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Reconstructing Polyatomic Structures from Discrete X-Rays:
NP-Completeness Proof for Three Atoms

Marek Chrobak* Christoph Diirrf

Abstract

We address a discrete tomography problem that arises in the study of the atomic structure
of crystal lattices. A polyatomic structure T can be defined as an integer lattice in dimension
D > 2, whose points may be occupied by c distinct types of atoms. To “analyze” T, we conduct
{ measurements that we call discrete X-rays. A discrete X-ray in direction & determines the
number of atoms of each type on each line parallel to £&. Given £ such non-parallel X-rays, we
wish to reconstruct 7.

The complexity of the problem for ¢ = 1 (one atom type) has been completely determined
by Gardner, Gritzmann and Prangenberg [’ﬁ}, who proved that the problem is NP-complete for
any dimension D > 2 and ¢ > 3 non-parallel X-rays, and that it can be solved in polynomial
time otherwise [f].

The NP-completeness result above clearly extends to any ¢ > 2, and therefore when studying
the polyatomic case we can assume that £ = 2. As shown in another article by the same authors,
['é_l:], this problem is also NP-complete for ¢ > 6 atoms, even for dimension D = 2 and axis-parallel
X-rays. The authors of [:11.'] conjecture that the problem remains NP-complete for ¢ = 3,4, 5,
although, as they point out, the proof idea in [:éﬂ does not seem to extend to ¢ < 5.

We resolve the conjecture from ['{_1.'] by proving that the problem is indeed NP-complete for
¢ > 3 in 2D, even for axis-parallel X-rays. Our construction relies heavily on some structure
results for the realizations of 0-1 matrices with given row and column sums.
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1 Introduction

The fundamental principle of the transmission electron microscope (TEM) is very similar to the
more familiar optical microscope: it “shines” a focused beam of electrons towards a specimen,
and the transmitted beam is projected onto a phosphor screen, thereby generating an image. The
intensity represents the density and thickness of the specimen: denser or thicker areas of the
specimen transmit fewer electrons and produce darker areas in the image. The development of the
TEM in 1930’s was necessitated by the limitations of the optical microscopes, whose magnification
and resolution were insufficient to study the internal structure of organic cells or to find defects
in bulk materials. Recently, new advancements in high-resolution TEM (HRTEM) led to the
development of instruments and techniques for studying biological molecules and for investigating
the atomic structure of crystals. In particular, a technique called QUANTITEM [8, i[(] allows
one to determine the number of atoms in the atom columns of a crystal in certain directions.
Given these numbers, we wish to reconstruct the structure of the crystal. This is an example of
an algorithmic problem belonging to discrete tomography, the area of mathematics and computer
science that deals with inverse problems of reconstructing discrete density functions from a finite
set of projections. The size of crystals that occur in materials science applications is about 10°
atoms, and, for data sets that large, efficient reconstruction algorithms would be of great interest.

The problem we address in this paper can be formulated as follows: Define a polyatomic structure
T as an integer lattice in dimension D > 2, whose cells may be occupied by ¢ distinct types of
atoms. Each of these cells can be occupied by one atom, or it could be empty. To “analyze” T, we
conduct ¢ measurements that we refer to as discrete X-rays. (QUANTITEM uses electron beams,
but, following [5], we use a more familiar term “X-ray” instead.) A discrete X-ray in direction &
determines the number of atoms of each type on each line parallel to £. Given such ¢ non-parallel
X-rays, we wish to reconstruct 7T'.

The complexity of the problem for ¢ = 1 (one atom type) has been completely determined
by Gardner, Gritzmann and Prangenberg [5], who proved that the problem is NP-hard for any
dimension D > 2 and ¢ > 3 non-parallel X-rays, and that it can be solved in polynomial time
otherwise [H].

The NP-hardness result above clearly extends to any ¢ > 2, and therefore when studying the
polyatomic case we can assume that ¢ = 2. As shown in another article by the same authors, [4],
this problem is also NP-hard for ¢ > 6 atoms, even for dimension D = 2 and for the axis-parallel
X-rays. The authors of [4] conjectured that the problem remains NP-hard for ¢ = 3,4, 5, and they
pointed out that for these values of ¢ “a substantially new technique will be needed, at least for
the case ¢ = 3.

We resolve the conjecture from [4] by proving that the problem is indeed NP-hard for ¢ = 3
(and thus for any larger ¢ as well) in 2D, even for the orthogonal case, that is, with axis-parallel
X-rays.

In the orthogonal case, the problem is equivalent to that of reconstructing (c+1)-valued matrices
(c atom types and “holes”) from the row and column sums for each atom. Without loss of generality,
we can concentrate on square, say L x L, matrices. Let A be the set of ¢ atom types. For any atom
type a € A, denote by r{ (resp. s$) the row-sum (resp. column-sum) of atom a, that is, the number
of atoms of type a in row i (resp. in column j). The vectors r® = (r{,...,r}) and s® = (s{,...,s9)
are referred to, respectively, as the row-sum vector and the column-sum vector for atom a.

A realization of the sums Z = (r?,s%)4en is an L x L matrix T with values from A U{O}, such



that for each atom type a € A

Hj:Ti,j] =a}| = r}
[{i:T[i,j] = a}| = sj
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We say that Z is consistent if it has a realization.
More specifically, we concentrate on the following decision problem:

c-Color Consistency Problem (c-CCP)

Instance: row and column sums Z = (r% s%),ca, where |A| = ¢;
Query: Is 7 consistent?

Gardner, Gritzmann and Prangenberg proved in [4] that 6-CCP is NP-complete. In this paper
we prove that 3-CCP is NP-complete.

If we restrict ourselves further to just one atom (that is, 1-CCP), the problem becomes equivalent
to the reconstruction of 0-1 matrices from the row and column sums — a problem predating the
discrete tomography research. The first efficient reconstruction algorithm was proposed in 1963
by Ryser [9], and a similar algorithm was rediscovered in 1971 by Chang [£]. In addition to
reconstruction, Ryser and others studied various structural properties of 0-1 matrices with given
row and column sums, and our construction relies heavily on some results in this area. Interested
readers are referred to an excellent survey by Brualdi [1).

The general idea of the proof is explained in Section 2. In Section §, we review the structural
properties of 0-1 matrices with given row and column sums that are needed for our proof. Using
these properties, we prove the Skew-Mirror Lemma in Section 4. In Section 5, we construct a
number of gadgets, including “skew mirrors” and “edge verifiers”, and we prove that they satisfy
the desired properties. Finally, in Section b, we present the complete construction and give the
formal NP-completeness proof.

In addition to the QUANTITEM method, the problem of reconstructing lattice sets from their
projections arises naturally in a variety of other areas, including statistics, data security, and image
processing. It can also be expressed as a multicommodity flow problem. We discuss these issues in
Section 7, where we also comment on the last unresolved case, ¢ = 2.

2 The General Idea of the Proof

In the proof, we use a reduction from the Vertex Cover problem:

Vertex Cover Problem

Instance: An undirected graph G(V, E), an integer K;
Query: Is there a vertex cover of G of size K7

Recall that a vertex cover of a graph G = (V, E) is a set U C V such that for all (u,v) € E,
either w € U or v € U. The Vertex Cover problem is well known to be NP-complete (see, for
example, [B]). Let n = |V| and m = |E|. We assume, without loss of generality, that m,n > 1.

Suppose first that, using some set A’ of d atom types, we can force a unique realization of the
form shown in Figure .. We call this realization a frame. In the frame, the empty entries form two
diagonals, the main diagonal of length (m + 1)n, and the side diagonal of length mn. We divide
both diagonals into intervals of length n that we refer to as mirrors. Thus we have two rows of



mirrors: m + 1 mirrors in the main-diagonal, and m mirrors in the side-diagonal. All other entries
are filled with atoms from A’.

We now add two more atom types C, D ¢ A’. Use 311111111111111111111
atom D to create m copies of a candidate vertex cover
U in the following way: The first row and column D-
sum is K and all other D-sums are 1. (Figure di shows
the D-sums.) Then the pattern of Ds in each main-
diagonal mirror is the same, and is also the same as
the pattern of holes in the side-diagonal mirrors. We
associate U with this pattern: a vertex u is in U iff
the uth cell in any side-diagonal mirror is a hole. We
think of U as a “beam” projected onto the last n cells
in the first column, repeatedly reflected in a double-row
of mirrors, and exiting through the last n cells in the
first row.

Finally, we can use atom C' to verify that U is indeed
a vertex cover. In order to do so, we convert the jth
side-diagonal mirror into an edge verifier for edge e; =  Figure 1: The frame and mirrors for m = 3.
(u,v) (it may be necessary to add some more rows and columns to the matrix shown in Figure T}).
Using appropriate sums for atom C, the realization of atoms in A’ can be extended to a realization
of all atoms, including C, iff either the uth cell or the vth cell in side-diagonal mirrors is a hole
(and thus, either u € U or v € U).

An idea similar to the one described above was used by Gardner, Gritzmann and Prangenberg
[M] (they used a reduction from a different problem, not Vertex Cover). Using 4 atoms they
constructed, in essence, what we call a frame, obtaining the NP-completeness proof for 6 atoms.
In our first attempt to improve their construction we were able to construct the frame gadget with
only 3 atoms, reducing the total number of atoms to 5. However, this idea does not work when
fewer than 5 atoms are available. As pointed out by [4], a new approach is needed.

The main idea behind our proof is this: Define a partial order “<” on all K-element vertex sets
(candidate vertex covers). The important property of “<” is that its depth is polynomial, namely
at most J = K(n— K)+ 1 (each strictly increasing chain has length at most J). Further, “<” has
a unique minimum element U™", and a unique maximum element U™, Instead of using “perfect”
mirrors, we use “skew” mirrors. These mirrors have the property that the reflected set is never
smaller (with respect to partial order “<”) than the set projected onto a skew mirror. These skew
mirrors are also “wobbly” — we know that they can reflect the same or a bigger set, but we cannot
control what exactly the reflected set will be.

Now, instead of using m mirrors, we use mJ skew mirrors in the side-diagonal. They are divided
into J segments of m mirrors each. In each segment, the jth skew mirror is converted into an edge
verifier for edge e;. We “shine” U™ onto the first mirror in the bottom-left corner, and we make
sure that the final set resulting from all reflections in the top-right corner is U™*. Since “<” has
depth J, there has to be a segment in which all mirrors reflect the same set U. Then the edge
verifiers in this segment will verify that U is indeed a vertex cover.

Why does it help? It turns out that our skew mirrors can be constructed using only two
atom types. Furthermore, the same atom types can be used to encode the information about the
candidate vertex cover U. We use one more atom type to construct edge verifiers, and thus we only
need three atom types for the whole construction.

main-diagonal mirror
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3 0-1 Matrices with Given Row and Column Sums

In this section we review some basic results from the literature on 0-1 matrices with given row and
column sums.

By x,y,z we denote nonnegative integer vectors of length p, for example x = (x1,...,x,). The
reconstruction problem for 0-1 matrices with given row and column sums is equivalent to 1-CCP,
and can be stated as follows: Given x and y, is there a 0-1 matrix 7" that has z; 1’s in row 7 and
y; 1’s in column j, for all 1 <+¢,j < p? Again, in this case, a matrix 1" satisfying these conditions
is called a realization, and x,y are called consistent if they have a realization.

The structure function. Given a p X p matrix 7', and integers 0 < k,l < p we partition T
into four submatrices (which may have zero width or height): 7.7, T,J, T} and T,, defined by the
intersections of the first k rows or the last p — k rows with the first [ columns or the last p — [

columns), that is
Ta T
T = .
T Ti

By |T'|, and |T'|, we denote the numbers of 1’s and 0’s in matrix 7.
For a given instance x,y, the structure function 7y is defined by

i=k+1

! P
o= P-Rp-D+> y— Y @
=1

Then for any arbitrary realization T" we have

l D
i =@—k)p—1) +> -
Jj=1 i=k+1
= |Tkﬁl|o + |Tkﬁl|1 +|Tkﬂl|1 + |Tkml|1 _|Tkml|1 - |Tkﬁl|1

= |Tyilo + | T, (1)

Consistent sums. We now show that, using the structure function, it is possible to characterize
consistent sums. An integer vector z = (21, ... , zp) will be called monotone if z; < ... < z,.

Lemma 1 [1] Monotone vectors x,y are consistent if and only if Ty > 0 for all k,l =1,...,p.

The implication (=) in Lemma i follows directly from Equation (). The implication (<) can
be proven constructively by giving an algorithm that produces a realization 7" for any pair (x,y)
for which the structure function is non-negative. (See [] for details.) It is also not hard to see that
Lemma i, can be derived from the Max-Flow-Min-Cut theorem for network flows.

Decomposed realizations. We say that T is (k,[)-decomposed if T} consists only of 0’s and
T} consists only of 1’s. The lemma below follows immediately from Equation (i), and it will play
a major role in this paper. Note that in this lemma, as in the definition of 7, we do not require the
projections x,y to be monotone.

Lemma 2 [1] Suppose that T is a realization of x,y, and let 0 < k,1 < p. Then 1 = 0 if and
only if T is (k,l)-decomposed.



Remark 1 Lemma 2 implies that if just one realization of x,y is (k,l)-decomposed, then all real-
izations are (k,l)-decomposed as well.

4 The Skew-Mirror Lemma

0-1 Vectors and minorization. We use Greek letters a, 3, ... for 0-1 vectors of length p, say
a = (o,...,0p). The complement & of o is & =1 — a; for all i = 1,...,p, and the reverse a is
;= op_jyr fori=1,...,p.

We say that a minorizes 3, denoted a < 3, if

k
> i <
=1

By straightforward verification, “<” is a partial order. We also write o < B if « < 8 and « # 3.
The total sum of a 0-1 vector v is Y = Y %, ;. If e, B are two 0-1 vectors with equal total
sums, then the definitions above imply directly the following equivalences:

Vk=1,...,p.

||M»

a<8 <= arB < arpB

An important property of the minorization relation is that it is “shallow”, that is its depth
is only polynomial (unlike, for example, the lexicographic order). The next lemma gives a more
accurate estimate on the depth of “<”.

Lemma 3 Suppose that we have a strictly increasing sequence of 0-1 vectors

ol < a? <... < al,

with total sums Yo' =t for each i. Then q <t(p—t)+ 1.

Proof To each 0-1 vector a assign the number ||| defined by

P

D k
lall = Y (p—i+Da; = 3 au

j=1 k=11=1

If a < 3 then Zle a; < Zle G; for k = 1,...,p, and this inequality must be strict for at least
one k. We conclude that a < 8 implies ||| < [|3]].
Now, by the argument above, the numbers ||a’|| are strictly increasing. Therefore

q < HaqH—HalHJrl
D S Wax
k=p—t+1
= tp —t)+1,
completing the proof. m
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Figure 2: (a) A realization of x, y for a = 010100 and B = 000101. Disks represent 1’s. The row and
column sums that correspond to 0’s in a and B are shown in bold. (b) Perfect mirror PMy for o = 101011.

The 0-1 skew mirror. The lemma below deals with a special instance of the reconstruction
problem for 0-1 matrices, in which the row sum vector x is determined by a 0-1 vector c, and the
column-sum vector y is determined by a 0-1 vector 3.

Given a 0-1 vector o of length p, we associate with o a p X p perfect mirror matrix PM, defined

by

0 fori+j5<p
PMy[i,j] = g fori+j=p+1
1 for i +j > p+2.

In a perfect-mirror matrix the cells on the main diagonal ¢ + 7 = p + 1, counted from top down,
contain o, while all cells above it are 0, and all cells below it are 1 (see Figure 2b). From Lemma, &
we immediately obtain the following corollary.

Corollary 1 Let o be a 0-1 vector of length p. Then PMy is a realization of vectors x,y if and
only if for each k =1,...,p, (a) Thp—r =0, and (b) 7 pt1-1 = 0 iff o, = 0.

Note that Corollary i together with Remark il implies that if PM, is a realization of x,y then
it is unique.

Lemma 4 Let o, 8 be two 0-1 vectors of length p, and let x,y be row and column sums defined by
ri=i—qo; andy; =1—06;, fori=1,...,p. Then

(a) Vectors x,y are consistent iff Yo = X3 and a = .

(b) Suppose that x,y are consistent. Then a = (3 iff the unique realization of x,y is PMg.

Lemma 4 is illustrated in Figure J. In Figure Y(a), we have a = 010100, and 3 = 000101
(we write 0-1 vectors as binary strings, for simplicity), for which the corresponding row sums
and columns sums are x = (1,1,3,3,5,6) and y = (1,2,3,3,5,5). Note that Ya = X8 = 3,
and that a > @3, implying that x and y are consistent. One realization of x, y is shown in
Figure 2(a). In Figure d(b), o and x are the same as in (a). Since y = (1,2,2,4,4,6) corresponds
to B = 001010 = «, vectors x, y have a unique realization that is a perfect mirror PM,, for
o = 101011 = .



Proof Vectors x,y are monotone, so we can use Lemma i.. We start by computing the structure
function for x and y:

! p
o= =R)p-D+> y— Y, w
=1

i=k+1
l p
= -Re-D+)_G-8)— > (i—w)
j=1 i=k+1
p !
= > ai—y Bi+320 -k -1 -pp+1)+k(k+1)+1(1+1)]
=k+1 j=1
p—k l
= Y a-Y Bi+ip-k—1-1Dp-k-1). (2)

i=1 j=1
Now we are ready to prove Part (a). We prove the two implications separately.

=) For any [ = 0,...,p, using Equation (&) with & = p — [, we get that 7,_;; > 0 implies
- p b
22:1 a; — Zé’:l Bj > 0. Thus & = B. Moreover, x and y have equal total sums, if and only
if Ya = 20.
(<) Assume that & = 8. We consider two cases, when k +1 <pand k+1>p—+ 1.
Suppose first that k + 1 < p. From Equation (2) we have

bS]
|

MN

Tkl =

l
& + Z +ip—k—-1-1)(p-k-1
1 7 j=1

=N
I|
_l’_

>

Y

because Zézl o — zzzl Bi>0,and (p—k—-1—-1)(p—k—1)>0.
Suppose now that k£ +1 > p+ 1. From Equation (2) we have

l
T = )0 — Z & — Z@ Tp—k—1-Dp-k-1)
=1

zpk-l—l
l
= Zai—Zﬁj— Z ai+i(k+1+1-p)(k+1-p)
i=1 7j=1 i=p—k+1
l l l
= > ai—Y B+3 Y, (k+l+1-p—2w)
i=1 j=1 i=p—k+1
Z 07

because Zﬁ.zlai—zgzlﬁjzo, and k+1+1—p—2a; >2—2q; > 0.

Now we prove Part (b). By Corollary 1, and Equation (2), a realization of x,y is a perfect
mirror PM,, for some o, if and only if @ = (3. Thus it is sufficient to show that & = B implies
that o = &. This follows by simple verification of row sums. [



5 Some Useful Gadgets

Recall that G, K is the given instance of Vertex Cover, where G = (V, E), n = |V| and m = |E|.
Without loss of generality we can assume that 0 < K < n. All our examples will refer to the graph
of Figure &. In this figure, G has n = 6 vertices, m = 3 edges, and set {1,3,5,6} is a vertex cover
with K = 4 vertices. (Clearly, this is not a minimum-size vertex cover. We use this example only
to illustrate certain features of our construction.)

@ @ ®"

Figure 3: Example of a vertex cover of size K = 4.

The purpose of this section is to introduce two (n + 2) x (n + 2)-instances of 3-CCP called the
beige skew mirror and the edge verifier. They will be used later in the NP-completeness proof.

Throughout the rest of the paper we will use capital letters A, B, C to denote the three atom
types, and we will sometimes refer to these types as colors: Azure, Beige, and Cyan.

Beige skew mirror. Given two 0-1 vectors a, 3 of length n, we define the beige skew mirror as
an (n+2) x (n+2) instance of 3-CCP, BSM(«, 3) = (x”,y”), with the following row and column
sums:

P = di-—a+2 oy = i—Fi+2 fori=1,...,n

7

xf = n+2 yP = n+2 fori=mn+1,n+2.

)

. r . .
The azure and cyan sums are zero. Figure 4(a) shows an example of a beige skew mirror.

Lemma 5 Let o, 3 be two 0-1 vectors of length n. Then BSM(c,3) is consistent if and only if
Ya=X0 and a = 3.

Proof By definition, any realization of BSM(a, 3) has its last 2 rows and last 2 columns com-
pletely filled with beige atoms. Define

T, = z/-2 = i-—aq
— B - i_g
yi = ¥ —2 = i—f

where ¢ = 1,...,n. Then BSM(«,3) is consistent if and only if the instance (x,y) of 1-CCP is
consistent. Applying Lemma 4, we obtain that BSM(e,3) is consistent if and only if Yo = X3
and a = (3. m

Azure skew mirror. Given two 0-1 vectors v, of length n, we define the azure mirror as an
(n 4+ 2) x (n + 2) instance of 3-CCP, ASM(~,d) = (x*,y*, x®,y?), with the following row and
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Figure 4: (a) A realization of BSM(010100,000011). (b) A realization of EV(010100,001010,(3,5)); it
verifies that the vertex set {1,3,5,6} covers the edge (3,5). Solid filled regions represent entries that are
filled with beige atoms independently of the parameters of BSM and EV.

column sums:

x = i yi = i fori=1,...,n
Tpyy = 0 Yng1 = 0

Tpip = K Ynse = K

x? = Yy = 0§ fori=1,...,n
Tppr = 2 Yny1 = 2

Tho, = n—K+2 Yyl = n—K+2

The cyan sums are zero.

Lemma 6 Let v, 8 be two 0-1 vectors of length n such that Xy =20 =n — K. Then ASM(~,d)
is consistent if and only if v = 0.

Proof We claim that each realization of ASM(~y,d) has beige atoms on positions:

{(i,n+2):v =1} (last column)
{(n+2,i):0;, =1} (last row)
{(n+1L,n+1),n+1,n+2),(n+2,n+1),(n+2,n+2)}. (lower right 2 x 2 corner)

Since z,, o = n — K + 2, and there are exactly n — K + 2 non-zero beige column sums, the beige
atoms are determined uniquely, as shown above. Similarly, the beige atoms in the last column are
determined uniquely. The last yet unallocated beige atom must be at (n + 1,n + 1).

We now examine azure atoms. Row n + 1 and column n + 1 have no azure atoms. In row n + 2
azure atoms are forced to be in columns ¢ for which §; = 0, since all other positions are occupied
by beige atoms. Similarly, in column n + 2 azure atoms are in rows ¢ for which ; = 0.

Let x,y be the following row and column sum vectors:

T = 1=
fori=1,...,n. Then ASM(v,d) is consistent iff the instance (x,y) of 1-CCP is consistent. By
Lemma 4, this is equivalent to 4 = &, or v = &, completing the proof. m

10



Edge verifier. For two 0-1 vectors -, d of length n, and for an edge e = (u,v) (with v < v) we
define the edge verifier for e, as a (n + 2) x (n + 2) instance of 3-CCP,

EV(v,8,e) = (x',y*, x"y" x%y9),

where the azure and beige sums are exactly the same as in the azure skew mirror ASM(~,d), and
the cyan sums are:

:Eg = 2 yg—u—l—l =1
‘Tg =1 yg—v—i—l = 2
oy = 1 oy = L

Lemma 7 Let v be a 0-1 vector of length n, and e = (u,v) (with u < v) be an edge of G. Then
EV(v,7,e) is consistent if and only if Xy =n — K and either v, =0 or v, = 0.

Lemma i has the following interpretation: if we associate with «y the vertex set U = {u : 7, = 0},
then EV(v,%,e) is consistent if and only if at least one endpoint of edge e belongs to U. See
Figure 4(b) for an example of an edge verifier.

Proof We can assume that ¥y = n — K. By Lemma O, ASM(~y,%) is consistent. Furthermore,
by Part (b) of Lemma 4, for any 1 < 4,5 < n, a realization T of ASM(~,%), satisfies: T[i,j] = O
fori+j <n,T[i,j] = A, fori+j >n+2, and for i+ j = n+ 1 we have the following equivalence:
Tli,j] = O iff 5 = 0.

If EV(7,5,e) is consistent, we can extend T to a realization of EV(vy,5,¢e), and consider the
positions of cyan atoms. The position (n + 1,7 4+ 1) contains a beige atom and (v,n —u + 1) an
azure atom. This leaves these possible positions for the cyan atoms:

(u,m —v+1) (u,m —u+1) (u,m+1)
(v,n—v+1) (v,n+1)
(n+1,n—v+1) n+1,n—u+1).

We claim that either T'[u,n —u+ 1] = C or T[v,n — v + 1] = C. For otherwise, the cyan row
sums z; = 2 and z] = 1 force T'[u,n + 1] = T'[v,n + 1] = C, contradicting y;, ; = 1.
In summary, we get that EV(~,%,e) is consistent iff one of ~,, 7, equals 0. [

6 The Proof of NP-Completeness

In this section we give the overall reduction. We will define an instance of 3-CCP, which has a
solution if and only if there is a vertex cover. Its matrix can be divided into regular quadratic
blocks and we will show that in every realization some blocks will be realizations of particular beige
skew mirrors, or of particular edge verifiers, while the remaining blocks are filled either with beige
or azure atoms. For this purpose we partition the matrix into regions of different shapes, which we
call mirrors, gutters, screens and frames, and we show some particular properties of them. Then
we conclude that these properties imply the existence of a vertex cover.

11



6.1 The Reduction

Recall that G = (V, E), K is the given instance of Vertex Cover, where |V| = n, |E| = m and
0 < K <n. Define J=K(n—K)+1and L =(mJ +1)(n+2). We now show how to map G, K
into an L x L instance of 3-CCP

To specify the sums in Z, it is convenient to view L x L-matrices as being partitioned into (m.J +1)?
submatrices of size (n + 2) x (n + 2), called blocks. A row or column index is then defined by its

block index a = 0,...,mJ and offset i =1,...,n+ 2. For a # mJ the azure and beige sums are:
i i=1,...,n
Tani2)+i = Samazri = MJ—a—1)(n+2)+4¢ 0 i=n4+1
K i=n+2
i+ 2 i=1,...,n
7"«If(nJrZ)Jri - 35(n+2)+i = a(n+2)+{ n+4 i=n+1

and for a = mJ the azure sums are zero and the beige sums are

P42 i=1,... K
Tami2)ti = Saminri — ¢(n+2)+ 1'4;12 Z::Kjllj'i’Zn
n i=n+1,n+2.

Finally, we define the cyan sums. For j =0,...,J —1land Kk =0,...,m—1let a = jm+ k and
b=mJ—1—a. If e = (u,v) (with u < v), then

C — c
ra(n+2)+u = 2 Sb(n+2)+n—u+1 1
c — c —
Ta(n+2)+v = 1 sb(n+2)+n—v+l = 2
r¢ =1 s =1
a(n+2)+n+1 b(n+2)+n+1 :

The row and column sums not defined above are assumed to be zero.

6.2 Realizations of Azure and Beige Atoms

Let A and B be (n + 2) x (n + 2) matrices completely filled with azure and beige atoms, respec-
tively. We will use notation A(«, ) for realizations of ASM(~,d) and B(a, B) for realizations of
BSM (a, B). We define 7 by

K n—K
For 0-1 vectors 8%, a2, ..., 3™ =1, a™/~1 each of total sum n— K, consider L x L azure-and-beige

matrices of the following form:
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A A A Alam?=1, g™ Blam! = )
A A A B(a™/=2,8m™7) B
A A A B B
A A A(a?,8%) B B (3)
A Alat,BY) B(a',8?) B B
Aa®,8%) B’ g B B B
B(x,8%) B B B B

Lemma 8 Let Z47 be the restriction of T to the azure and beige sums only. Then a matriz T is a
realization of T*® if and only if T has the form (3), where

=0 =1 —mJ—1 H
=<8 =a’=<B <a'<...<8" <a™ <7 (4)

Proof Note that by Lemma 5 and &, a matrix of the form () exists iff inequalities (4) are true.
(<) Let T be a matrix of the form (3). By straightforward verification of the row and column
sums we obtain that T is a realization of Z#”. (Note that the entries of o3, i=0,....,mJ—1
appear in the beige sums with the plus sign in the azure skew mirrors, and with the minus sign in
the beige skew mirrors.)

(=) Let now T be a realization of 4%, and denote by F an arbitrary matrix of the form (3). Block
(@, b) consist of entries in rows a(n + 2) +4 and columns b(n+2) +j forall 4,5 =1,... ,n+2. We
call it

an upper-left block ifa+b<md,
the side-diagonal block b  if a+b=md,
the main-diagonal block b if a +b=mdJ + 1,
and a lower-right block ifa4+b>mJ+1.

We claim that T has the structure depicted in Figure 5. Let T* be the 0-1 matrix representing
the non-azure cells in T: T4[i,j] = 1 if and only if T[i, j] # A. Let F* be the analogous matrix
for F. Then T# and F* are realizations of the same instance of 1-CCP. Therefore, if F4 is (k,1)-
decomposed so must be T#. Let k = (mJ —d)(n +2) and | = d(n + 2) for any d = 0,... ,mJ.
Then F“ is (k,l)-decomposed. Thus all upper-left blocks in T" are exactly A and all main-diagonal
and lower-right blocks have no azure atoms. The union of all upper-left blocks will be called the
A-frame.

Let T be the 0-1 matrix 7" representing the beige atoms in 7', that is T?[i, j] = 1 if and only
if T[i,j] = B. Let F? be the analogous matrix for F'. Let k,l be a pair of indices such that
either k = (mJ +1—-d)(n+2)—2and | = d(n+2) —2 for some d = 1,... ,mJ, or (k,l) €
{(0,L —2),(L —2,0)}. Then, by the structure of realizations of azure and beige skew mirrors in
Lemmas & and &, F* is (k,[)-decomposed, and so must be T%. The region in T corresponding to
the 1’s in the submatrices T}} (for the k, [ chosen above) is called the B-frame. So the B-frame of
T is all beige. Since the lower-right blocks are included in this region, they are exactly B.
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Figure 5: A realization of T and its abstract structure. The pictures do not show an actual example, but
rather are meant only to illustrate the general structure of a realization (even for our small 6-vertex graph,
a full matriz would have 28 x 28 blocks). In this particular realization all A-mirrors are perfect mirrors
associated with o = 101011. This 0-1 vector encodes the vertex set {1,3,5,6}. The three shown edge verifiers
check that edges (3,5), (4,5) and (1,4) are covered by that vertex set.

We partition the side-diagonal block b into

A-mirror b upper left n x n corner

B-corner b lower right 2 x 2 corner

v-screen b  remaining entries in column n + 2
h-screen b  remaining entries in row n + 2
v-gutter b  remaining entries in column n + 1
h-gutter b remaining entries in row n + 1.

Our previous observation implies that the B-corner is completely beige (as it is part of the B-frame),
and the A-mirror does not contain any beige atoms. The gutters are completely empty and the
screens completely filled, since

A B _ LA B
Th(nt2)4n+1 T Tona2)4nt1 = L =1 = Spinio)int1 T Sp(n42)+n+1
A B _ LA B
Thnt2)4n+2 T Tone2)tns2 = L = Spnga)ant2 T Shn42)tn2:
We define 0-1 vectors 3°,a?,..., 8™/~ a™/~1 to represent positions of the beige atoms in

the screens: a? = 1 if and only if i-th atom (from top) in v-screen b is beige and 3? = 1 if and only
if i-th atom (from left) in h-screen b is beige.

Since the main-diagonal blocks have no azure atoms, each side-diagonal blocks b is a realization
of ASM(ab,ﬁb). Moreover, the main-diagonal blocks 0 and mJ are realizations of, respectively,
BSM(7,3°) and BSM(a™/~! x), and each other main-diagonal block b, for b=1,...,mJ — 1, is
a realizations of BSM(ab~!, 8%). Lemmas § and § imply inequalities (4). "
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6.3 The Correctness Proof

Theorem 1 The problem 3-CCP is NP-complete in the strong sense.

Proof Clearly, 3-CCP is in NP. To justify the correctness of the reduction described in Section 6.1,
we need to prove that G has a vertex cover of size K if and only if Z is consistent.

(=) Suppose that U is a vertex cover of size K in G. Define v by v, = 0 iff u € U. Let T be
a matrix of the form (J) in which o’ = ~, and 3* = 5 for i = 0,...,mJ — 1. We have
m <~ = 7. By Lemma & T is a realization of Z4”. Since U is a vertex cover, Lemma i
implies that T can be extended to a realization of Z.

(<) Let T be any realization of Z. By Lemma 8, T restricted to azure and beige atoms has the
form (3). Lemma 8 implies that the sequence

=m0 =m(J—1

<™ <. =<g" <™,

m(a+1)

(where 8™/ = 7) has at most K(n — K) + 1 distinct vectors, and thus 8" = B for

some 0 < a <.J—1. By (4), we get

—=ma —ma+1

B =am=p

Define U = {u : %™ = 0}. Using Lemma i, we obtain that U is a vertex cover.

ama-‘,—l _ _ gmatm—1 _ ama—i—m—l

To complete the proof, note that Z consists of 6L = O(n®) numbers each bounded by L, so
the unary encoding of Z has size O(n'?). Moreover, this encoding can be computed in polynomial
time. We conclude that 3-CCP is strongly NP-complete. [

7 Final Comments

We proved that ¢-CCP is NP-complete for ¢ > 3. Since it is known that 1-CCP can be solved
efficiently in polynomial time (see [iL]), the only unresolved case is for ¢ = 2.

Relation to multicommodity flows. Consider the following problem: given a bipartite directed
graph H = (U, V, E), where E is the set of arcs directed from U to V', with each arc having capacity
1, we want to ship two commodities from the vertices in U to the vertices in V', according to the
given supplies in U and demands in V. More specifically, for each vertex u; € U we are given a
supply z of commodity a, and for each vertex v; € V' we are given a demand yj of commodity
a, where a € {1,2}. We wish to compute an integral 2-commodity flow from U to V' of maximum
total value. Let us call it 2-Commodity Integral 2-Layer Flow, or 2-CI2LF. It is known (see, [3])
that the 2-commodity integral flow problem is NP-hard for directed networks. We can improve it
to the 2-layer case. By modifying the argument outlined in Section 2, it is not difficult to show
that 2-CI2LF is NP-hard as well: simply note that all but two atom types have unique realizations
which are independent of the given instance G, K of Vertex Cover, and associate the entries not
occupied by these atoms with the edges of the resulting graph H. (Another proof can be obtained
by modifying the proof in [4] in a similar fashion.)

The argument above does not imply that 2-CCP is NP-complete, since the graphs corresponding
to the 2-CCP problem are complete bipartite graphs. This leads to the following open problem:
Can 2-CI2LF be solved in polynomial time for complete bipartite graphs?
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Consequences to data security problems. Similar to [4], our result has some consequences
for problems arising in statistics and data security.

The reconstruction problem for contingency tables is similar to the 1-CCP problem, except that
now we allow a realization to contain any non-negative integers (not just 0’s and 1’s). Our result
implies that this problem is NP-hard even when we want to reconstruct a table whose entries are
in the set {0, 1, u, ,uz}, for some given p. (To see this, modify the proof by representing each table
entry in a p-ary notation, where y = L + 1, and associate color sums with the coefficients of 1, u
and p2.)

A related problem, arising in the 3D statistical data security problem, is to reconstruct a 3D
table from its projections, which are called the row, column and file sums. Irving and Jerrum [7]
proved that this problem is NP-hard even when all file sums are either 0 or 1. The work in [4]
implies that the problem is NP-hard for L x L x 7 tables and all file sums equal 1. Our result
improves this result further to tables of size L x L x 4.
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