see [17, 24, 8, 31]) have 
given strong evidences that our assumption is realistic. It appears that the phys- 
ical complexity of implementing n-coherent measurements grows very quickly 
as n increases. Today's technology only allows to deal imperfectly with the 
simple case n = 2. Future experiments will be important in order to capture 
more precisely what is the inherent difficulty of implementing arbitrary large 
coherent measurements. Despite the fact that quantum cryptography does not 
provide unconditional secure two-party computation, it allows to base cryptogra- 
phy upon physical, realistic and well-defined assumptions. In this paper, we have 
shown how quantum mechanics can help in providing an alternative framework 
to complexity-based cryptography. 
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