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A b s t r a c t .  We investigate, in the Shannon model, the security of con- 
structions corresponding to double and (two-key) triple DES. That is, we 
consider Fkl (Fk2 (')) and Fkl (F~ 1 (Fkl ('))) with the component functions 
being ideal ciphers. This models the resistance of these constructions to 
"generic" attacks like meet in the middle attacks. We obtain the first 
proof that composition actually increases the security in some meaning- 
ful sense. We compute a bound on the probability of breaking the double 
cipher as a function of the number of computations of the base cipher 
made, and the number of examples of the composed cipher seen, and 
show that the success probability is the square of that for a single key 
cipher. The same bound holds for the two-key triple cipher. The first 
bound is tight and shows that meet in the middle is the best possible 
generic attack against the double cipher. 

1 I n t r o d u c t i o n  

A block cipher is a map F : {0, 1} ~ x {0, 1} n ~ {0, 1} n. Here ~ is the key size and 

n is the block size. Each ~-bit key k induces a map Fk(.) d___ef F(k ,  .) : {0, 1} n --~ 
{0, 1} n which is a permutation on {0, 1} n. Let F -1 denote the inverse cipher, 

meaning F - l ( k ,  .) de=f F~I  is the inverse map of Fk (.). For example, DES is such 
a cipher with ~ = 56 and n = 64. 

It is common practice to compose ciphers in a t tempts  to increase security. 
The result of composition is a new cipher, with a larger key size but  the same 
block size. Here are the two most popular mechanisms, corresponding, respec- 
tively, to double DES and (two-key) triple DES: 

. -  Double F,  or the ~-cascade cipher: DbI-F : {0, 1} 2'~ x {0, 1} n ~ {0, 1} n is 
defined by 

DbI-Fkl,k2 (x) = Fkl (Fk2(x)) . 
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- Two-key triple F:  Trp2-F : {0,1} 2~ x {0, 1} n -+ {0, 1} '~ is defined by 

Trp2-Fk,,k2 (x) = Fk, (F~ 1 (Fk, (x))) . 

Let 0p-F : {0, 1} ~* x {0, 1} n -4 {0, 1}" denote one of these, where ~;* = 2~ and 
0p E {DbI, Trp2}. What we want to know is: How good a cipher is Op-F? Has 
the composition and the increased key length actually bought us anything? 

GENERIC VERSUS CRYPTANALYTIC ATTACKS. There are several possible ap- 
proaches to this question, depending on what kinds of attacks one wants to 
take into account. There are two main classes of attacks: 

�9 Cryptanalytic attacks: Like differential [3, 4] and linear [9] cryptanalysis 
�9 Generic attacks: Like exhaustive key search and meet-in-the-middle at- 

tacks. 
Generic attacks are, roughly, those that don't exploit the structure of the cipher, 
but work against any cipher, even an ideal one. More precisely, we define generic 
attacks as those that succeed in the Shannon model of an ideal cipher discussed 
below. 

The strength of specific composed ciphers like double DES against cryptana- 
lytic attacks is not known; certainly, one does not expect a proof of such strength. 
The strength of the composed cipher against generic attacks, in contrast, can 
at least in principle be determined, by an analysis in the Shannon model, since 
it is a purely information theoretic question. However, the technical problems 
here are quite challenging; in particular, it is not even known that composition 
increases the strength of a cipher at all in this model. 

In this paper we tackle this question, analyzing, in the Shannon model, two- 
key based compositions such as the above. We will prove upper bounds on the 
probability of "breaking" the composed cipher as a function of the "effort" in- 
vested by the adversary, with both terms in quotes to be properly defined. Our 
results are the first to show that cipher composition in the Shannon model ac- 
tually increases security: the success probability of an adversary, as a function 
of her resources, is significantly lower than in the case of a single key cipher. For 
the double cipher our results are actually tight (optimal) and show that meet in 
the middle is the best possible generic attack on this cipher. We now define the 
model, and state our results, more precisely. 

1.1 The  mode l  

We model F as an ideal block cipher in the sense of Shannon. This means F(k ,  .) 
is a random permutation on {0, 1} n, for each k. More precisely, let PERM(n) 
be the set of all permutations on {0,1} n. Then, for each ~-bit key k, select, 
uniformly and independently, a map from PERM(n), and assign Fk this value. 
So F consists of 2 ~ maps, each a random permutation. 

Now, we want to ask how good is 0p as a composition operator. How can we 
measure this? We do so in a strong adversarial model, which allows the adversary 
chosen plaintext attacks on 0p-F. Furthermore, success for the adversary A does 
not mean she has to find the key: it suffices that A identify some "weakness" in 
the cipher. This means A should be able to detect any deviation in 0p-Fk. (.) 
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from a truly random permutation, when k* is a random and hidden key for 
0p-F. 

Formally, give the adversary oracles for F, F -1. (This models her ability to 
compute the original cipher at any points she likes.) Also give her an oracle we 
call E : {0, 1} n --+ {0, 1} n, which can take one of two forms: 

�9 World 1: Set E = 0p-Fk. (-) where k* E {0, 1} ~" is a randomly chosen key 
for cipher 0p-F 

�9 World 2: Set E = ~r where ~r is a permutation chosen randomly from 
PERM(n). 

Put the adversary A in one of these worlds, and ask her which one she is in. If she 
can't tell then 0p-Fk. (-) is behaving like a random permutation, meaning it is 
good. Formally, define the advantage of A as P1 - P2, where Pi is the probability 
that A outputs 1 in world i E {1, 2}. (The probability is over the choice of the 
oracles in each case.) Call A a (q, t)-adversary if it makes at most t queries to 
the F, F -1 oracles and at most q queries to the E oracle. (Note in practice t is 
likely to be much larger than q since F, F -I  queries are just DES computations 
and E queries are plaintexts in a chosen plaintext attack. We always assume 
q > 1 since otherwise the advantage of the adversary is zero no matter what the 
construction.) Define 

Sec(0p, ~, n, q, t) 

as the maximum advantage attainable by any (q, t)-adversary. This is the key 
quantity; it is a function we call the security of the operator 0p. The question 
is to determine this function as accurately as possible. In particular we want to 
upper bound it as a function of the adversary resources q, t and the block cipher 
parameters ~, n. 

Before stating the results we stress the power of the model. It allows cho- 
sen plaintext attacks on the composite cipher Op-F. Note it certainly captures 
common attacks like birthday attacks and meet-in-the-middle attacks, but also 
more sophisticated attacks which could be adaptive. 

Notice that the advantage of a (q, t) adversary in attacking the single key 
cipher F itself in this model (namely E = Fk for a random ~ bit string k in 
world 1) will be (at most) t /2 ~. This is the mark we have to beat if we want to 
show that the composed cipher is stronger than the original one. 

1.2 T h e  results  

It is known that the strength of the composed cipher is at least that of the first 
[10], but prior to this work it was not known whether the advantage of a (q,t) 
adversary versus DbI-F was any lower than its advantage versus the single key 
cipher F itself. Here we are able to show that composition actually increases 
security, in the ideal cipher model described above. 

THE DOUBLE KEY CIPHER. Recall that the double F cipher DbkF has 2~ bits of 
key. Our main result is Theorem 1, which says that Sec(0p, ~, n, q, t) is at most 
t2/2 2~. Namely, no (q, t)-adversary attacking the double cipher can achieve an 
advantage greater than t2/2 2~. 
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Fig. 1. Secl(x) (the upper curve) and Sec2(x) (the lower curve) are, respectively, the 
maximal possible advantage obtainable by an adversary in breaking the single and 
double key ideal ciphers, respectively, as a function of x = log2(Q, the logarithm of the 
number of cipher computations made. We are using a key length of ~ = 56. We see 
that Sec2 lies below Secl but they meet at 1. The text provides the exact formulas For 
these quantities. 

We also show this bound is essentially tight, due to (a variant of) the meet in 
the middle attack. Theorem 2 presents an adversary who runs this attack, and 
analyzes it to show that  its advantage is within a small factor of t2/22~. 

Note that  the maximum possible advantage of an adversary attacking the 
double cipher case is the square of the maximum possible advantage of an ad- 
versary of the same resources attacking the original single key cipher. Thus, it is 
considerably smaller in most cases. (For example if ~ = 56 and t -- 245 then the 
former is 2 -22 and the latter is 2 -11 . Or, looking at it another way, to achieve 
an advantage of 2 -11 against the double cipher you need at least 25~ queries, 
while to get the same advantage against the single cipher you need only 245 
queries.) To see the relation better, we plot in Figure 1 the maximal advantage 
t /2  ~ of an adversary in breaking the original single key cipher, and the maximal 
advantage t2/22~ of an adversary in breaking the double cipher, as a function of 
x = log 2 (t). 

Notice that  the upper bound on the advantage in the double key case hits 
one (meaning, the scheme can be broken) when t = 2 ~. This is expected: that 's  
the meet in the middle attack. Of course, that 's  the same point at  which the 
advantage hits one for the original single key cipher. (In this case due to an 
exhaustive key search attack.) Thus, the "effective key length" of the double 
cipher is not more than that  of the single one. That  does not mean tha t  security 
has not increased. Security is not a number, but a function of the resources 
invested, and our analysis and Figure 1 show that  for values of t below 2 ~ the 
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chance of breaking the double cipher is smaller than that of breaking the original 
o n e .  

THE TWO-KEY TRIPLE CIPHER. We show that the same bound holds for the 
two-key triple cipher, meaning the advantage of a (q, t) adversary is bounded by 
t2/2 2~. This shows that here too there is an improvement in the security curve 
as a function of t. In this case our bound is tight for the case t ~ q but not tight 
in general. See [1] for this material. 

THE m-FOLD CASCADE. The m-fold composition of cipher F is the cipher with 
key k l , . . . ,  km defined by F~ 1 ..... k~ = Fkl o Fk2 o . . .  o Fk.~. The techniques above 
extend to show that the advantage of an (q, t) adversary is at most tra/2 m~. This 
shows that the advantage grows more and more slowly as m increases. However, 
for m ~ 3 the result is not tight; we expect the 3-fold composed cipher to have 
an even greater strength than this indicates. Thus, we won't discuss this result 
any more in this paper. 

THE FUTURE. The analysis of the two key ciphers we present here is a start 
on a problem that appears to be quite technically challenging. In the future we 
would like to see tight bounds on the advantage for the m-fold composition for 
m ~_ 3 and also for the two-key triple cipher in the case q < <  t, but the distance 
needed to get there seems quite large at this time. 

1.3 Related  work 

The model used here is that of KUian and Rogaway [8], who in turn built on 
Even and Mansour [7], although the basic idea of course goes back to Shannon 
[13]. 

Kilian and Rogaway [8] analyze Rivest's DESX cipher in this model and show 
it has a large effective key length. If generic (or, as they call them, key search) 
attacks are the only concern, DESX is cheaper than Double or Triple DES, 
but DESX is just as vulnerable as DES to differential and linear cryptanalysis. 
The (apparent) strength of Double and two-key triple DES against cryptanalysis 
coupled with the proven strength against generic attacks seem to make a strong 
combination that is absent for DESX. 

The basic meet in the middle attacks are due to [5, 12]. Even and Goldreich 
provide some time-space tradeoffs for meet-in-the-middle attacks [6], and Van 
Oorschot and Wiener [14] reduce the space requirements. 

Even and Goldreich [6] had shown that the cascade of m ciphers is at least 
as strong as its strongest component. Maurer and Massey [10] argued that this 
result required restrictions in the model, and also showed that the cascade is 
at least as strong as its first component. Our work is the first to show that the 
cascade can be stronger than the original cipher. 

Our analysis builds on techniques of [8] and [2]. Applications aside, we feel 
that we are looking at a basic information theoretic question, namely the power 
of cascaded ciphers. 
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1.4  D i s c u s s i o n  o n  I m p l i c a t i o n s  o f  our  re su l t  

What  implications do these results have for the security of real ciphers like DES? 
This is a question that  needs to be addressed with some care. After all, DES is 
not an ideal cipher. 

We are not claiming to have "proven Double DES" secure; tha t  obviously is 
not a realistic possibility. Our results might be interpreted as saying that  the 
existence of a generic attack against DES that  is substantially better than the 
meet in the middle attack would imply that  there are serious weaknesses in the 
random behavior of DES that  so far has empirical support. 

The class of generic attacks is broad enough to be interesting, including 
meet-in-the-middle attacks and variants of it. But it does not include cryptana- 
lytic attacks like differential or linear cryptanalysis, which exploit the structure 
of the cipher. However, one should note that  at the moment the best attacks 
against Double and Triple DES are not the cryptanalytic ones, but  the generic 
meet-in-the-middle attacks. And our results can be interpreted as ruling out 
improvements along those lines. 

The adversary resources we consider here are the number of cipher compu- 
tations t and the number of available plaintext-ciphertext pairs of the attacked 
cipher available, q. These are the most basic resources, and also the natural 
ones to consider in an information theoretic setting. One might a t tempt  to con- 
sider other resources like space (e.g. when it is small compared to the number 
of queries), or make a distinction between parallelizable and sequential compu- 
tations. Addressing these issues would change the nature of the problem to the 
point where it is difficult to see how it might be treated by techniques similar to 
the ones we use. 

1.5 O r g a n i z a t i o n  

The double cipher analysis is in Section 3. There we state and prove the upper 
bound. In Appendix A we present the meet in the middle attack analysis that  
shows the upper bound is tight. Some proofs are omitted due to lack of space 
and can be found in the full version of this paper [1]. 

2 Definit ions 

GENERAL. We use standard notation for expressing probabilistic experiments 
and algorithms. Namely if S is a probability space then x ~- S denotes the 
operation of drawing x at  random according to distribution S. If S is a set we 
use the same notation with the understanding that  S is imbued with the uniform 
distribution. If S is not a set or probability space (in particular if x is a string 
or function) then x +- S is simply an assignment statement. 

BLOCK CIPHERS. For an integer n > 1 let PERM(n) denote the set of all maps 
~r : {0, 1} n --+ {0, 1} n that  are permutations, meaning both one-to-one and onto. 
A function F : {0, 1} ~ • {0, 1} n -~ {0, 1} n is a block cipher if for each key 
k e {0, 1} ~, the function F(k, .) : {0, 1} n ~ {0, 1} n is a permutation on {0,1} n, 
meaning a member of PERM(n).  Here, n is the block length of the cipher and 
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is the key length of the cipher. Think of F as a 2 ~ by 2 n table, with entry (k, z) 
containing F(k,  x). Each row is a permutation of {0,1 }~. For convenience, define 
Fk : {0,1} n -~ {0,1} n, for each k e {0,1} ~, by Fk(x) = F(k,z) .  This is the 
permutation in the k-th row. Although the function F does not have an inverse 
function, it does have a well defined inverse block cipher. When it is clear from 
context that F is a block cipher then we will let F -1 : {0,1} ~ • {0,1} n -+ {0,1} n 
denote the block cipher inverse of F,  defined as follows: F- l (k , y )  = F[l(y) .  
That is, F -1 (k, y) = x if[ F(k, x) = y. 

Let BC(n, n) denote the set of all block ciphers with key length ~ and block 
length n. This is viewed as a probability space under the uniform distribution. 
Thus F +- BC(~, n) means that F is selected according to the following experi- 
ment: f o r  a l l  k e {0, 1} ~ do F(k,.) ~ PERM(n). 

OPERATORS: DOUBLE AND TRIPLE. We are interested in transformations, or 
operators, which map one block cipher to another. In general such an operator 
is a map Op taking a block cipher F E BC(a, n) and returning another block 
cipher, which we denote by Op-F, and which belongs to BC(s*,n*) for some 
values of s*, n* that depend on ~, n and Op. (In this paper it will always be the 
case that n* = n.) We now define the two central operators for this paper. 

The double composition operator Dbl : BC(a, n) ~ BC(2~, n) is defined by 
Dbl-Fkl k2 = Fk~ o Fk2- In other words, Dbl-F(kl k2, x) = F(kl,  F(k2, x)) for every 
kl, k2 E {0, 1} ~ and every x E {0,1} n. The two key, triple composition operator 
Trp 2 : BC(~, n) -~ BC(2~, n) is defined by Trp2-Fk~k2 = Fk~ o F~  1 o Fk~. In other 
words, Trp2-F(klk2, x) = F(kl, F -1 (k2, F(kl, x))) for every kl, k2 e {0,1} ~ and 
every x E {0,1} n. Note both these ciphers have key length twice that of the 
original cipher�9 

SECURITY. We will be considering the security of these operators. The setting 
for security is the following. Consider an adversary algorithm A which has access 
to three oracles, E, F, F -1, where F E BC(~, n) and E : {0,1} n ~ {0,1} n. It 
computes with them and eventually outputs a bit. This computation is adap- 
tive. This means that it makes queries to oracles as it pleases, choosing these 
queries as a function of answers to previous queries. We represent A's output 

�9 �9 - - 1  . . 

when interacting with these oracles by A E,F,F . (Since we will not restrict the 
computational power of the adversary A, it is without loss of generality deter- 
ministic, and hence this output is uniquely defined once A, F, E are fixed.) If the 
oracles that A interacts with are chosen according to some distribution then A's 
output will be a random variable over {0,1}. We let 

SuccA(~,n) = Pr [ A ~'~'~-1 = 1 : F ~- BC(~,n) ; E ~- PERM(n) ] 

denote the success probability of A in the "ideal world" (called world 2 in the 
Introduction) where E is a random permutation independent of the cipher F.  
On the other hand, if Op : BC(s,n)  ~ BC(a*,n*) is an operator then we let 

SUCCA(Op, s,n) = 

Pr[AE'F 'F-I= 1 : F +- BC(~,n) ;  k* <-- {0,1}N*; E ~ 0 p - F k . ]  o 
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In other words, having selected F, apply the operator to it to get a new cipher 
F* = 0p-F. Now, choose at random a permutation E of this cipher, by choosing 
a key k* and setting E to F~.. (This was called world 1 in the Introduction.) 
Now let 

AdvA(0p, ~, n) = SuccA(0p, ~, n) -- SUCCA(~,n) . 
This is the the advantage of A in breaking the 0p induced cipher. To measure the 
quality of a particular operator 0p (eg. Dbl or Trp 2) we want to upper bound the 
advantage in terms of the resources used by the adversary, meaning the number 
of queries it makes to its oracles. We call a query to the E oracle an E-query; 
a query to the F oracle an F query; a query to the F -1 oracle an F -1 query. 
Typically the number of E-queries is denoted q, while the sum of the number of 
F and F -1 queries is denoted t. The security of the operator 0p is then given 
by 

Sec(0p, ~, n, q, t) = maxAdvA(0p,  ~, n) , 
A 

where the maximum is taken over all adversaries A who make at most q E-queries 
and at most t F / F  -1 queries. Thus our goal will be to bound Sec(0p, ~, n, q, t) 
in terms of q, t, ~, n for the two ciphers we are investigating, namely Op = Dbl 
and Op = Trp 2. 

We stress that this bound will apply to any adversary. No assumptions are 
made about the strategy followed by this adversary other than that it is limited 
to the specified number of queries. 

3 S e c u r i t y  a n a l y s i s  o f  t h e  d o u b l e  c i p h e r  

In this section our goal will be to determine the security of the doubly iterated 
ideal cipher. In other words, we want to estimate, as accurately as possible, the 
value of See(Dbl, s , n ,  q,t) ,  as a function of the cipher parameters ~,n and the 
adversary resource bounds q, t. The following is the main theorem, which pro- 
vides an upper bound on the security. It says that the advantage of any adversary 
A attacking the doubly iterated ideal cipher is at most t2/2 2~, regardless of the 
strategy used by this adversary. 

T h e o r e m  1. For any ~, n, q, t >_ 1 it is the case that 
t 2 

Sec(Dbl, ~,n,q,t) < 22 ~ . 

Notice that the bound depends only on the number t of F / F  -1 queries made 
by A, and the key length s of the cipher; it does not depend on the number q 
of E-queries made by A or the block length n of the cipher. This reflects the 
reality. In fact our result is essentially tight; more precisely, the bound above is 
tight up to constant factors as long as q is not too tiny. This is established by 
Theorem 2 where we show that an appropriate adaptation of the standard meet 
in the middle attack enables an adversary to obtain an advantage close to that 
of the upper bound. 

The rest of this section will be devoted to a proof of Theorem 1. We fix 
an adversary A who makes at most q E queries and at most t F / F  -1 queries. 
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We want to show that  AdvA(Dbl ,a ,n)  < t2/2 2'~. We will first introduce some 
terminology. 

3.1 P r e l i m i n a r i e s  

THE PROBABILITY SPACES. We consider two "games." Each consists of running 
the adversary with its oracles chosen according to some probability space. Prob- 
ability Space 1 is that  of the experiment defining SuccA(Dbl, ~;, n). Namely, the 
underlying experiment is: 

F 4- BC(~, n) ; k~ 4- {0,1}" ; k~ 4- {0,1} ~ ; E +- Fkt o Fa~ , 

and Game 1 is to just run A E,F,~-I and reply to its oracle queries according to 
the functions E,  F, F -1 chosen by the experiment. Now, the experiment defining 
Probability Space 2 is 

F +- BC(~, n) ; k~ ~ {0,1} ~ ; k~ ~- {0, 1} ~ ; E ~ P E R M ( n ) .  

In Game 2, we just run A E'F'F-I and reply to its oracle queries according to 
the functions E,  F, F -1 chosen by the experiment. Notice that  in so doing, we 

$ $ .  completely ignore the two keys kl, k2, the responses to oracle queries do not 
depend on these at all. Thus, the output of A in Game 2 is exactly that  in the 
experiment defining SuccA(~, n). The extra keys we have created will be used 
only in the analysis. We let P r l [ .  ] denote the probability under Probability 
Space 1, and Pr2 [. ] that  under Probability Space 2. 

QUANTITIES INVOLVED. Since we axe not limiting the computing power of the 
adversary, we may, without loss of generality, regard it as deterministic. We may 
also assume it makes exactly q E queries and exactly t F /F  -1 queries, and tha t  
no query is ever repeated. When the oracles E, F, F -1 are fixed, the sequence of 
queries by A and responses by the oracles is determined. We view it as a game 
in which the adversary and the oracles alternate moves; one query followed by 
a response is a round, so each round has two moves, the first by the adversary, 
the second by the oracles. There are q + t rounds. We will be referring to the 
following quantities: 

Mvs = The set {0, 1 , . . . ,  2(q+t) } whose members will be used to index 
moves of the game. 

OdMvs = The set of odd numbers in Mvs, corresponding to question 
moves. 

EvMvs -- The set of even numbers in Mvs, corresponding to reply moves. 

It is technically convenient to include 0 in these sets even though there is no 
0-th round or move. Furthermore we use the following notation: 

qi : For i E OdMvs, the query in the i-th move. It is of the form (x, . ) ,  
(k, x, *), or (k, *, y) which are queries to E, F,  and F -1 , respectively. 

r~ : For i e EvMvs, the reply in the i-th move. For i > 0 it is (x,E(x)), 
(k,x, Fk(x)), or (k,F[l(y),y),  corresponding, respectively, to the 
query q~-l; for i = 0 it is the empty string. 

Also: 
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Viewi(AE,F,F-1)  : 

View(AE,F,  F - l )  : 

For i �9 Mvs, the view of the adversary after i moves; 
this is qlr2 . . .  q i - l r i  if i > 0 is even; qlrl  . . .  r~-lqi if 
i is odd; and the empty string if i = 0 
View2(q+t) ( A E'F'F-1 ). 

Note the adversary's output  bit is some deterministic function of the last view. 
We call the keys (k[, k~) chosen in the games the crucial key pair. Our analysis 
will focus on whether or not this key pair is "eliminated" by a current view, and 
what is its distribution from the point of view of A if not. So let vl represent a 
possible view after i moves of the game. We consider two sets of key pairs, the 
"seen key pairs" (SKP) and the "remaining key pair" (RKP): 

SKP(v~) : 

RKP(vi) : 

A key pair kl, k2 is in SKP(vi) if there are two queries q and q~ 
in vl such that  q is an F-query or F -1 query with key kl (i.e., a 
query of the form (kl, x, *) or (kl, *, y), respectively), and q~ is 
an F-query or F -1 query with key k2 (i.e., a query of the form 
(k2, x, *) or (k2, *, y), respectively). 

({0,1} ~ • {0, 1} ~) - sgP(v~) 

Note that  SKP(vl) depends only on the queries in vi and not on the replies. 
That  is, SKP(vi) = SKP(vi+I) for i E OdMvs. If A knows tha t  Fk2(x) = y and 
Fkl (Y) = z and has also made the E query x then it can with high probability 
eliminate (kl, k2) as a candidate for the crucial key pair. Intuitively, we might 
think of the key pairs (kl, k2) �9 SKP(v) as being "eliminated". (Of course, they 
might not be eliminated, but we can't  be sure, so we count them out.) Thus 
RKP(vi) captures the set of remaining key pairs associated to any view. These 
are the key pairs (kl, k2) so that  at least one of them has not been in either an 
F or an F -1 query. Note the key pair is not considered "eliminated" if one of its 
components has been in a F / F  -1 query: both have to have been in such queries 
to "eliminate" the pair. 

The current view vi contains some number of F or F -1 queries on a particular 
key k. This effectively "opens up" the corresponding spots in row k of the F table, 
in the sense that  in the randomly chosen F table, these entries become known 
to the adversary. Similarly for E-queries. We let 

F-Qrs(vi, k) = 

E-Qrs(vi) = 

The set of all y such that  there are responses in v i o f  
the form (k, x, y). 

The set of all y such that  there are responses in vi of 
the form (x, y). 

THE RANDOM VARIABLES. Under the random choice of E,  F, F -1 made in the 
probability spaces 1 and 2, the above discussed quantities become random vari- 
ables. Here are some random variables we will need to refer to explicitly: 
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Qi 

R/ 
Ti 

View/ 
View 
U/,j 

T~E BAD 

: Takes value q/, the i-th query, for i E OdMvs. 

: Takes value ri, the i-th reply, for i E EvMvs. 

: Equals Qi if i is odd and R/ i f  i is even. 

: Takes value View/(A~'F'F-1), for i E Mrs. 

: Takes value View(A ~,F,F-~). 

: Equals T / . . .  Tj 

EVENT. We also define a central event: 

BADi : For i E Mvs, event BAD/ is said to happen if the crucial key pair 
(k~, k~) is seen, tha t  is, (k~, k~) E SKP(View/). 

In other words, the crucial key pair is "eliminated". Whether a particular key 
pair has been seen only depends on the queries of A and thus BADi = BADi+I 
for i E OdMvs. We let BAD be BAD2(q+t) , meaning it captures whether the bad 
event happened at the end of the game. 

3.2 P r o o f  ou t l i ne  

A very rough cut at the idea of the analysis is that  as long as BAD has not 
happened in probability space 1, the answers coming back to oracle queries 
there "look random" and so probability space 1 looks like probability space 2. 
We can then bound the advantage by the probability of the bad event. 

This is overly simplistic. It is also incorrect. One should first note that  even 
if the bad event fails to happen in game 1, that  game will not look like game 2; 
there are events that  have probability one in the latter and zero in the former. 
In fact, we need to condition on the bad event not happening in both probability 
spaces. 

We will show that  the conditional probability of a particular view given tha t  
BAD has not occurred is the same in the two games. To show this we will be 
forced to show something stronger as stated in the lemma below. 

L e m m a  1. Let i E Mvs and let vi be a possible view of the adversary after the 
i-th move. Then for all 0 < s < 2(q + t) - i, 

Pr l  [ View/= v/ I Bh'-D/+s ] = Pr2 [ View/= vi I B-K'D/+s ]. 

The proof of this lemma is postponed until later. Since the final decision of the 
adversary depends only on its view, the distribution of the adversary's decision 
is the same in the two games as long as the bad event has not happened. Thus, 
a corollary to the above lemma is 

Less obvious is that  Lemma 1 will also be needed to show that  the probability 
of the bad event is the same in both games. To show this we need to prove 
something a bit stronger: we need to show that  the equality holds at any stage. 
This is stated in the lemma stated below. 
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L e m m a  2. For all i = 0 , . . . ,  2(q + t), 

Prl [ BADi ] ---- er2 [ BADi ] .  (2) 

The proof of this lemma is also postponed until later. Lemmas 1 and 2 can be 
used to bound the advantage of the adversary by the probability of the bad 
event. 

L e m m a  3. AdvA(Db[,~,n) < Pr2 [BAD]. 

Proof (Lemma 3). The lemma is shown using the following straightforward cal- 
culation. We suppress the superscripts of A E,F,F-1 for clarity. 

Prl [A = 1 ] -  er2 [A = 1] 

= P r l [ A = l l  B - ~ ] . P n [ B - ~ ]  -- P r 2 [ A = l l  B--~].Pr2[B--~] 

+ P r l [ A = I [  BAD].Prl[BAD] -- P r 2 [ A = I [  BAD].Pr2[BAD] 

= ( P r l [ A = I [  B - h " ~ ] - P r 2 [ A = I [  B - ~ ] ) . P r 2 [ B - ~ ] )  

+ (Prl [A = 1 [ B A D ] - e r 2 [ A  = 1 I BAD])'Pr2[BAD] 

= (Prl  [ A = 1 I BAD ] -- Pr2 [ A = 1 [ BAD ]). er2 [ BAD]. 

The second equality is by Lemma 2. The last equality is by Equation (1). [3 

Of course, since the probability of the bad event is the same in both probability 
spaces we could have bounded the advantage by the probability of the bad event 
in probability space 1. However, calculating the probability of the bad event is 
very easy in probability space 2 as can be seen below. 

L e m m a  4. Pr2 [BAD] _~ t2/2 2a. 

Proof (Lemma 4). This is straightforward, since in Game 2, no information 
about the keys (k~, k~) is given to the adversary. The bad event depends only on 
the number of F and F -1 queries, and in the worst case all the t such queries 
are made to different keys. Then the chance that k~ is in any query is t /2 ~, and 
the same, independently, for k~, so the bound holds. [] 

Clearly, Lemmas 3 and 4 imply Theorem 1. This completes the outline of the 
proof of Theorem 1. To complete the proof we must prove Lemmas 1 and 2. 

To do so we will first need a sequence of three lemmas, Lemmas 5, 6, and 7. 
The last of these will be used in the proof of Lemma 1. Lemma 5 will again be 
used to prove Lemma 8 on the conditional probability of the crucial key pair. 
Lemma 8 will then be used with Lemma 1 to prove Lemma 2. 

3 . 3  D i s t r i b u t i o n  o f  r e p l i e s  in  t h e  n e x t  round  

In Game 2, given the view v~ at any point, the distribution of the answer to the 
next oracle query is, clearly, uniform, over the remaining range; for example, the 
answer to an E-query is uniform over {0, 1} n - E-Qrs(vi). 

The first lemma will say this is true for Game I too, as long as the bad event 
does not happen. However, we will need to say this in a strong sense. Namely, fix 
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any key pair that has still not been "eliminated". Conditioned on this being the 
crucial key pair, as well as on the current view, the distribution of the answer to 
the next oracle query is still "as it should be," meaning uniform over whatever 
possibilities remain. Note we must show this for all types of queries: E, F and 
F-1 .  

L e m m a  5. Let j E {1,2} and i E OdMvs. Let vi = qlr2 . . .q i -2r i - lq /  be a 
possible view of the adversary just before the answer to query q/ is obtained. For 
any string r/+l E {0, 1} n and all (kl, k2) e RKP(viHri+x), 

Pr, [ Ri+1 = ri+1 I (k~, k~) = (kl, k2) ^ View~ = vi ] = 
1 

if qi is an E-query and r/+l r E-Qrs(v/) 
2 n -[E-Qrs(vi)[ 

1 if qi is an F or F -1 query with key k and r/+l 
2 n - [F-Qrs(k, vi)[ F-Qrs(k, vi) 

0 otherwise. 

In particular, the value depends neither on j nor on (kl,k2). 

Proof (Lemma 5). See [1]. 12 

The above lemma shows that for a fixed partial conversation v/where i E OdMvs, 
and fixed pair of keys k l ,kz  such that YA--Di is true (i.e., (kl,k2) e RKP(v/)), 
all the answers ri+l which continue to keep the partial conversations from being 
"bad" (i.e., (kl, ks) E RKP(viri+l)), have the same probability in each proba- 
bility space. We will use this lemma to prove an extension of this. Namely, for a 
fixed partial conversation v~ and fixed pair of keys kl, kz such that B-X'~i is true, 
all further move sequences which continue to keep the partial conversations from 
being "bad" have the same probability in each probability space. We state this 
formally below. 

L e m m a  6. Let j E {1, 2}. Let v/ be a possible view of the adversary after move 
i E Mvs, and let 1 < e < 2(q + t) - i. For any possible extension Ui+l,i+ l Of Vi 
by g moves, and for any key pair (kl, k2) E RKP(v~[]ui+x,i+t), 

Prj [ Ui+x,i+l = Ui+l,/+~ I (k~, k~) = (kl, k2) A View~ = vi ] 

depends neither on j nor on ( k l ,  ks). (That is, it depends only on vl and Ui+l,i+t.) 

Proof (Lemma 6). See [1]. 12 

We now use the above lemma to prove a generalization of Lemma 5 which we 
will need subsequently. 

L e m m a  7. Let j E {1,2} and i E OdMvs. Let vl = q l r2 . . . q i - z r i - lq i  be a 
possible view of the adversary just before the answer to query qi is obtained. For 
any string ri+l E {0, 1} n, all (kl ,  k2) E RKP(villri+l), and all O < s < 2 (q+t ) - i ,  

Prj [ Ri+l = ri+l I (k~, k~) = (kl, ks) ^ Viem = v/ ^ SAD/+, ] 

depends neither on j nor on kl,  kz. (That is, it depends only on vi and r~+l and 
s.) 
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Proof (Lemma 7). See [1]. [7 

Proof (Lemma 1). The proof will be by induction on i E Mvs. The base case of 
the induction is when i -- 0, and in this case the lemma is trivially true because 
the view is by definition the empty string. So assume the statement of the lemma 
up to move i. We will prove it for i + 1. Fix an arbitrary s _> 0. 

First consider the case where i E EvMvs, meaning the last move in vi is a 
reply. Let qi+x be arbitrary. Then: 

Prj  [Viewi+z = vlq/+l I BADi+I+s ] 

= Prj  [ View/= v/ I ~A-D/+I+s ].  Prj  [ Q/+I = q/+l I View/= v/ A BAD/+I+s ] . 

First, look at the first factor. Since s _> 0 by assumption, then s + 1 > 0, and 
therefore the first term is the same for j -- 1 and 2 by induction. Next look 
at the second factor. A's query is just dependent on A and on v/, the view so 
far. Thus, the probability is the same for both j = 1 and j = 2. (And is equal 
to 0 except possibly for one value of q/+a.) Therefore, the product of the two 
probabilities is equal for j = 1 and j = 2, for all s >_ 0. 

Next consider the case where i E OdMvs, meaning the last move in v / i s  a 
query. Let ri+z E {0, 1} n be arbitrary and let Vi+l = vir/+l. Then: 

Prj  [Viewi+l = v/r/+l [ BADi+I+s ] 

= Prj [View/= vi[  B--X~i+I+, ].  Prj [ R/+I = ri+l [ View/= vi A BADi+I+s ] �9 

Consider the first factor. Since s _> 0 by assumption, then s + l  >_ 0, and therefore, 
by induction, the first term is the same for j = 1 and 2. The second factor is 
equal to: 

F_, pj(kl,k2).qj(kl,ks) 
(~1,k2) 

where the sum is over all (kl, k2) E {0,1} a x {0, 1} ~ and we have set 

pj(kl ,ks)  = Prj [Ri+a = r/+z [ (k~,k~) = (kl,k2) A View/= vi A BADi+I+s ] 

qj(kz,k2) = Prj  [ (k~,k~) = (kl,ks) I View/= v~ A BADi+I+s ] 

We start by examining the first factor, namely pj(kl,k2). By Lemma 7, for 
all (kt,k2) ~ SKP(vi+I), this probability is the same for both j = 1 and 2, 
and independent of (kl, k2). Call this value p. On the other hand for (kl, ks) e 
SKP(v/+I) we have pj(kl ,ks) = 0 because of the conditioning on BADi+I+s. 
Thus the above sum reduces to 

p" Z q (kl,kS) 

where the sum is over all (kl, ks) E RKP(v/+z). We claim that  this range is over 
all the nonzero values of the probability and thus the sum is equal to 1. To see 
this, note that  qj(kl, k2) is equal to 0 for (kl, k~.) E SKP(vI+I). This completes 
the induction and the proof of Lemma 1. [] 
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The remaining task is to prove Lemma 2 which states that  the probability that  
the bad event occurs is the same in both probability spaces. To do so we will 
first prove the following lemma about  the distribution of keys. The proof of this 
lemma will use Lemma 1 which, recall, states that  the probability of a given 
query and response (which are not bad) for a fixed partial view and a fixed pair 
of keys (which are not bad) is the same in both probability spaces. 

3.4 E q u i - p r o b a b i l i t y  o f  u n s e e n  keys  

A crucial lemma is that  in Game 1, as long as the bad event has not happened, 
if adversary has a particular view, then any "un-eliminated" key pair is equally 
likely to be the crucial key pair. Without  this, it might be that  the adversary's 
chance of hitting the crucial key is better  in Game 1 (given the bad event fails) 
than in Game 2 (given the bad event fails). To simplify notation, for j e (1,2} 
and vi let 

Prj,v, [. ] = Prj  [. I Views --- vi A h'-h~i ] . 

L e m m a  8. Let j e (1,2}. Let v~ be a possible view of the adversary after move 
i e Mvs. Let (kt,k2) e RKP(vi) .  Then 

Prj,.,  [(k~, k~) = (kt, k2)] = 

Proof (Lemma 8). See [1]. 

[RKP(v,) I " 

17 

Using the above lemma we can now prove Lemma 2 which (recall) states that  
Prl[BADi] = Pr2[BADi] for all i E Mvs. 

Proof (Lemma ~). The proof is by induction on i E Mvs. The base case is when 
i = 0. In this case, the current view v of the adversary, in either game, is empty, 
so that  SKP(v) -- @. Thus, both probabilities are zero. 

So, assume the lemma statement is true up to move i E Mvs where i < 
2(q + t). We will prove it for i + 1, namely we will show that  

Prl  [ BADi+I ] ~- Pr2 [BADi+I ] .  (3) 

We first consider the case where i + 1 is even, meaning the last move in vi is a 
query. We have 

Pr j  [ BAD/+/] = PD [ BADi ] ~- Prj  [ BADi+I I B---A-Di ] �9 

The first term is equal for j = 1 and 2 by induction, and Prj  [ BADi+t I B-X'6i ] = 
0 because i + 1 is even. 

To complete the induction we need to prove Equation (3) for the case where 
i + 1 is odd, meaning the last move in vi is a reply. Let j E (1,2}. We can write 

Pr j  [ BADi+I ] = Prj  [ BADI ] -~ Prj  [ BADi+I [ B---'ADi ] �9 

The first term is independent of j by the induction hypothesis. We will now 
argue that  the second term is also independent of j .  By conditioning we can 
write the second term as 
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Prj [ BADi+I I ] 

=E 

--E 
v~E~ 

Prj [ BADi+I I A View/= vi ]" Prj [ Viewi = vi I ] 

,erj,o, [BAD,§ !.Prj [View, = v, I !, 
Y 

first term second term 
Y 

product term associated to vl 

where Vj = { vi : Prj  [ Viewi = vi I B--XDi ] > 0 } is the set of possible views after 
move i in Game j .  

Let us first observe that  V1 -- V2, namely the set of views vi for which the 
second term of the "product term associated to vi" is positive is the same in both 
games. This is true by Lemma 1, which tells us that  Prj [ View/= vi I B--X'~i ] 
does not depend on j and hence in particular the values of v for which it is zero 
are the same for j = 1 and j = 2. 

Now let us set V = V1 = V2 and compare the sums, term by term, in the 
cases j = 1 and j = 2. Fix a particular string vi E V and focus on the "product 
term associated to vi." The second term in it is independent of j by Lemma 1. 
We will show the same is true for the first term, which will complete the proof. 
COne needs to be a little careful. The first term is not well defined for just any v, 
only for v /E  Vj. That 's  why it was important, first, to restrict attention to these 
vi values, and, second, to make sure that  V1 -- V2, since otherwise we would not 
be sure that  we have shown equality for every term in the two sums.) 

So the remaining task is to consider Prj  [ BADI+I I B--~-~i A Viewi = vi ] for 
vi E V and show it does not depend on j .  First note that  RKP(vi) ~ 0, because, 
RKP(vi) = 0 would imply Prj [ Viewi = vi I B--X-~i ] = 0, and we have assumed 
the last to not be true. 

Since the view vi and the adversary are fixed, the next query q~+l is uniquely 
determined. Let 

NKP(v~, qi+l) = RKP(vi) - RKP(villqi+z ) 

be the set of "new key pairs" that  are "seen" by the (i + 1)-th query. (This set 
is empty if the latter is an E-query. It is also empty if it is an F or F -1 query 
with key with which A has already queried. If it is an F or F -1 query with key 
k with which A has not queried, then the set consists of pairs (k, k') and (k', k) 
where k ~ is any other key with which A has queried F or F -1.) We claim that  

I NKP(vi, qi+t)l 
Prj [ BADi+t I B-X'gi A View/= vi ] = iRKP(vi) [ , (4) 

for both j = 1 and j = 2. Note the fraction is well defined, in tha t  the denomi- 
nator is not zero, because RKP(vi) is non-empty. 

Equation (4) follows from Lemma 8. This says that  from the point of view of 
the adversary, all remaining key pairs remain equally likely, in either game. [] 
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A B e s t  a t t a c k :  M e e t  i n  t h e  m i d d l e  

In this section we will show the following: 

L e m m a  9. For any ~ , n  >_ 1, any 1 < s < q <_ 2 n - l ,  and any t > 2s, there is 
an adversary A such that 

t2 2~ ~ 2s(~-1) AdvA(Dbl ,~,n)  _ ~ s  2 �9 

We can now optimize the value of s and obtain the following theorem which says 
tha t  the bound of Theorem 1 is essentially tight: 

Theorem 2. For any tc, n >_ 1, let s = r (2~+ 1)/(n - 1)]. Then for  any t >_ 2s 
and s <_ q <_ 2 n-1 it is the case that 

1 t 2 
Sec(Dbl, ~ ,n ,q ,  t) _> 8s 2 22 ~ . 

Proo]. The choice of s guarantees that  22~+1 <_ 2 "(n-l) . This means that  
1 1 1 1 

22'r 28(n-l) -> 222'r " 
Now apply Lemma 9. 1:3 

Notice that  for typical block cipher parameters ~, n, the value of s is very small. 
For example,, for the DES parameters ~ = 56 and n = 64 we have s = r113/63] = 
2. Thus the above lower bound of Theorem 2 is in practice close to the upper 
bound of Theorem 1. 

Proof  ( L e m m a  9). The proof is by presenting an adversary A who achieves the 
claimed advantage. The adversary A plays a version of the meet-in-the-middle 
attack, but we need to adapt it slightly and then analyze it in our framework. 
It is convenient to let [N] = {1, 2 , . . . ,  N} for any integer N > 1. The adversary 
proceeds as follows: 

Fo r  i = j , . . . , 8  do 
Let zj  E {0,1} n be the j - th  string in lexicographic order 
Compute 9j = E ( x j )  

Choose two disjoint sets K I  = { kl,i : i E [t/2s] } and K2 = { k2,i : i E [t/2s] } 
of ~-bit keys, each set being of size t /2s .  (These might be chosen at random, 
but  not necessarily). 
Fo r  i = 1 , . . . , t / 2 s  do  

For  j = 1 , . . .  , s  do  Compute u~,j = F ( k l , i , x j )  and v i j  = F - l ( k 2 , i , y j )  
Let ui = (u~4, . . . ,  ui,s) and vi = (vi,1, . . . ,  vi,s) 

Let C = { (a, b) e [t/2s] x [t/2s] : ua = Vb } 
I f  C ~ 0 t h e n  r e t u r n  1 else r e t u r n  0 

An analysis of this attack, showing that  the advantage of the adversary is as 
claimed, is in [1]. rl 


