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Abs t rac t .  In this paper, we construct a 3-round zero-knowledge proto- 
col for any NP language. Goldreich and Krawczyk proved that a 3-round 
black-box simulation zero-knowledge protocol exists only for BPP lan- 
guages. However, there is no contradiction here. That is, our proposed 
protocol achieves a weaker notion of zero-knowledge: auxiliary-input non- 
uniform zero-knowledge. Since this notion has not been investigated in 
the literature, we classify several zero-knowledge notions including it and 
discuss the relationships among them. Our main contribution is to pro- 
vide a non-black-box simulation technique. It is based on a novel compu- 
tational assumption related to the Diffie-HeUman problem. Although this 
assumption is strong and non-standard, its non-standard nature seems 
essential for our simulation technique. 

K e y w o r d s :  Zero-knowledge, interactive proof, Diffie-HeUman problem. 

1 Introduct ion 

The fundamental notion of zero-knowledge (ZK) introduced by Goldwasser, Mi- 
cali and Rackoff plays a central role in modern cryptography [GMR85]. In this 
paper, we investigate the methodology underlying ZK in order to construct a 
3-round ZK protocol for NP. 

1.1 B a c k g r o u n d  on  Z e r o - K n o w l e d g e  P r o t o c o l  

Consider an interactive protocol in which a prover convinces a verifier tha t  some 
common input x belongs to some underlying language L (In this paper, L is in 
NP).  The length of x is denoted by n and one measures complexity in terms of 
n. The verifier is always a probabilistic polynomial-time machine. We focus on 
two properties: "soundness" and "zero-knowledge." Each can be formalized in 
two ways depending on whether or not we restrict the adversary (the cheating 
prover and the cheating verifier) to a resource bound machine. 

The soundness asks that  if x ~ L, any cheating prover can not convince the 
verifier to accept, except with negligible error probability. This notion is for- 
malized in two ways: "proofs" and "arguments." These provide the statistical 
soundness and the computational soundness, respectively. The former requires 
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that even a computationally unrestricted cheating prover should be unable to 
make the verifier accept x ~ L, except with negligible probability [GMtt85]. On 
the other hand, the latter requires that any cheating prover restricted to prob- 
abilistic polynomial-time should be unable to make the verifier accept x ~ L, 
except with negligible probability [BrCr86][BCC88]. Although the notion of ar- 
guments is weaker than the notion of proofs, it is good enough for cryptographic 
applications. The soundness of arguments will typically depend on the complex- 
ity assumptions such as the discrete logarithm assumption. Whenever we talk of 
proofs or arguments, we always mean ones with negligible error probability. 

Zero-knowledge asks that when x E L, an interaction with the prover yields 
no information (other than the fact x E L) to any cheating verifier. Again, this 
notion is formalized in two ways: "statistical ZK" (SZK) and "computational 
ZK" (CZK). The former requires that even a computationally unrestricted cheat- 
ing verifier will not gain useful information, except with negligible probability. 
On the other hand, the latter requires that any resource bound cheating verifier 
(probabilistic polynomial-time machine or polynomial-size circuit family) will 
not gain useful information, except with negligible probability. Clearly, SZK is 
a special case of CZK. 

In this paper, unless stated explicitly, ZK protocols mean CZK arguments. 
Our proposed protocol is a CZK argument. 

1.2 Classification of  Zero-Knowledge 

Our proposed protocol achieves the notion of anxiliary-input non-uniform ZK. 
Since this notion has not been investigated in detail so far, we classify several 
relevant ZK notions and discuss the relationships among them. 

ZK was originally formalized in [GMR85] as follows: for any probabilistic 
polynomial-time machine 1 y (the cheating verifier), there exists a probabilistic 
polynomial-time machine S~ (the simulator) which produces a probability dis- 
tribution which is computationally indistinguishable from the distribution of 
conversations of V with the prover P. This original definition (GMRZK) is not 
suitable for cryptographic applications since it is not closed under sequential 
composition [GoKr96]. In cryptographic applications, the verifier can have some 
additional a-priori information. 

In order to overcome the above problem, auxiliary-input zero-knowledge 
(AIZK) was introduced in [GoOr94]. AIZK is defined by augmenting GMRZK 
with auxiliary-input, that is, the simulation requirement is extended to deal 
with non-uniform verifiers with an anxiliary-input, where the simulator takes 
the same auxiliary-input used by the verifier. It was shown that AIZK is closed 
under sequential composition [GoOr94]. 

Black-box simulation zero-knowledge (BSZK) requires the existence of a uni- 
versal simulator that, using any non-uniform verifier V as a black-box, succeeds 
in simulating the interaction of ~? with the prover P. It was shown that BSZK 
implies AIZK [GoOr94]. Although BSZK is the most restrictive among the above 
definitions, almost all known ZK protocols are BSZK. 
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All the above definitions are "semi-uniform" in the sense that it uses uniform 
machines but quantifies over all common inputs x E L. The non-uniform formal- 
ization of ZK appeared in [Go93], where all machines are modeled by a family 
of polynomial-size circuits. We consider two non-uniform formalizations here: 
non-uniform zero-knowledge and auxiliary-input non-uniform zero-knowledge. 

Non-uniform zero-knowledge (NUZK) is a non-uniform variant of GMRZK. 
That is, it requires that for any family of polynomial-size circuits V, there exists a 
family of (probabilistic) polynomial-size circuits S 9 which produces a probability 
distribution which is computationally indistinguishable from the distribution 
of conversations of V with the prover P.  It is important to note that NUZK 
does not imply GMRZK [Go98-2]. In fact, one can devise artificial protocols for 
sparse languages such that it achieves the notion of NUZK but not GMRZK. For 
example, consider the following interactive proof for a sparse language Lsp -- 
{ l '~}neN . The prover sends the verifier a hard function K(.) of the common 
input x E Lsp (e.g., K is a non-recursive function indicating whether the nth 
Turing machine accepts every input). The verifier accepts iff x is of the form 1". 
Certainly, this is an interactive proof for Lsp. It is not GMRZK since there is 
no way to simulate in probabilistic polynomial-time the interaction in which the 
prover sends the value of K(x). On the other hand, it is still NUZK since the 
simulator may just incorporate the hard bit (i.e., the nth circuit will incorporate 
the bit indicating if the nth Turing machine accepts every input). This shows that 
NUZK is a very weak notion of ZK and does not satisfy the intuitive requirement 
of ZK. Also, the result of [GoKr96] can be extended to show that NUZK is not 
closed under sequential composition. 

Auxiliary-input non-uniform zero-knowledge (AINUZK) is defined by aug- 
menting the notion of NUZK with anxiliary-input. The above interactive proof 
for a sparse language achieves not only NUZK but also AINUZK. That is, AIN- 
UZK also does not satisfy the intuitive requirement of ZK. However, AINUZK 
has an advantage over NUZK since it is closed under sequential composition 
[GoOr94][Go93]. Our proposed protocol achieves this notion. 

Let Cl(def) denote the class of all interactive proofs and arguments satisfying 
the requirements of definition def. In the light of the above, it holds that 

CI(BSZK) C_ CI(AIZK) C CI(GMRZK) C CI(NUZK) 

and 
CI(AIZK) C CI(AINUZK) C CI(NUZK). 

It is an open problem whether Cl(BSZK) equals CI(AIZK) [GoOr94]. 

1.3 Mot ivat ion  and Contribution 

The round complexity, the number of messages exchanged, is a standard com- 
plexity measure for the efficiency of ZK protocols. Several researchers constructed 
constant round ZK protocols for NP [BCY89][FeSh89] [GoKa96] 1 [BJY97]. The 

1 ZK protocols constructed in [GoKa96] are proofs rather than arguments. 
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lower bounds on the round complexity have been investigated from the practical 
and theoretical viewpoint. Goldreich and Oren proved that only languages in 
BPP have 2-round AIZK protocols [GoOr94]. Their result can be extended to 
prove that only languages in P/poly have 2-round AINUZK protocols. Further- 
more, Goldreich and Krawczyk proved that only languages in BPP have 3-round 
BSZK protocols [GoKr96] 2. Since the argument in [GoKr96] uses the notion 
of black-box simulation in an essential way, their result does not apply to the 
weaker notions such as AIZK and AINUZK. Therefore, with respect to AIZK 
and AINUZK, it is an interesting open problem whether there exists a 3-round 
ZK protocols for a non-trivial language, i.e., a language not known to be in BPP 
and P/poly. 

As mentioned above, almost all known ZK protocols are BSZK, that is, the 
zero-knowledge property has been demonstrated using the black-box simulation 
of the verifier. In fact, it seems hard to conceive an alternative way to demon- 
strate ZK property. Therefore, it seems hard to construct a 3-round ZK protocol 
for a non-trivial language. In other words, in order to construct such protocols, 
a new simulation technique is needed. 

In this paper, we construct a 3-round AINUZK protocol for any NP language. 
Our result does not contradict the result of [GoKr96] since our proposed protocol 
does not achieve the notion of BSZK. Our main contribution is to provide a non- 
black-box simulation technique. It is based on a novel computational assumption 
related to the Diffie-Hellman problem. We call it the strong Diflle-Hellman as- 
sumption (SDHA). Although this assumption is strong and non-standard, its 
non-standard nature seems essential for our simulation technique. 

Organiza t ion .  In Section 2, we give the definitions of AINUZK arguments and 
some standard complexity assumptions. Section 3 describes our proposed proto- 
col. In Section 4, we formalize SDHA. In Section 5, we prove the correctness of 
our proposed protocol. In Section 6, we conclude with some remarks. 

2 P r e l i m i n a r i e s  

In this section, we give the definitions of AINUZK arguments and some standard 
complexity assumptions. Most of this section follows [BJY97] and [Go98-1]. 

2.1  Auxi l i a ry - Inpu t  Non-Uni fo rm Zero-Knowledge A r g u m e n t s  

We deal with NP languages and let WL (x) denote the witness set of x which 
belongs to an NP language L. We say that a function v(.) : N ~ R is negligible 
if for every polynomial poly(.) and all sufficiently large n's, it holds that v(n) < 
1/poly(n). Also, we say that a function g(') : N ~ R is overwhelming if g(.) = 
1 - v(.) for some negligible function v(-). 

2 The proofs in [GoKr96] are for CZK proofs. However, their result extends to CZK 
arguments. See Remarks 6.3 and 6.5 in that paper. 



412 

We consider two probabilistic polynomial-time interactive machines called 
the prover and the verifier. Initially both machines have access to a common 
input tape which includes x of length n. The prover and the verifier send messages 
to one another through two communication tapes. After exchanging a polynomial 
number of messages, the verifier stops in an accept state or in a reject state. 
Each machine, denoted by A, only sees its own tapes, namely, the common 
input tape, the random tape, the auxiliary-input tape and the communications 
tapes. In particular, the prover's auxiliary input tape includes a witness w E 
WL(X). Let A(x,  re, r) denote A's next message, where x is the common input, 
r the random coins and m the messages so far. We let Ax(., .) = A(x , . ,  .) and 
Ax,r(') = A(x,  .,r). When A takes an auxiliary input y, we write A~ and A~,r for 
A~ and A=,~, respectively. Let Acc(P~, V~) denote the probability that V accepts 
when interacting with P on the common input x. The probability is taken over 
the random tapes of both machines. 

Defini t ion 1 .  Let P, V be two probabilistic polynomial-time interactive ma- 
chines. We say that (P, V) is an argument for L if the following two conditions 
are satisfied: 

Completeness: For every x E L, every w e WL(X), Acc(P~, V~) = 1. 
Soundness: For every probabilistic polynomial-time machine P (the cheating 
prover), every polynomial poly(.), all sufficiently long x ~ L and all y's, 

1 
Acc(P~, V~) < poZy(l l )" 

We recall the notion of computational indistinguishability of probability dis- 
tributions used in the definition of zero-knowledge. 

Defini t ion 2 .  Let L be an NP language. An ensemble indexed by L x {0, 1}* is 
a sequence {Ex,~}xeL,ye{o,1}* of probability distributions, one for each (x, y) E 
L x {0, 1}*. Let E = {Ex,~}xeL,ye{0,1}* and E' = {E~,y}xeL,ye{0,1}* be two en- 
sembles over a common index set L x {0,1}*. A distinguisher is a polynomial-size 
circuit family D --- {Dx,~}xeL,~e{0,1}*. We say that E and E' are computation- 
a[]y indistinguishable if for every distinguisher D, every polynomial poly(.), all 
sufficiently long x E L and all y e {0, 1}*, 

1 
[Pr [Dx,~(v) = 1 ] -  Pr [D=,y(v') = 1][< poly([x[-----~' 

where v and v ~ are chosen according to the distribution Ez,y and E~,~, respec- 
tively. 

A view of the verifier is an ensemble which consists of the common input, the 
auxiliary input, the random coins and the sequence of messages by the prover 
and the verifier during the interaction. Let View(Pz,V~) = [x,y,r ,m] denote 
V's view after interacting with P, where x is the common input, y the auxiliary 
input to V, r the random coins of V and m the sequence of messages sent by P 
and V. Note that r is empty when V is a family of polynomial-size circuits. 
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Defini t ion 3 .  Let P, V be two probabilistic polynomial-time interactive ma- 
chines. We say that (P, V) is an auxiliary-input non-uniform zero-knowledge for 
L if for every family of polynomial-size circuits V (the cheating verifier), there 
exists a family of (probabilistic) polynomial-size circuits Sly (the simulator) such 
that the following two ensembles are computationally indistinguishable: 

{Sly(x, Y)}zEL,yE{0,1}* and {View(P=, V~)}=eL,~e{o,1}*. 

We remark that it is not required that simulator Sly can be effectively con- 
structed given a verifier V, but rather that it exists. 

2.2 D L A  and  D H A  

We give two standard complexity assumptions related to the discrete logarithm 
problems. All exponentiations in this paper are in Z~ (the definition of the prime 
p will be clear by the context). To simplify the notations, we omit the expression 
"rood p". 

We recall the discrete logarithm assumption (DLA). In this paper, we need 
a stronger definition of DLA in which we assume nothing on the distribution of 
a prime p and a base g. 

Def ini t ion 4 .  Let LpQG denote the set {(p,q,g)} of primes and generators, 
where p and q are primes such that p = 2q + 1 and g is an element of order q in 
Z$ (a generator of a subgroup of Z~ of order q). 

LpQG can be recognized in probabilistic polynomial-time with negligible error 
probability by testing primality for p and q in probabilistic polynomial-time 
[SS77][Ra80], and verifying that g is not the identity and that gq = 1. Further- 
more, there exists a probabilistic polynomial-time algorithm which, on input 1 n, 
outputs (p, q, g) E LpQc such that p is of length n. 

Assumpt iom 5 (DLA). For every family of polynomial-size circuits I --- (I,=} ,>1, 
every polynomial poly(.) and all sufficiently large n's, 

1 
In,, n(P,q,g) = P,'ob[ I , , ( p , q , g , g  = a I < 

where (p, q, g) is any instance in LpQG such that p is of length n. The probability 
is taken over the choice of a uniformly at random in Zq. 

The Diffie-HeUman assumption (DHA) says that the Diflie-Hellman problem 
[DH76] is intractable in the same setting as DLA. 

Assumpt lom 6 (DHA).  For every family of polynomial-size circuits I = {In},>l, 
every polynomial poly(.) mid all sufficiently large n's, 

1 
[nVIDH(p,q,g) = Prob[ Ia(p,q,g,g~,g b) = gab ] < poly(n-----'~' 

where (p, q, g) is any instance in LpQa such that p is of length n. The probability 
is taken over the choice of a, b uniformly at random in Zq. 
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3 P r o t o c o l  D e s c r i p t i o n  

In this section, we construct a 3-round ZK protocol for any NP language (called 
3R-ZK). Our starting point is a 3-round public-coin honest-verifier ZK protocol 
for an NP language LNp. We transform it into a 3-round secret-coin any-verifier 
ZK protocol for the same language LNp. 

3.1 The Starting Protocol  

We require that the starting protocol (M, A) satisfies the following properties. 
Let M1, Y, M2 denote the messages exchanged in the starting protocol. M1 and 
M2 are the first and the second messages that the prover sends to the verifier, 
respectively. Y is the verifier's challenge. 

B0. It is a public-coin protocol in which the challenge Y (the verifier's pub- 
lic coins) is chosen uniformly at random in any polynomially samplable 
subdomain of {0, 1}% 

B1. The prover can be implemented in probabilistic polynomial-time when it 
is given as its auxiliary-input an NP witness. 

B2. It satisfies a strong soundness property which requires that for every com- 
mon input x ~ LNp and every possible first message M1, there exists at 
most one verifier's challenge Y such that the prover may answer properly 
in its second message M2. 

B3. It is zero-knowledge with respect to a prescribed verifier for the protocol, 
i.e., honest-verifier zero-knowledge (HVZK). Formally, for the prescribed 
verifier B, there exists a probabilistic polynomial-time simulator SI~V (the 
honest-verifier simulator) such that the following two ensembles are com- 
putationally indistinguishable: 

{SHV(X, Y)}xeL,yE{0,1}* and {View(Mx, A~)}xeL,ye{o,1}*. 

For example, the parallel composition of Blum's ZK protocol for the Hamil- 
tonian circuit problem satisfies all the above properties [B186] (See also Chapter 
4, Exercise 16 in [Go98-1]). 

Theorem 7 [B186] [Go98-1]. Assuming the existence of non-uniformly secure 
commitment schemes, there exists a starting protocol satisfying all the above 
properties for any NP language. 

3.2 Our Proposed Pro toco l  

Before describing our proposed protocol, we review the general approach to 
constructing constant round ZK protocols for NP. Only BPP languages have 
constant round public-coin BSZK protocols [GoKr96]. Therefore, only feasible 
way of constructing constant round BSZK protocols for NP is to let the verifier 
use "secret coins". That is, the coins inducing the message sent by the verifier are 
kept secret from the prover. In fact, all the previous constant round ZK protocols 
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are secret-coin protocols [BCY89][FeSh89][BMOg0] [GoKa96][BJY97]. We note 
that in all the previous protocols, the verifier demonstrates that it knows the 
secret coins. As a result, the simulator can get the verifier's secret coins in the 
simulation. For example, in [FeSh89] the verifier executes a witness-hiding proto- 
col. In [BCY89][BMO90][GoKa96] the verifier executes a commitment protocol 
s. In [BJY97] the verifier executes a cut-and-choose type protocol. Furthermore, 
the previous constant round ZK protocols are designed so that once the simu- 
lator gets the verifier's secret coins, it can complete the simulation without any 
NP witness, whereas as long as the cheating prover does not know the verifier's 
secret coins, the soundness condition is satisfied. 

We construct a 3-round ZK protocol by transforming the starting protocol 
into a 3-round secret-coin protocol in which the challenge Y is generated by an 
interaction of the prover and the verifier, rather than by the verifier itself. In the 
light of the above, the resulting protocol should satisfy the following properties: 

R1 .  The verifier demonstrates that it knows the coins inducing the message 
sent by it, while keeping these coins secret from the prover. 

R2 .  The knowledge of the verifier's secret coins enables the simulator to answer 
properly in the second message given a fixed challenge Y. 

R3 .  As long as the verifier's secret coins are kept secret, it is computationally 
difficult for a cheating prover to answer properly in the second message 
given a fixed challenge Y. 

The property R1 has been implemented by a notion of "proof of knowledge" 
[TW87][FFS88][BeGo92], specifically by bit-commitment protocols, witness-hiding 
protocols and cut-and-choose type protocols. However, these protocols require 
an interaction which we can not afford here (Note that in 3-round protocols, 
the verifier sends the message once for all). Therefore, it seems impossible to 
satisfy the property R1. Nevertheless, we resolve this difficulty using a new type 
of computational assumption so that the protocol resulting from our transfor- 
mation can satisfy all the properties. 

Protocol:  3R-ZK for an NP language LNp. 
C o m m o n  Input: a common input x of length n. 
Prover's Witness: an NP witness in WL~p (x). 
PI:  The prover P computes the first message as follows: 

P I - 1  P generates an instance (p, q, g) E LpQG such that p is of length n. P 
also generates uniformly a random number a E Zq. Then P computes 
A = g  a. 

P1-2 P computes M1 according to the starting protocol. 
P sends (M1, p, q, g, A) to the verifier V. 

V l :  V checks whether (p, q, g) is in LpQo and p is of length n. If this is true, V 
generates a random number b E Zq (the secret coins), computes (B,X)  = 
(gb, A b) and sends (B, X) to P. Otherwise V rejects. 

s In a commitment protocol, the secret coins are revealed finally. 
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P2" P checks whether X = B a. If  this is false P stops, otherwise P computes 
the second message as follows: 
P2-1 P generates a random number c E Zq and computes (C, Y) = (gC B c) 

(These may also be computed as (C, Y )  = (A  c, Xc ) ) .  
P2-2 P computes M2 using Y as the challenge according to the starting 

protocol. 
P sends ( M 2 , C , Y )  to V. 

V2: V checks whether the following two conditions are satisfied: 
V2-1 V checks whether Y = C b. 
V2-2 V checks whether M2 is valid using Y as the challenge according to 

the starting protocol. 
If either condition is violated V rejects, otherwise V accepts. 

We explain that 3R-ZK satisfies all the properties. With respect to R1, we 
can make the following observation. The verifier's secret coins b are kept secret if 
we assume that it is computationally intractable to compute b from (g, A, B, X). 
Furthermore, it seems that the verifier must raise (g, A) to bth power in order 
to pass the prover's check X = B a in P2. That is, we assume that the verifier 
knows the secret coins b whenever  it holds that X = B a. This is a new type of 
computational assumption which we call SDHA-1. SDHA-1 can be formalized as 
follows: for any verifier V, there exists another verifier V~ such that V~ outputs 
not only (B, X) but also the secret coins b whenever V outputs (B, X) satisfying 
X = B a. We may say that R1 is implemented using a computational assumption 
rather than a notion of "proof of knowledge". 

R2 is satisfied since given Y and b, it is easy to compute the second message 
C such that Y = C b. When the simulator uses V~ (but not I y) as a black-box, 
it can get not only (B, X) but also b. As a result, it is possible to complete the 
simulation. 

As in R1, it seems that the prover must raise (g, B) or (A, X) to cth power 
in order to pass the verifier's check Y = C b in V2-1 (Note that there are two 
ways of computing (C, Y) in P2-1). We assume that the prover knows the value 
o.f c such that Y = B c or X c whenever  it holds Y = C b. We call this assumption 
SDHA-2. Assume that R3 is not satisfied. Then, given a fixed challenge Y, 
the cheating prover can compute the second message C satisfying Y = C b for 
randomly chosen (B, X). Under SDHA-2, this means that, given Y, it is easy to 
compute the discrete logarithm c such that Y = B c or X e for randomly chosen 
(B, X). This contradicts DLA. 

The above discussion roughly shows that 3R-ZK is a ZK protocol for LNp. 
The formal proof is given in Section 5. 

4 T h e  S t r o n g  D i f f l e - H e l l m a n  A s s u m p t i o n  

In this section, we formalize SDHA. There are two versions of SDHA: SDHA-1 
and SDHA-2. They are required for the ZK property and the soundness, respec- 
tively. 
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Assumptiora 8 (SDHA-1) .  Firstly, DLA is assumed to hold in this assump- 
tion. Let I be a family of polynomial-size circuits which takes as input (p, q, g, 9a) 
and tries to output (B, X) such that X -- B a. For every family of polynomial- 
size circuits I = {In}n>1, there exists another family of polynomial-size circuits 
I '  = { I ' }n>l  which, on input (p, q, g, ga), outputs (B', X',  b) satisfying the fol- 
lowing two conditions, where the probability is taken over the choice of a uni- 
formly at random in Zq, (p,q,g) is any instance in LpQo and p is of length 

1. I 'n(p,q,g,g a) is statistically close to In(p ,q ,g ,g  a) on the first two outputs 
( B , X ) .  

2. For every polynomial poly(.) and all sufficiently large n's, 

1 
Prob[ Z '  = S 'a A B '  ~ gb ] < poly(n-------')" 

Roughly, the above conditions say that whenever I outputs (B, X) such that 
X = B a, I '  outputs not only ( B , X )  but also b such that B = gb (i.e., X = (9a)b) 
with overwhelming probability. 

The proposition below shows that SDHA-1 implies DHA. However, it is un- 
likely that DHA implies SDHA-1. 

P r o p o s i t i o n  9 .  Under SDHA-1, DHA holds. 

Proof(sketch). Assume that DHA does not hold. Then there exists a family of 
polynomial-size circuits I which, on input g, A = ga, B = gb, outputs B = gb and 
X = gab with non-negligible probability. Under SDHA-1, there exists another 
family of polynomial-size circuits I ~ that computes not only (B, X) but also the 
discrete logarithm b such that B = gb. This contradicts DLA. 1:3 

A s s u m p t i o m  10 (SDHA-2) .  Firstly, DLA is assumed to hold in this as- 
sumption. Let I be a family of polynomial-time circuits which takes as input 
(p,q,g,  ga,gb,gab) and tries to output (C ,Y )  such that Y = C b. For every 
family of polynomial-size circuits I = {In}n>1, there exists another family of 
polynomial-size circuits I '  = {I~}n>l which takes as input (p, q, g, ga, gb, gab) 
and outputs (C ~, Y~, c) satisfying the following two conditions, where the prob- 
ability is taken over the choice of b uniformly at random in Zq, (p,q,g) is any 
instance in LpQG, p is of length n and a is any element in Zq. 

1. I~ (p, q, g, ga, gb, gab) is statistically close to In(p, q, 9, ga, 9b, gab) on the first 
two outputs (C, Y). 

2. For every polynomial poly(.) and all sufficiently large n's, 

1 
Prob[ Y '  = C 'b A Y '  ~ (gb)c A Y '  ~s (gab)c ] < poly(n------'-)" 

Roughly, the above conditions say that whenever I outputs (C, Y) such that 
Y = C b, I ~ outputs not only (C ,Y)  but also c such that Y = (gb)c or Y = (gab)c 
(i.e., C = gc or (9a)c) with overwhelming probability. 
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SDHA-2 implies SDHA-1 and so we call SDHA-2 SDHA. We remark that in 
both assumptions, it is not required that I '  can be effectively constructed given 
I, but rather that it exists. This is similar to the definition of AINUZK. 

5 Main  T heo rem  

We prove that 3R-ZK is an AINUZK argument. 

T h e o r e m  11.  There exists a 3-round auxiliary-input non-uniform computa- 
tional zero-knowledge argument for any NP language under SDHA. 

Proof. There exists a non-uniformly secure commitment scheme under DLA 
IBM84]. By Theorem 7, the starting protocol exists under SDHA. Therefore, 
Theorem 11 follows combining Lemma 12 and 13. [] 

Our result does not apply to the notion of AIZK. However, if we strengthen 
SDHA with auxiliary-input, we can prove that 3R-ZK is AIZK. This issue is 
taken up in the last section. 

5.1 3R-ZK is A I N U Z K  

L e m m a  12.  3R-ZK is AINUZK for LNp under SDHA-1. 

Proof. Firstly, we focus on the computation of the cheating verifier I7~ in V1, 
where the inputs are (p, q, g, A, M1) and the outputs are (B, X) such that X = 
B a. We consider it as the computation of I in SDHA-1. The inputs (p, q, g, A) to 
V~ play the role of the inputs (p, q, g, ga) to I in SDHA-1. Furthermore, we can 
consider that the other quantities such as the common input x, the auxiliary- 
input y and the message M1 are incorporated into I in SDHA-1. Therefore, we 
can apply SDHA-1 to the cheating verifier ~ :  for any cheating verifier V~, there 
exists a family of polynomial-size circuits I~y which outputs not only (B, X) but 
also b such that B = gb. 

As mentioned in the observation of the property R2, when the simulator uses 
V~Y as a black-box, it can get the secret coins b and complete the simulation with 
b. For simplicity, we describe the simulator S? as a probabilistic polynomial-time 
machine. 

Machine:  Simulator S~. 
Input:  x, y. 
Outpu t :  a view Ix, y, (MI,p, q,g, A)(B, X)(M2, C, Y)]. 
S l .  Sr performs PI-1 to get (p, q, g, A). 
S2. Sp runs the honest-verifier simulator SHv in the property B3 of the starting 

protocol to get (M1, Y, Ms) such that Y is an element of order q in Z$. 
$3. S~, runs lY:~ on (M1, p, q, g, A) to get (B, X, b). Sr checks whether X = B a. 

If this is false, S~ stops and outputs Ix, y, (MI, p, q, g, A) (B, X)]. 
S4. Sfz checks whether B = gb. If this is false, Sf~ aborts. 
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S5. Sr computes C such that Y = C b. 
86. Sfr outputs Ix, y, (M1, p, q, g, A) (B, X) (1l/2, C, Y)]. 

Clearly Sfr runs in probabilistic polynomial-time. The probability that Sfr aborts 
in $4 is negligible under SDHA-1. 

Now we show that the output distribution ensemble {Sfz(x,Y)}x~L,y~{o,1}* 
is computationally indistinguishable from {View(Px, V~)}z~L,u~(0,1}*. The proof 
is by contradiction. Assume there exists a distinguisher D that can distin- 
guish {Sf,,(x, Y)}xeL,ye{o,1}* from {View(Px, V~)}=eL,v~(o,1}*. Then we can con- 
struct a distinguisher D ~ that distinguishes the output distribution ensemble 
{SHv(X,y)}=eL,ue{O,1}. from {View(M~,A~)}xeL,ye{o,1}. , in contradiction to 
the property B3 of the starting protocol (M, A). Given a view (M1, Y, M2) of 
the starting protocol (from either distributions), D ~ extends it to a view of 3R- 
ZK and invokes D on the extended view as follows: 

! 
Dist inguisher:  D' = {Dz,y}zELNP,yE{0,1}*. 
Input:  (M1, Y, M2), where we assume that (p, q, g) 6 LpQG is fixed in advance 

and that Y is an element of order q in Z~. 
Ou tpu t :  0 or 1. 
DI :  D~,u runs S~ to extend the input (M1, ]I, M2) to a view [x, y, (M1, p, q, g, A) 

(B,X) (M2,C,Y)], where the input (M1,Y, M2) is used as a result of $2, 
respectively. 

D2: D~,~ invokes Dx,y on the extended view. 

If the input (M1, }I,/I//2) is from View(Mx, A~), the extended view is distributed 
statistically close to View(P=, ~'~). This is because the probability that S~ aborts 
is negligible and the output distributions of I ~  and V-'U are statistically close 
on (B,X) under SDHA-1. On the other hand, if the input (M1,Y, M2) is from 
SHy (x, y), the extended view is distributed exactly alike the distribution S~. (x, y). 
Therefore, D ~ distinguishes the two ensembles in the property B3 of the starting 
protocol. G 

Since Sq does not use V as a black-box, the above argument does not show 
that 3R-ZK is BSZK. SDHA-1 does not say that the circuit for ~r~ can be effec- 
tively constructed given the circuit for "~, but rather that it exists. However, it 
is sufficient for our purpose since the definition of AINUZK also does not require 
that the circuit for S? can be effectively constructed given the circuit V. That is, 
under SDHA-1, for any verifier V, there exist another one V~ and the simulator 
S~. Therefore, the above argument shows that 3R-ZK is AINUZK. 

5.2 3R-ZK is an A r g u m e n t  

L e m m a  13.  3R-ZK is an argument for LNp under SDHA-2. 

Proof. The completeness is trivially satisfied because of the property B1 of the 
starting protocol. We focus on the soundness. Assume that 3R-ZK does not have 
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negligible error probability. Then there exist a cheating prover/5, a polynomial 
P0(') and an infinite set G = {(x, y)} of common inputs not in LNp and auxiliary 
inputs such that Acc(P~, V~) > 1/po([x[) for all (x, y) e G. We will show that 
this contradicts DLA. Let K be the set of all integers n for which G contains 
a common input x of length n. We will show that there exists an inverter I = 
{In}nEK such that for all n E K, there exist (p, q, g) E LpQa (p is of length n) 
such that Inv,) L (p, q, g) is overwhelming. 

Firstly, we construct a (probabilistic) polynomial-size circuit family PG = 
{PGn}nelr which outputs a (bad) instance (p, q, g) E LpQG such that the dis- 
crete logarithm modulo p is easy to compute. For each n E K we fix some com- 
mon input and some auxiliary input (x, y) E G and they are incorporated into 
PG,~. We allow PG,~ to use/hzY as a black-box. We allow PG,~ to feed the random 
coins for/hzY. For simplicity, we describe PG,  as an expected polynomial-time 
machine and its expected running time is clearly O(po(n)poly(n)). 

Machine: Prime Generator {PGn}nEK. 
Input: 1 n. 
Output: (r, MI,p, q, g, A). 
S tep  0: PGn initiates P~^on the random coins r. 
S t ep  1: PGn runs both P~,~ and Vx to get a transcript [(Ml,p,q,g,A) (B,X)  

(M2, C, Y)]. If this is rejecting, PGn goes back to Step 0. 
S tep  2: PGn outputs (r, MI,p, q, g, A). 

Let Acc(/5~,r, V~, (M1, p, q, g, A)) denote the conditional probability that V~ 

accepts x ~ LNp in interacting with P~,r when the conversation so far is 

(MI,p,q,g,A). We say that (p,q,g) is bad if Acc(P~,r,V=,(Ml,p,q,g,A)) > 
1/2po(n). Since Acc(/5~, Vx) > 1/po(n), it must be that the probability (over r 
and the random coins of V leading to (MI,p, q, g, A)) that Acc(P~,r, V~, (M1, p, q, 
g, A))>l/2po(n) is at least 1/2. Therefore there exists a bad instance (p, q,g) E 
LPQa for all n E K and the probability that the output (p, q, g) E LpQG of 
PGn is bad is at least 1/2. We ignore the possibility that (p, q, g) ~ LpQG since 
it happens with negligible probability. 

Before we describe an inverter I = {In}neK, we apply SDHA-2 to /hz~,r. 

We consider the computation of the prover /5~, r in P2, where the inputs are 
(p,q,g,A, M1)(B,X) and the outputs are (M2,C,Y) such that Y = C a. We 
consider it as the computation of I in SDHA-2. The inputs (p, q, g, A, B, X) to 
V~r play the role of the inputs (p, q, g, ga, gb, gab) to I in SDHA-2. Furthermore, 
we can consider that the other quantities such as the random coins r, the message 
M1, the common input x and the auxiliary-input y are incorporated into I in 
SDHA-2. Therefore, we can apply SDHA-2 to the cheating prover P~,r: for any 

^ey 
cheating prover/~.Y there exists a family of polynomial-size circuits P=,r which 
outputs in P2 not only (M2, C,Y) but also c such that Y = B c or X c. 

From now on, we assume that PG,~ has output a bad instance (p, q, g) E 
LpQG along with (r, M1, A). We construct an inverter I = {In},e/~, where a 
common input x, an auxiliary input y, the output (r, M1, A) of PG,  and a 



421 

such that A = 9 a are incorporated into each machine In. Furthermore, In is 
allowed to use/5~,v r as a black-box. For simplicity, we describe In as an expected 
polynomial-time machine. 

Machine:  Inverter {In}he K. 
Input: A bad (p, q, g) output by PGn, a random number/3 of order q in Z~. 
Ou tpu t :  The discrete logarithm a such that/3 = ga. 
Step 1: In generates a random number b E Zq and computes B = flgb and 

X = B  a. 
Step  2: In runs/5:,v r on ( (Ml ,p ,q ,g ,A ) (S ,X ) )  to get its response (M2,C,Y,c) .  

In checks whether (M1,Y, M2) is accepting according to the starting 
protocol. If this is false, In goes back to Step 1, otherwise In goes to 
Step 3. 

Step 3: In checks whether Y = B c or Y = X c. If this is false, In goes back to 
Step 1, otherwise In goes to Step 4. 

Step 4: In generates a random number b' E Zq and computes B' = gb' and 
X '  = B 'a. If B = B'  then In outputs a = b' - bmod q (Note that 
~gb = gb'). Otherwise, In goes to Step 5. 

Step 5: As in Step 2, In runs/5~,v r on ((M1 ,p, q, g, A)(B', X'))  to get its response 
( M~, C', Y ' ,  c'). In checks whether ( MI , Y' ,  M~) is accepting according 
to the starting protocol. If this is false, In goes back to Step 4, otherwise 
In goes to Step 6. 

S tep  6: In checks whether Y' = B 'c' or Y'  = X 'c' . If this is false, In goes back 
to Step 4, otherwise In goes to Step 7. 

Step 7: In outputs a such that/3 -- ga. 

In tries to get two different accepting transcripts. Since we assumed that (p, q, g) 
is bad, the expected running time of In is O((po(n))2poly(n)). 

In Step 7, it holds that Y = flacgabc or ~cgbc and it also holds that Y' = 
gab%' or gb'c'. Since x ~ LNp, Y must equal Y' by the property B2 of the 
starting protocol. So it is easy to compute a such that/3 = gO from the values 
(a,b,b',c,d). Therefore we conclude that for all n E K, there exists (p,q,g) E 
LpQG such that Inv/L(p, q, g) is overwhelming. This contradicts DLA. [:3 

6 C o n c l u d i n g  R e m a r k s  

We introduced a novel computational assumption SDHA so that we could pro- 
vide a non-black-box simulation technique and construct a 3-round AINUZK 
protocol for NP. However, SDHA is strong and non-standard. It is fundamen- 
tally different from the standard complexity assumptions such as DLA and DHA 
in the sense that SDHA has double quantification (i.e., for every adversary, there 
exists another one such that something holds) whereas the standard assumptions 
have one quantifier (i.e., for every adversary, something holds). It is unlikely that 
SDHA holds under some standard complexity assumptions. Therefore, it is in- 
teresting and necessary to study the validity of SDHA. 
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Our result can not appfly to AIZK. When we apply SDHA-1 to a probabilistic 
polynomial-time verifier V, the resultant V~ is a circuit family and the simulator 
Sq  is also a circuit family. This does not satisfy the requirement of the definition 
of AIZK. One may think that  we can prove that  3R-ZK achieves GMRZK or 
AIZK if SDHA-1 is formalized in the uniform model, where both I and I ~ are 
modeled by probabilistic polynomial-time machines. It is not the case since such 
uniform assumption (called uniform SDHA-1) can not deal with the common 
input x and the auxiliary-input y. 

We can prove that  3R-ZK achieves the notion of AIZK if we further strengthen 
uniform SDHA-1 with auxiliary-input, that  is, if we assume that  uniform SDHA- 
1 holds even when both I and I ~ are allowed to take arbitrary (same) auxiliary- 
inputs (We call this strengthened assumption auxiliary-input uniform SDHA-1). 
This result leads us to an interesting corollary: under auxiliary-input uniform 
SDHA-1, it holds tha t  CI(BSZK) C Cl(AIZK) unless NP C BPP. However, 
auxiliary-input uniform SDHA-1 seems unreasonable [Go98-2]. Consider I as a 
universal machine which takes as its auxiliary-input the description of any circuit 
C which, given (g, ga), outputs (B, X)  such that  X = B% Then, auxiliary-input 
uniform SDHA-1 says that  I ~ can reverse-engineer the circuit C and output  b 
such that  B = gb. Therefore, auxiliary-input uniform SDHA seems very strong 
and problematic. 
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