
On Concrete Security Treatment of Signatures 
Derived from Identification 

Kazuo Ohta Tatsuaki Okamoto 

NTT Laboratories 
Nippon Telegraph and Telephone Corporation 

1-1 Hikaxi-no-oka, Yokosuka, Kanagawa, 239-0847 Japan 
E-maih {ohta, okamoto}@isl.ntt.co, jp 

Abstract. Signature schemes that are derived from three move identifi- 
cation schemes such as the Fiat-Shamir, Schnorr and modified E1Gamal 
schemes axe a typical class of the most practical signature schemes. The 
random oracle paradigm [1, 2, 12] is useful to prove the security of such 
a class of signature schemes [4, 12]. This paper presents a new key tech- 
nique, "ID reduction", to show the concrete security result of this class 
of signature schemes under the random oracle paradigm. First, we apply 
this technique to the Schnorr and modified E1Gamal schemes, and show 
the "concrete security analysis" of these schemes. We then apply it to 
the multi-signature schemes. 

1 Introduction 

1.1 Background  

To reMize a practical and provably secure cryptosystem is one of the most im- 
portant research topics, and digital signatures are a very important ingredient 
in cryptography. This paper focuses on practical and provably secure signature 
schemes. 

1.1.1 S tandard  Secur i ty  P a r a d i g m  versus R a n d o m  Oracle Parad igm 
The first formal definition of the security for digital signatures ("existentially 
unforgeable against adaptively chosen-message attacks") was given by Gold- 
wasser, Micali and Rivest [7], and a concrete signature scheme satisfying this 
security definition was shown by assuming the existence of a claw-free pair of 
functions [7]. Hereafter, this formal definition and model for signatures is called 
the "standard security paradigm", and a signature scheme with the standard 
security paradigm is just called a "provably secure" signature scheme. 

An ultimate target in the standard security paradigm was to realize a prov- 
ably secure signature scheme assuming the weakest computational assumption, 
the existence of a one-way function. This target was finally solved affirmatively 
by Na~r, Yung and Rompel [9, 13]. Their solution, however, was geared towards 
feasibility result and thus very inefficient and far from practical. In addition, 
even the scheme by [7] is much less efficient than typical practical schemes such 
as the RSA[141 and Schnorr[15] schemes. Therefore, no provably secure scheme 
as efficient as typical practical schemes has been proposed. 

To realize provable security and efficiency simultaneously, another paradigm 
to prove the security of cryptographic schemes has been proposed [1, 2, 12]. 
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This is called the "random oracle paradigm", in which an ideally random and 
imaginary oracle, the "random oracle", is assumed when proving the security, 
and the random oracle is replaced by a practical random-like function such as 
a one-way hash function (e.g., SHA etc.) when realizing it in practice. Here 
random oracle F generates an answer randomly to a query posed to F at first. If 
the same query is asked later, F will answer the same value as was provided to 
the first query. Although the security under the random oracle paradigm cannot 
be guaranteed formally when using a practical random-like function in place 
of the random oracle, this paradigm yields much more efficient schemes than 
the standard security paradigm. The security with the random oracle gives an 
informal guarantee to the security of practical random-like functions. 

In addition, the random oracle model not only provides a methodology for 
constructing an efficient and secure scheme, but also gives some security guar- 
antee for schemes that practitioners intuitively constructed using a random-like 
functions in actual systems. 

1.1.2 A s y m p t o t i c  Secur i ty  Analysis  versus  Conc re t e  Secur i ty  Anal- 
ysis 
The random oracle paradigm has another advantage over the standard secu- 
rity paradigm: it can much more easily provide "concrete security analysis", 
which avoids complexity theory and asymptotic property when proving the se- 
curity (i.e., reducing the breaking of a primitive problem to breaking a signature 
scheme). Such concrete security analysis provides a much better guarantee than 
asymptotic security analysis, since the computational complexity currently re- 
quired to break a signature scheme with a "fixed size" (e.g., 1024 bits) and 'Tixed 
key" can be estimated by the assumed lower bound of the complexity of break- 
ing the underlying primitive with the "fixed size" and "fixed key." Note that 
asymptotic security gives no useful information on the security of a fixed size 
and fixed key system. 

The concrete security analysis of the reduction from breaking a signature 
scheme to solving a primitive problem is usually trivial and optimal (i.e., opti- 
mally efficient). Hence, we have to obtain the concrete security analysis of the 
opposite direction of the reduction as much as optimal. If the opposite direction 
is as efficient as the trivial direction, then we can call such a reduction ezact. 
That is, the exact reduction implies that the required time (and success proba- 
bility) of breaking the signature scheme is ezactly equivalent to that of breaking 
the primitive problem. (In other words, the signature scheme is ezactly as secure 
as the primitive problem.) 

The (almost) ezact security of the RSA signature scheme along with random 
functions has been shown under the random oracle paradigm [2]. The asymptotic 
security of the Schnorr and modified E1Gamal schemes has been proven under 
the same paradigm [12]. 

1.2 Main  Resu l t  

This paper shows the concrete security analysis of the Schnorr, modified E1Gamal 
(MEG) and multi-signature schemes under the random oracle paradigm. (The 
concrete security analysis of the other signature schemes based on the Fiat- 
Shamir conversion technique can be proven similarly.) 
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In order to show the concrete security analysis of the signature schemes, 
we have developed a new technique, "ID reduction", in which the identification 
scheme corresponding to the signature scheme is used when showing the reduc- 
tion from breaking the underlying primitive to breaking the signature scheme. 
There are two stages of reduction. The first stage is from breaking the corre- 
sponding identification to breaking the signature scheme, and the second stage 
is from breaking the underlying primitive to breaking this identification. 

In order to obtain a tighter (i.e., close to optimal) reduction and its tighter 
evaluation from breaking the underlying primitive to breaking the signature 
scheme, our "ID reduction" technique has an advantage over the previous tech- 
nique, "forking lemma", by Pointcheval and Stern [12]. This is because the first 
stage of ID reduction (ID reduction lemma: Lemma 9) is optimal* in our sig- 
nature scheme model and the second stage of this reduction (Lemma 13 and 
Lemma 15) may be more efficient than the reduction in the forking lemma of [12], 
since to analyze the corresponding identification scheme is easier than to ana- 
lyze the signature scheme directly. Here, finding a forking pair of signatures in 
the forking lemma of [12] corresponds to finding two success entries in a heavy 
row in our approach. Therefore, the ID reduction technique seems to be more 
appropriate to obtain a tighter reduction than the previous technique. 

In addition, the asymptotic result of the Fiat-Shamir signature scheme proven 
in [12] can be trivially obtained just by combining the ID reduction lemma as the 
first stage reduction and the well-known techniques given by [5] as the second 
stage reduction. 

2 F r a m e w o r k  

In this paper, we investigate a specific class of signature schemes that axe de- 
rived from three move identification schemes, where the identification schemes 
are perfect zero-knowledge against an honest verifier [6]. This section shows the 
models and notations of such signature and identification schemes. 

2.1 Signature Scheme 
In the signature scheme, signer P publishes public key Kp while keeping secret 
key K,. In this paper, we will adopt the following model as a signature scheme, 
which covers the class of the Fiat-Shamir scheme [4],Schnorr scheme [15] and the 
modified E1Gamal scheme [12]: 

Mode l  1. (S ignature  Model)  
Key  genera t ion:  Each signer P generates a pair, (Kp, K,), of a secret key and 
a public key using a key generation algorithm G which, on input 1 k, where k is 
the security parameter, produces (Kp, K,).  
S igna ture  generat ion:  P generates the signature of his message m using a 
public random oracle function F as follows: P generates X from both K, and 
random string R, accesses the random oracle function F to get E = F(X, m) E s 
calculates Y using K,, R and E, and sends (X, m, Y) to V. 
Verification: a verifier V checks the validity of the signature of the message by 
the relations of (Kp, X, E, Y) and E = F(X, m). 

* We will show the meaning of "optimal" in the end of Section 3. 
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Remark. We assume that this signature scheme is derived from the following 
identification scheme. 

2.2 Identification Scheme 

Here we can define an identification scheme that produces the above-mentioned 
signature scheme. 

In an identification scheme, prover P publishes a public key while keeping 
the corresponding secret key, and proves his identity to verifier V. 

Model  2. (Identification Scheme) 
K e y  generat ion:  Prover P generates a pair, (Kp, K,), of a secret key and a 
public key using a key generation algorithm G which, on input 1 k, where k is 
the security parameter, produces (Kp, K,). 
Identification Protocol: P proves his identity, and verifier V checks the va- 
lidity of P 's  proof as follows: 

Step 1 P generates X from both K8 and random string R and sends it to V. 
S tep  2 V generates random chMlenge E E ~ and sends it to P. 
S tep  3 P generates an answer Y from (Ks, R, E) and sends it to V 
S tep  4 V checks the validity of the relations of (Kp, X, E,Y). 

Remark. We assume that this three move protocol is perfect zero-knowledge 
against an honest verifier. 

2.3 Secur i ty  

We will adopt the quantifiable notion of exact secnrity proposed in Reference [2]. 

2.3.1 Secur i ty  of  K e y  Searching P r o b l e m  
Defini t ion 3. A probabilistic Turing machine (adversary) A breaks a key search 
problem with (t, e) if and only if A can find a secret key from a public key with 
success probability greater than e within processing time t. The probability is 
taken over the coin flips of A. 

Defini t ion 4. A key searching problem is (t, e)-secure if and only if there is no 
adversary that can break it with (t, e). 

2.3.2 Security of  Identification Schemes 
Definition 5. A probabilistic Turing machine (adversary) A breaks an identi- 
fication scheme with (t, e) if and only if A as a prover can cheat honest verifier 
V with a success probability greater than e within processing time t. Here, A 
doesn't conduct any active attack ~ .  Here, the probability is taken over the coin 
flips of A and V. 

Definition 6. An identification scheme is (t, e)-secure if and only if there is no 
adversary that can break it with (t, e). 

** As the result of Lemma 9 3), it is enough to cover this case only for discussion of 
the security of identification schemes, where the honest verifier is assumed. 
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2.3.3 Security of Signature Schemes 
Next we will quantify the security of a signature scheme: Here we assume that  
the attacker can dynamically ask the legitimate user P to sign any message, m, 
using him as a kind of oracle. This model covers the very general attack of the 
signature situations, adaptive chosen message attack. 

D e f i n i t i o n  7. A probabilistic Turing machine (adversary) A breaks a signature 
scheme with (t, qsia, qF, e) if and only if A can forge a signature of a message with 
success probability greater than e .  We allow chosen-message attacks in which A 
can see up to q,ig legitimate chosen message-signature pairs participating in the 
signature generating procedure, and allow qF invocations of F ,  within processing 
time t. The  probability is taken over the coin flips of A, F and signing oracle P.  

D e f i n i t i o n  8. A signature scheme is (t, qsig, qF, e)-secure if and only if there is 
no adversary that  can break it with (t, qsig, qF, e). 

3 I D  R e d u c t i o n  L e m m a  

The general techniques by which we can derive signature schemes from three 
move interactive protocols were proposed in [4] and hash functions are used in 
order to create a kind of virtual verifier, which gives the conversion from an 
identification scheme to a signature scheme. 

To analyze the security of such a class of signature schemes, we will examine 
the opposite direction of conversion for adversaries in Lemma 9 in order to prove 
the security of signature schemes as the first stage of ID Reduction Technique. 

Here note a signature scheme and an identification scheme in this section 
mean those defined in the previous section. We assume the uniform coin flips 
over s (i.e., Pr [E  occurs] = ~-g) are provided. 

L e m m a  9. ( ID  R e d u c t i o n  L e m m a )  

Let e > qF(q,,,,+4)+l#e (i.e., e' >_ 4+q,,~#e , where e' = "-~r 
1) IrA1 breaks a signature with (t, q,ia, qF, e), there exists A2 which breaks the 

signature with (t, q,la, 1, el), where d = ' - ~  qF 
2) IrA2 breaks a signature with (t, qsia, 1, d), there exists A3 which breaks the sig- 
nature with (t', O, 1, e"), where e" = e' - ~e  and t' = t + (the simulation time of 
qsig signatures). 

3) I f  A3 breaks a signature with (t', O, 1, e"), there exists A4 which breaks the 
corresponding identification scheme with (t I, e') ~ .  

Here we assume that the values of qF and qsia can be employed by these 
reductions?. We neglect the time of reading/writing data on (random, communi- 
cation, etc.) tapes, simple counting, and if-then-else controls. (Hereafter in this 
paper, we assume them.) 

*** From the condition of e, e" >_ ~ holds. It makes the heavy row technique available 
in Lemma 13 and Lemma 15, since there axe at least two '1' in a heavy row of a 
Boolean matrix H defined in Section 4.2.2. 

t For simplicity, we also assume that these values don't depend on the adversary's coin 
flips but only on the length of its input. 
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Sketch of  Proof l  
1) Let Qi be the i-th query from A1 to the random oracle F and Pi be the i-th 
answer from F to A1. Construct a machine B using A1 as follows: 

S tep  1 Select an integer i satisfying 1 ~ i _< qF randomly. 
S tep  2 Run Ax with a random oracle F and get (X, m, E, Y). 
S t e p  3 If (X,  m) = Qi and E = Pi, then output (X, m, E, Y). Otherwise output 

(Qi, pi, ri) where ri is a random element of the range of Y. 

If A1 succeeds in forging a signature (X, m, E, Y), there are two cases: 1) (X, m) 
was not asked to the random oracle F, and 2) (X, m) was asked as the i-th query 
to the random oracle F (1 ~ i ~ qF). 

In the former case, the success probability of At is at most 1/~E, because 
of the randomness of the random oracle. Thus 

Pr[B succeeds] 
q F  

>-- E Pr[i is selected] Pr[A1 succeeds A (X, m) - Qi] 
i----1 
q F  

= 1 p r [ a l  succeeds ^ (Z, m) = q,] 
i-----1 

1 qF 
-- - -  E Pr[At succeeds A (X, m) = Qi] 

qF i=l 

= S(Pr [A1  succeeds] - Pr[At succeeds ^ (X, m) is not a query to r])  
qF 
1 1_1_), 

because Pr[A1 succeeds] ~ e. 
Construct a machine B using A1 as follows: 

S tep  1 Select an integer i satisfying 1 < i <_ qF randomly. 
S tep  2 Run At with a random oracle F and a random working tape O, and get 

(X, m, E, Y), where only the i-th query is asked to F and the remaining 
(qF -- 1) queries are asked to O. Here O contains of (qF - 1) random 
blocks used as answers from O. 

S tep  3 If (X, m) = Qi and E : Pi, then output (X, m, E, Y). Otherwise output 
(Qi, pi, ri) where ri is a random element of the range of Y. 

At cannot distinguish (qF-- 1) random blocks of O from (qF -- ~ answers from F, 
because of the randomness of F.  Thus Pr[B succeeds] : Pr[B succeeds] holds. 
Therefore, 1 

Pr[B succeeds] > e -  
qF 

Put A2 = B. 

2) Construct a machine -43 using A2 as follows: 
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Step  1 For j = 1 to qsig do. 
S tep  1-1 Run A2 with simulated (Xi,mi,Ei,~) (1 < i < j - 1), and get 

a message mj chosen by A2 whose signature is requested to the 
signer. 

S tep  1-2 Simulate (Xj, mj, Ej, ~ )  by the standard perfect ZKIP simulation 
technique of the corresponding identification scheme with an honest 
verifier. If there exists an integer i(< j )  satisfying Xj = Xi, discard 
Xj and repeat this step. 

S tep  2 Run A2 with a random oracle F and simulated (Xi,mi,Ei,Yi) (1 <_ 
i < qsia), and get (X,m,E,Y).  

Step  3 Output (X, m, E, Y). 

If A2 does not ask (Xi, ml) (1 < i < q~ia) to F, then A2 cannot distinguish the 
simulated message-signature pairs from legitimate pairs because of the perfect 
indistinguishability described in Section 2 and the the randomness of F's output. 
The success probability of A3 is given as follows: 

d I = Pr[A3 succeeds] 

= Pr[A2 succeeds A (Xj, mj)r  query from A2 to F) for 1 < Vj < q~ia] 

= Pr[A2 succeeds] 

- Pr[3i such that 1 < i < asia A (Xi, mi)=(the query from A2 to F)] 
> 6t_ qsia 
- # ~ ,  

while t' = t + (the simulation time of qsia signatures in Step 1-2). 

3) Let Q be a query from A3 to the random oracle F and p be an answer from 
F to A3. Construct a machine A4 using A3 interacting with an honest verifier 
V as follows: 

S tep  1 Run A3 and get a query Q -- (X, m) which is sent to the random oracle 
F. 

S tep  2 Send Q to V and get a challenge E from V. 
S tep  3 Run As with an input p = E and get (X, m, E, Y). 
S tep  4 Output Y to V. 

Note that a valid signature (X, m, E, Y) satisfies a relation of (Kp, X, E, Y) and 
E -- F(X, m). When a verifier V checks the validity of this relation, V accepts 
A4's proof with (t I, e"). [] 

Remark. When ignoring the minor terms (the simulation time and d - e"), the 
first stage of ID reduction for the signature schemes in this paper is optimal in 

the following sense: For any strategy of A1, d = ~-~'~. On the other hand, let c/F 

assume a specific A'-'I, where Pr[A"~ succeeds ^ (X, m ) =  Qi] = ~ - ~  Then, for 
q F  " 

any strategy of the first stage reduction (signature to identification), d = e- ~'~. 
q F  
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Since we cannot neglect the existence of such a specific A1, we cannot obtain 

the first stage reduction whose value of d is better than e-~t~. qF 
Note that  this does not mean the "exact" security, since d ~ e in the "exact" 

security, while d ~ ~ in our "optimal" reduction. 
In addition, note that  this observation depends on the signature scheme 

model shown in Section 2. 

4 Schnorr Signature Scheme 

We discuss here the Schnorr scheme [15] as an example, though similar results 
can be obtained for the Fiat-Shamir scheme [4, 5] etc. The schemes can also be 
implemented using an elliptic curve [8]. 

4.1 S c h e m e  

K e y  gene ra t i on :  A trusted center publishes two large primes, p and q, such 
that  q ] ( p -  1), and element g E ( Z / p Z ) *  of order q. A signer P chooses a secret 
key s E Z / q Z  and publishes the public key I, where I = g' rood p. 
S i g n a t u r e  gene ra t i on :  A signer P generates the signature of his message m 
using a public hash function h, and a verifier V checks the validity of signature 
of the message as follows: P generates a random integer r E Z / q Z ,  calculates 
X = gr modp ,  e = F ( X , m )  E Z / q Z  and y -  r + e s  rood q, and sends ( X , m , y )  
to V. 
Ver i f ica t ion:  V checks the validity of a signature of the message by the following 

? ? 

equations: g~ -- X I  e (mod p) and e - F ( X ,  m).  

4.2 S e c u r i t y  

The following identification scheme is reduced to the Schnorr signature scheme 
in Section 4.1, and it will be analyzed adopting the scenario given in Section 3. 

4.2.1 I d e n t i f i c a t i o n  Scheme  
K e y  gene ra t ion :  A trusted center publishes two large primes p and q such that  
q I (P - 1), and element g e ( Z / p Z ) *  of order q. A prover P chooses a secret 
key s E Z / q Z  and publishes the public keys I ,  where I = g8 mod p. 
I d e n t i f i c a t i o n  P ro toco l :  P proves his identity and a verifier V checks the 
validity of P 's  proof as follows: 

S t ep  1 P generates a random integer r E Z / q Z ,  calculates X = gr mod p, 
and sends X to verifier V. 

S t ep  2 V generates a random integer e E Z / q Z  and sends it to P.  
S t ep  3 P calculates y = r + es mod q and sends it to P.  

? 

Step  4 V checks the following equation: gY - X I  e (mod p). 

4.2.2 H e a v y  R o w  L e m m a  
A Boolean matrix and heavy row will be introduced in order to analyze the 
security of one-round identification schemes. Assume that  there is a cheater A 
who can break a one-round identification scheme with (t, c), where e > 4 - q  
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Definition 10.  (Boolean Matrix of (A, V)) 
Let's consider the possible outcomes of the execution of (A, V) as a Boolean 
matrix H(RA,  e) whose rows correspond to all possible choices of RA, where 
RA is a private random tape of A; its columns correspond to all possible choices 
of e, which means e E RV. Its entries are 0 if V rejects A's proof, and 1 if V 
accepts A's proof. 

Note that  R V  = ( Z / q Z )  in Schnorr's case. 

Definition 11. ( H e a v y  R o w )  
A row of matrix of H is heavy if the fraction of l ' s  along the row is at least e/2, 
where e is the success probability of A. 

Lemma 12. (Heavy Row Lemma) 
The 1 's in H are located in heavy rows of H with a probability of at least �89 

4.2 .3  S e c u r i t y  o f  I d e n t i f i c a t i o n  S c h e m e  
Lemma 13. ( S e c u r i t y  o f  S c h n o r r  I d e n t i f i c a t i o n  S c h e m e )  
Let e > 4. Suppose that the key searching problem of (p,g,I),  that is, calcula- 
tion ors  from I satisfying I -" g~ modp,  is (t*,e*)-secure. Then the Schnorr 
identification scheme with parameter (p, g, I) is (t, e)-secure, where 

t* 3 ( t + ~ l )  +q~3 and e* 1 (  1 ) '  9 
- c = 5  1 -  >~. 

Here r is the verification time of the identification protocol, ~3 is the calculation 
time of s in the final stage of the reduction, and e is the base of the natural 
logarithm. 

S k e t c h  o f  P r o o f :  

Assume that  there is a cheater A who can break an identification with (t, e). We 
will construct a machine A* which breaks the key searching problem of (p, g, I)  
with (t*, e*) using A. 

We will discuss the following probing strategy of H to find two l 's  along the 
same row in H [5]: 

S t e p  1 Probe random entries in H to find an entry a(~ with 1. We denote the 
row where a (~ is located in H by H (~ 

S t e p  2 After a(~ is found, probe random entries along H (~ to find another 
entry with 1. We denote it by aO). 

It is proven that  this strategy succeeds with constant probability in just  O(1/e) 
probes, using Lemma 12 concerning a useful concept, heavy row, defined in Def- 
inition 11. 

Let Pz be the success probability of step 1 with ~ repetition. Pl >_ 1 - (I - 
e) 1/~ = p~ > 1 - ~ > ~, because the fraction of l 's  in g is e. Let P2 be the 
success probability of step 2 with ~ repetition. P2 _> �89 x (1 - (1 - ~)21~) - 
p~ > �89 - ~) > ~ ,  because the probability that  H (~ is heavy is at least �89 
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by Lemma 12 and the fraction of l 's  along a heavy row is a t  least ~. Therefore 
1 1 2 e * = p i x p 2 > p ' t x P ~ > : ( 1  7) > ~ a n d t * = t x ( ~ + ~ ) =  S' 

. . . .  (1) �9 d ( ' )  
aO) represents (X('), eO),y(')), g~ -- X(') I (modp)  (z = 0,1) holds, 

since a(O is an entry with 1. Two l's, a (~ and a(i), in the same row H(~ 
means X (i) -- X (~ Since there are two unknown variables, r(~ and s, and two 

equations are obtained, a secret key s can be calculated by s - ~ rood q 

in Schnorr's scheme, since q is prime and 0 < e(~ - e (1) < q. o 

4.2.4 S e c u r i t y  o f  S i g n a t u r e  S c h e m e  

The following theorem is proven by combining Lemma 9 and Lemma 13. 

T h e o r e m  14. ( S e c u r i t y  o f  S c h n o r r  S i g n a t u r e  Scheme)  

Let d > 4§ where d = e-~ Suppose that key searching problem of (p,g,I) - -  q ' q m  " 

is ( t* , e* )-secure. Then the Schnorr signature scheme with parameter (p, g, I) is 
(t, q,ia, qe , e)-secure, where 

+q53 and e* = 9 
= : :- >5--6" 

H e  r e  
1 

t' = t + q~z + ~ 2  and ~. = ~ _ qsi9 , 
qF q 

where ~t  is the verification time of the identification protocol, r~2 is the simula- 
tion time of qsi9 signatures, ~a is the calculation time of s in the final stage of 
the reduction, and q is the order of g E (Z/pZ)*.  

4.3 Discuss ion  on  t h e  Eff ic iency o f  O u r  R e d u c t i o n  

We have proven that  if the key searching problem is (t*,e*)-secure, then the 
Schnorr signature scheme is (t, qsia, qF, e)-secure. On the other hand, if the key 
searching problem is breakable with (t, e), then the signature scheme is breakable 
with (t,0, 1,e) by the triviM reduction. If our reduction is "exact (optimMly 
efficient)," (t*,e*) should be the same quantity as (t,e) for any values of qsi9 
and qF. Here note that  is does not always imply t = t* and e -- e*, since 
(t, e) and (t*, e*) are considered to have the same quantity when t* -- fit and 
e* =l--(l--e) ~. 

Here we will estimate the degree of "exactness" of our reduction (i.e., how 
much close is the above mentioned reduction to the exact case) by comparing the 
quantities of (t*, e*) and (t, e). For the purpose, we normalize (t, e) into (t +, e +) 
with c + = C.  

Let/3 = -~ be the number of repetition of (t, e)-breakable algorithm, in order 
to attain the same success probability as C. Since e* -- �89 - ~)2 > 9/50, 

~ 0.223 holds because of the requirement of 1 - ( 1 -  e) ~ = e* > 9/50. 
Therefore, t + = ~(c~ ~ 0.223) and the ratio of t* and t + gives the degree 
of exactness of our reduction. 
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If we assume that t ~ t j and d ~ ~-, since q,i9 is small and q is large, then 

its ratio is ~ ~ 13.5q~,. Thus, our reduction is still efficient, though it is not 
exact. Here note that qF can not be eliminated from this ratio because of the 
optimality of the ID reduction lemma. 

5 M o d i f i e d  E I G a m a l  S i g n a t u r e  S c h e m e  

We will discuss the modified E1Gamal (MEG) signature scheme [12] in this sec- 
tion. 

5.1 Scheme 

K e y  generat ion:  the same as the Schnorr scheme. 
Signature generat ion:  A signer P generates the signature of his message m 
using a public hash function h as follows: P generates a random integer r E 

e - ,x  mod q, (Z/qZ)*,  calculates X = gr mod p, e = F(X,  m) ~ Z / q Z  and y = - 7 -  
and sends (X, m, y) to V. 
Verification: a verifier V checks the validity of the signature of the message by 

the following equations: ge 2_ XY I X (mod p) and e - F(X,  m). 
Note: In the original EIGamal scheme, the order of g E (Z/pZ)* is p -  1. 
Although we can prove the security of the MEG with ord(g) = p -  1 in a manner 
similar to that with ord(g) = q, here for simplicity of description we assume 
ord(g) = q. 

5.2 Secur i ty  

5.2.1 Ident i f ica t ion  Scheme 
The following identification scheme is reduced to the MEG signature scheme in 
Section 5.1, and it will be analyzed adopting the scenario given in Section 3. 
K e y  generat ion:  the same as the Schnorr scheme. 
Ident i f ica t ion  Protocol:  P proves his identity and verifier V checks the validity 
of P's proof as follows: 

Step 1 P generates a random integer r E (Z/qZ)*,  calculates X = gr mod p, 
and sends X to verifier V. 

Step 2 V generates a random integer c E Z / q Z  and sends it to P. 
e - s X  S t e p 3  P c a l c u l a t e s y =  r modq, and sends it to P. 

Step 4 V checks the following equation: ge 2- X~I  X (mod p). 

5.2.2 Secur i ty  of  Ident i f ica t ion  Scheme 
L e m m a  15. (Secur i ty  of  EIGamal  Ident i f icat ion Scheme) 
Let e >_ 4. Suppose that the key searching problem of (p,g, I) is (t*, e*)-secure. 
Then the EIGamal identification scheme wi~h parameter (p,'~, I) $ is (t, e)-secure, 
where 

_ 1.2~ J-~ ( 9 ~  J-~" 

I ~ is an appropriate element in the subgroup, < g >, generated by g. 



365 

Here O1 is the verification time of the identification protocol, •3 is the calculation 
time o f t  and s (or ~) at Step 3 and Step 4, R = ~ and q is the order of 
g e (Z /pZ) ' .  

Sketch of  Proofi  

Assume that  cheater A breaks the E1Gamal identification with (t, e) for (p, I)  
and all ~ E< g >. We will construct a machine A* that  breaks the key searching 
problem of (p, g, I)  with (t*, e*) using A. 

We will discuss the following probing strategy of H to find two l 's  along the 
same row in H [5] for the identification scheme with parameter (p, g, I):  

S t ep  1 Probe random entries in H to find an entry a (~ with 1. We denote the 
row where a(~ is located in H by H(~ 

S t e p  2 After a (~ is found, probe random entries along H(~ to find another 
entry a (i) with 1. 

S t e p  3 Calculate the value of r as follows, 

e(0) _ e(i) 
r - y(0) _ y(i) mod q 

where a (i) represents (X(i), e (i), y(i)) and X = X(~ = X(i) (i = 0, 1) 
holds. Note that  r is coprime to q. 
In Case 1 with gcd(X, q) = 1, calculate a secret value of s as follows, 
output it and halt: 

e(0) _ ry(0) 
s -- X mod q. 

Step 4 

In Cas e 2 with gcd(X, q) # 1, obtain b satisfying X = bq(= gr mod p), 
where 0 < b < ~ = R, and go to Step 4. 

(For Case 2 only) Run A with input ~ = Ig I mod p applying Step 1 
to Step 3, where 1 E Z / q Z  is randomly selected. There are two cases, 
Case 1 and Case 2. 
In Case 1 with gcd()~, q) = 1, calculate s by the same way as Step3. 
In Case 2 with gcd(.Y, q) # 1, obtain b as well as ~ satisfying bq = 

~;: mod p by the same way in Step 3. 
If b" = b holds, calculate a secret value of s as follows, output  it and 
halt: 

r - lY 
s -  T modq.  

Otherwise, repeat Step 4 with another input. 

The worst case for finding two values of b that  collide is that  these R - 1 
events occur with equal probability ~ within Case 2. 

Let Pi be the success probability of step 1 with ~ repetition, and P2 be 
the success probability of step 2 with ~ repetition. Let P3-i be the success 
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probability of Case 1 in step 3, and Pa-i = 0 in the worst case. Let P4 be the 
success probability of step 4 with V ~  repetition. Then p4 ~ 1 because of the 
birthday paradox of finding b = b' satisfying 0 < b, b' < R. 

Therefore 

e* = (pi x p2)'/Rp4 >__ ( l  ( 1 - 1 ) ~ )  ~/g 

and 

t * =  

r3 

5.2.3 Security of Signature Scheme 

The following theorem is proven by combining Lemma 9 and Lemma 15. 

T h e o r e m  16. (Secur i ty  of  E1Gamal Signature  Scheme)  

Let d > 4+q,,~ where d ~-~ Suppose that the key searching problem of - -  q ~ - "  q F  " 

(p,g,I) is (t*,e*)-secure. Then the EIGamal signature scheme with parameter 
(p, "~, I) is (t, qs@, qr, r where 

t* 3(t + ~1 + ~2) e* = and = ( 1 - ; ) )  > g6/ " 

Here qSi is the verification time of the identification protocol, q~ is the simulation 
time of qsig signatures, and r is the calculation time of r and s (or ~) at Step 

s and Step 4. e" = ~-~ - ~"" where q is the order ofg ~ (Z/pZ)*. q F  q ' 

Remark. The simulation time of q,i# signatures can be obtained in a manner 
similar to that in Lemma 8 in Reference [12]. 

5.3 M o r e  Efficient R e d u c t i o n  of  M E G  

Clearly the reduction for the MEG signature scheme is much less efficient than 
that of the Schnorr scheme, and the reduction does not preserve the parameter, 
(p, g, I). If we modify the MEG scheme as follows, the reduction can be almost 
as efficient as that of the Schnorr scheme and can preserve the parameter. 

The modified version of the MEG scheme is the same as the MEG scheme 
except: Verifier V checks whether gcd(X, q) - 1, and if it does not hold, V rejects 
the signature, (m, X, y). Note that when a valid signer generates (m, X, y), the 
probability that gcd(X, q) r 1 is i /q (negligible probability). 
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6 Multi-Signature Schemes 

Multi-signature schemes are signature schemes in which plural signers (e.g., L 
signers) jointly generate a signature (multi-signature) of a message under the 
condition that  the length of the multi-signature is less than the total length 
of ordinary (single) signatures by plural signers (e.g., L • ]s], where Isl is the 
ordinary signature length). 

We can apply our ID reduction technique to the "one-round type" of multi- 
signature schemesw This section briefly introduces our results regarding multi- 
signature schemes. Due to the space limitation, we omit a detailed description 
of the results [11]. 

6.1 T h e  P r o p o s e d  M u l t i - S i g n a t u r e  Schemes  

We propose provably secure multi-signature schemes against the most general 
attack, adaptively chosen message insider attacks [7] with the random oracle 
model. The proposed schemes are as follows�82 
K e y  gene ra t ion :  A trusted center publishes two large primes p and q such 
that  q I (P - 1), and element g �9 (Z /pZ)*  of order q. Each signer Pi chooses 
a secret key si �9 Z / q Z  and publishes the public key Ii, where Ii = g~ mod p 
(1 < i < L) and L is the number of signers. 
M u l t i - S i g n a t u r e :  Each signer Pi generates the signature of his message m 
using two public hash functions Fi and Hi as follows (1 < i < L): 

S t ep  1 

Step 2 

For i = 1 to L do, where Y0 = 0 and V = PL+I: 
Pi generates a random integer ri E Z / q Z ,  calculates Xi = gr, mod p, 
ei = F i ( X l , . . . ,  Xi ,  m) e Z / q Z ,  di = Hi(Xt , . . . ' ,  Xi,  m) �9 Z / q Z  and 
yi = Yi-1 + diri + eisi mod q, and sends ( X t , . . .  ,X i ,m ,  yi) to Pi+t. 

V checks the following equations: gyL ~ xd l  . . .  XLdL I~1 . . .  I~L (mod p), 

and ei '-" Fi(X1, . . . ,  Xi, m), di ?- H i (X t , . . . ,  Xi, m) (1 < i < L) . 

Remark. 1) We call the scheme where di = 1 Type I, the scheme where el = 1 
Type II, and the scheme where there, is no restriction on di, ei Type III. 
2) The schemes can also be implemented using an elliptic curve [8]. 
3) It is possible for each Pi to check the validity of (It ,  .. �9 Ii-  I, X1,. �9 �9 Xi-  1, m, 
E l , . . . ,  Ei-1, Yi-1) before generating his signature. 

6.2 S e c u r i t y  o f  t h e  schemes  

The main results are as follows: 

w The "two-round type" of multi-signature schemes have been proposed [10]. Our 
technique can also be applied to these schemes easily. 
For simplicity of explanation, in this paper we use the multiplicative group (Z/pZ)* 
to present our schemes and the security proofs. Only the implementations over elliptic 
curves [8], however, axe feasible in light of the multi-signature size. Note that the 
security of the elliptic curve versions can be proven in the same manner as those of 
the multiplicative groupversions. 
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T h e o r e m  17. (Secur i ty  of t he  P r o p o s e d  Mul t i -S igna tu re  S c h e m e  ( T y p e  
n ) )  

Let e' _> 2(L+~)+q"sq . Here e I ~. eHs , ,  where eHo - e, and ell, = ~n~-l-~qH~ (1 < i < 

L). Suppose that the calculation ors  from I 1 , . . . , I L  satisfying 11 • ""  x IL = 
gS mod p is ( ~II ( L ), eII ( L ))-secure. Then the proposed multi-signature scheme 
with the same parameter is (t, qsig, qs~ , qIt~ , Q-secure, where 

t' (2(2L+1) 1) t I I(L)  = ~ + + ~a, 

q " ~ .  ~ 1  i8 the verification time of the Here t '  = t + ~ 1 +  r and e" = eHL -- g 
identification protocol, ~2 is the simulation time of qs~g signatures, ~a is the 
calculation time of s in the final stage of the reduction, and q is the order of 
g e ( z / p z ) * .  

T h e o r e m  18. (Secur i ty  of  t he  P r o p o s e d  Mul t i -S igna tu re  (Type  HI ) )  

Let e' _> 2(L+2)+q'~s~ Here e' = eH~, where eHo = e, eF, = ~.n~-~qv, , and 

ell, = ~P~-~qn, (1 _< i _< L). Suppose thai the calculation of si from I I , . . . , I L  

satisfying Ii = g"  rood p is ( t l l I (L) ,  eXH(L)).secure. Then the proposed multi- 
signature scheme with the same parameter is ( t, qsig, qFx, qltx , . . . , qFr. , qH~ , e )- 
secure, where 

t' 2(L+s) 1) t i l l ( L )  = ~ + 3L x - 3 x + + r 

e H I ( L ) = e " ( L )  (2(1  - ~))(L-1) > (1)(2L-l-L-2)(3)(2L-t-L--I). 
~1 is the verification time of the Here t ~ "-- t + ~l  + ~2 and e" = eHL -- r �9 

identification protocol, q~2 is the simulation time of qsi9 signatures, ~z is the 
calculation time of s in the final stage of the reduction, and q is the order of 
g e ( z /pz )* .  

Remark. The multi-signature scheme of Type I is forgeable by a true signer, for 
example, signer L can make a multi-signature of arbitrary message m without 
coalition of other (L - 1) signers. 

7 C o n c l u s i o n  

This paper presented a new key technique, "ID reduction", to show the concrete 
security result of a class of practical signature schemes under the random ora- 
cle paradigm. We applied this technique to the Schnorr and modified E1Gamal 
schemes, and showed the "concrete security" of these schemes. We also applied 
it to the multi-signature schemes. This technique should be useful in proving the 
concrete security of various types of signatures such as blind signatures, group 
signatures and undeniable signatures. 
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