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Abstract

We study the question of whether every P set has an easy (i.e., polynomial-
time computable) census function. We characterize this question in terms of
unlikely collapses of language and function classes such as #P1 ⊆ FP, where
#P1 is the class of functions that count the witnesses for tally NP sets. We

prove that every #PPH
1 function can be computed in FP#P

#P1
1 . Consequently,

every P set has an easy census function if and only if every set in the polynomial
hierarchy does. We show that the assumption #P1 ⊆ FP implies P = BPP and
PH ⊆ MODkP for each k ≥ 2, which provides further evidence that not all sets
in P have an easy census function. We also relate a set’s property of having an
easy census function to other well-studied properties of sets, such as rankability
and scalability (the closure of the rankable sets under P-isomorphisms). Finally,
we prove that it is no more likely that the census function of any set in P can
be approximated (more precisely, can be nα-enumerated in time nβ for fixed α
and β) than that it can be precisely computed in polynomial time.

1 Introduction

Does every P set have an easy (i.e., polynomial-time computable) census function? Many

important properties similar to this one were studied during the past decades to gain more

insight into the nature of feasible computation. Among the questions that were previously

studied are the question of whether or not every P set has an easy to compute ranking

function [GS91,HR90], whether every P set is P-isomorphic to some rankable set [GH96],

whether every sparse set in P is P-printable [HY84,AR88,RRW94], whether every infinite

set in P has an infinite P-printable subset [AR88,HRW97a], whether every P-printable set is

P-isomorphic to some tally set in P [AR88], and whether every P set admits easy certificate

schemes [HRW97a,HRW97b], to name just a few. Some of those questions arise in the

field of data compression and are related to Kolmogorov complexity, some are linked to the

question of whether one-way functions exist.

Extending this line of research, the present paper studies the complexity of computing

the census functions of sets in P. Census functions have proven to be a particularly

important and useful notion in complexity theory, and their use has had a profound impact

upon almost every area of the field. In particular, this regards the extensive literature related

to the isomorphism conjecture of Berman and Hartmanis (e.g., [BH77,Mah82], and many

other papers), the work on the existence of Turing-hard sparse sets (or of polynomial-size

circuits) for various complexity classes (e.g., [KL80,KS85,BBS86,HR97]), the results relating

the computation times for NP sets to their densities and the results on P-printability [HY84,

AR88,RRW94,GH96], the upward separation technique (e.g., [Har83,HIS85,All91,RRW94,

HJ95], see [HHH] for more recent advances that are not based on census functions), the

results on positive relativization and relativization to sparse oracles (e.g., [Lon85,LS86,
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BBS86]), the unexpected collapse of the strong exponential-time hierarchy [Hem89], and

applications to extended lowness [HJRW].

Valiant, in his seminal papers [Val79a,Val79b], introduced #P, the class of functions

that count the solutions of NP problems, and its tally version #P1 for which the inputs

are given in unary. Although #P1 has not become as prominent as #P, it contains a

number of quite interesting and important problems such as the problem Self-Avoiding

Walk (see [Wel93]): Given an integer n in unary, compute the number of self-avoiding

walks on the square lattice having length n and rooted at the origin. Self-Avoiding Walk

is a well-known classical problem of statistical physics and polymer chemistry, and it is

an intriguing open question whether Self-Avoiding Walk is #P1-complete (see [Wel93]).

Known problems complete for #P1 [Val79b] have the form: Given an integer n in unary,

compute the number of graphs having n vertices and satisfying a fixed graph property π.

In Section 3, we will characterize the question of whether every P set has an easy census

function in terms of collapses of language and function classes that are considered to be

unlikely. In particular, every P set has an easy census function if and only if #P1 ⊆ FP. The

main technical contribution in Section 3 is Theorem 3.7: #PPH
1 is contained in FP#P

#P1
1 . An

immediate consequence of this result are upward collapse results of the form: the collapse

#1 · P ⊆ FP implies the collapse #1 · PH ⊆ FP. Thus, every P set has an easy census

function if and only if every set in the polynomial hierarchy has an easy census function.

Note that the corresponding upward collapse for the # operator applied to the levels of PH

follows immediately from the upward collapse property of the polynomial hierarchy itself:

# · P ⊆ FP implies NP = P and thus PH = P; so, # · PH = # · P ⊆ FP. However,

for the #1 operator this is not so clear, since the assumption #1 · P ⊆ FP merely implies

that all tally NP sets are in P (equivalently, NE = E), from which one cannot immediately

conclude that #1 ·NP or even #1 · PH is contained in FP. In fact, Hartmanis, Immerman,

and Sewelson [HIS85] show that in some relativized world, NE = E and yet the (weak)

exponential-time hierarchy does not collapse. In light of this result, it is quite possible that

the assumption of all tally NP sets being in P does not force all tally sets from higher levels

of the polynomial hierarchy into P.

We also show that the assumption #P1 ⊆ FP implies both P = BPP and PH ⊆ MODkP

for each k ≥ 2 (Theorem 3.6), which provides further evidence that not all sets in P have a

census function computable in polynomial time. We also relate a set’s property of having

an easy census function to other well-studied properties of sets, such as rankability [GS91]

and scalability [GH96]. In particular, though each rankable set has an easy census function,

we show that (even when restricted to the sets in P) the converse is not true unless P = PP.

This expands the result of Hemaspaandra and Rudich that every P set is rankable if and

only if P = PP [HR90] by showing that P = PP is already implied by the apparently weaker

hypothesis that every P set with an easy census function is rankable.

Cai and Hemaspaandra [CH89] introduced the notion of enumerative counting as a

way of approximating the value of a #P function deterministically in polynomial time.
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Hemaspaandra and Rudich [HR90] show that every P set is k-enumeratively rankable for

some fixed k in polynomial time if and only if #P = FP. They conclude that it is no more

likely that one can enumeratively rank all sets in P than that one can exactly compute their

ranking functions in polynomial time. In Section 4, we similarly characterize the question

of whether the census function of all P sets is nα-enumerable in time nβ for fixed constants

α and β, or equivalently, whether every #P1 function is nα-enumerable in time nβ. We

show that this hypothesis implies #P1 ⊆ FP, and we thus conclude that it is no more likely

that one can nα-enumerate the census function of every P set in time nβ than that one can

precisely compute its census function in polynomial time.

Finally, Section 5 provides a number of relativization results.

2 Notation and Definitions

Fix the alphabet Σ = {0, 1}. Σ∗ denotes the set of all strings over Σ, and Σ+ = Σ∗ \{ǫ},

where ǫ denotes the empty string. For any string x ∈ Σ∗, we denote the length of x by |x|.

For any set L ⊆ Σ∗, the number of strings in L is denoted |L |, and the complement of L

in Σ∗ is denoted L. Let L=n (respectively, L≤n) denote the set of strings in L of length n

(respectively, of length at most n). As a shorthand, we use Σn to denote (Σ∗)=n. For any

set L, the census function of L, censusL : Σ∗ → N, is defined by censusL(1
n)

df
= |L=n |,1

and χL denotes the characteristic function of L, i.e., χL(x) = 1 if x ∈ L, and χL(x) = 0 if

x 6∈ L. A set S is said to be sparse if there is a polynomial p such that for each length n,

censusS(1
n) ≤ p(n). A set T is said to be tally if T ⊆ {1}∗. To encode pairs of strings, we use

a one-one, onto pairing function, 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗, that is computable and invertible

in polynomial time; this pairing function is extended to encode m-tuples of strings as is

standard. For convenience, we will sometimes write m-tuples of strings x1, x2, . . . , xm ∈ Σ∗

explicitly as x1#x2# . . .#xm, using a special separating symbol # not in Σ. We let ≤

denote the standard lexicographic order on Σ∗.

The definition of Turing machines and their languages, Turing transducers and the

functions they compute, relativized (i.e., oracle) computations, (relativized) complexity

classes, etc. is standard in the literature (see, e.g., the textbooks [HU79,BC93,Pap94]).

We briefly recall the complexity classes most important in this paper. FP denotes the

class of polynomial-time computable functions. FP1 is the class of functions computable

in polynomial time by deterministic transducers with a unary input alphabet. FE is the

class of functions that can be computed by deterministic transducers running in time 2cn for

some constant c. Let E
df
=

⋃
c>0DTIME[2cn] and NE

df
=

⋃
c>0NTIME[2cn]. An unambiguous

Turing machine is a nondeterministic Turing machine that on each input has at most one

1The census function of L at n is often defined as the number of elements in L of length up to n in the
literature. This definition and our definition are compatible as long as our computability admits subtraction.
We also note that we let censusL map strings 1n (as opposed to numbers n in binary notation) to |L=n | to
emphasize that the input to the transducer computing censusL is given in unary.
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accepting path. UP [Val76] (respectively, UE) is the class of all languages accepted by some

unambiguous Turing machine running in polynomial time (respectively, in time 2cn for some

constant c).

For any nondeterministic Turing machine M and any input x ∈ Σ∗, let accM (x) denote

the number of accepting paths of M(x). A spanP machine [KST89] is an NP machine that

has a special output device on which some output is printed for each accepting path. For

any spanP machine M and any input x ∈ Σ∗, spanM (x) is defined to be the number of

different outputs of M(x) if M(x) has at least one accepting path, and 0 otherwise. A tally

NP machine (respectively, a tally spanP machine) is an NP (respectively, a spanP) machine

with a unary input alphabet.

Definition 2.1 1. [Val79a,Val79b] #P
df
= {accM | M is an NP machine}.

2. [Val79b] #P1
df
= {accM | M is a tally NP machine}.

3. [KST89] spanP
df
= {spanM | M is a spanP machine}.

4. spanP1
df
= {spanM | M is a tally spanP machine}.

5. #E
df
= {accM | M is an NE machine}.

6. [MS72,Sto77] The polynomial hierarchy is inductively defined as follows: Σp
0

df
= P,

Σp
k

df
= NPΣp

k−1 for k ≥ 1, and PH
df
=

⋃
i≥0 Σ

p
i .

7. [Gil77] PP is the class of languages L for which there exist a set A in P and a

polynomial p such that for all strings x ∈ Σ∗,

x ∈ L ⇐⇒ |{y | |y| = p(|x|) and 〈x, y〉 ∈ A} | ≥ 2p(|x|)−1.

8. [Gil77] BPP is the class of languages L for which there exist a set A in P and a

polynomial p such that for all strings x ∈ Σ∗,

x ∈ L =⇒ |{y | |y| = p(|x|) and 〈x, y〉 6∈ A} | ≤ 2p(|x|)−2, and

x 6∈ L =⇒ |{y | |y| = p(|x|) and 〈x, y〉 ∈ A} | ≤ 2p(|x|)−2.

9. [CH90,Her90,BG92] For any fixed k ≥ 2, MODkP is the class of languages L for

which there exist a set A in P and a polynomial p such that for all strings x ∈ Σ∗,

x ∈ L ⇐⇒ |{y | |y| = p(|x|) and 〈x, y〉 ∈ A} | 6≡ 0 mod k.

If k = 2, we write ⊕P (introduced in [PZ83,GP86]) instead of MOD2P.

10. [OH93,FFK94] SPP is the class of languages L for which there exist a set A in P

and a polynomial p such that for all strings x ∈ Σ∗,

x ∈ L =⇒ |{y | |y| = p(|x|) and 〈x, y〉 ∈ A} | = 2p(|x|)−1 + 1, and

x 6∈ L =⇒ |{y | |y| = p(|x|) and 〈x, y〉 ∈ A} | = 2p(|x|)−1.
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11. [KL80] For any language class C, let C/poly be the class of all languages L for

which there exist a set A ∈ C, a polynomial p, and an advice function h : Σ∗ → Σ∗

such that for each length n, |h(1n)| = p(n), and for every x ∈ Σ∗, x ∈ L if and

only if 〈x, h(1|x|)〉 ∈ A. For any function class F , let F/poly be the class of all

functions g for which there exist a function f ∈ F , a polynomial p, and an advice

function h : Σ∗ → Σ∗ such that for each length n, |h(1n)| = p(n), and for every

x ∈ Σ∗, g(x) = f(〈x, h(1|x|)〉).

We will use the common operator notation at times in order to generalize function classes

such as #P and #P1.

Definition 2.2 For any language class C, define

1. # · C to be the class of functions f : Σ∗ → N for which there exist a set A ∈ C and a

polynomial p such that for each x ∈ Σ∗,

f(x) = | {y | |y| = p(|x|) and 〈x, y〉 ∈ A} |, and

2. #1 · C to be the class of functions f : Σ∗ → N for which there exist a set A ∈ C and a

polynomial p such that for each n ∈ N,

f(1n) = | {y | |y| = p(n) and 〈1n, y〉 ∈ A} |.

Definition 2.3 1. A bijection φ : Σ∗ → Σ∗ is a P-isomorphism if φ is computable and

invertible in polynomial time.

2. A P-isomorphism φ is length-preserving if for all x ∈ Σ∗, |φ(x)| = |x|.

3. A P-isomorphism φ mapping set A ⊆ Σ∗ to set B ⊆ Σ∗ is order-preserving if for any

two strings x and y satisfying either x, y ∈ A or x, y 6∈ A, if x ≤ y, then φ(x) ≤ φ(y).

Definition 2.4 [GS91] The ranking function of a language A ⊆ Σ∗ is the function r : Σ∗ →

N that maps each x ∈ Σ∗ to | {y ≤ x | y ∈ A} |. A language A is rankable if its ranking

function is computable in polynomial time.

Goldsmith and Homer [GH96] introduced the property of scalability, a more flexible

notion than rankability in which the rank of some given element within the set is not

necessarily determined with respect to the lexicographic order of Σ∗, but rather with respect

to any well-ordering of Σ∗ that can be “scaled” by a polynomial-time computable and

polynomial-time invertible bijection between N and Σ∗. Equivalently, the scalable sets are

precisely those that are P-isomorphic to some rankable set. The definition below is based

on this characterization.

Definition 2.5 [GH96] A language A is scalable if it is P-isomorphic to a rankable set. For

any oracle X, the X-scalable sets are those that are PX-isomorphic to some set rankable

in FPX .
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3 Does P Have Easy Census Functions?

We start with exploring the relationships between the properties of a set being rankable,

being scalable, and having an easy census function. Let A be any set (not necessarily in P).

Consider the following conditions:

(i) A is rankable.

(ii) A has an easy census function.

(iii) A is P-isomorphic to some rankable set (i.e., A is scalable).

(iv) A is P-isomorphic to some rankable set via some length-preserving isomorphism.

(v) A is P-isomorphic to some rankable set via some order-preserving isomorphism.

It is immediately clear that for any set A, (i) implies each of (ii), (iv), and (v), and each

of (iv) and (v) implies (iii). The next proposition shows that the rankable sets are closed

under order-preserving P-isomorphisms (thus, conditions (i) and (v) in fact are equivalent)

and that the class of sets having an easy census function is closed under length-preserving

P-isomorphisms. The latter fact immediately gives that (iv) implies (ii), since each rankable

set has an easy census function. The inclusion structure of the sets in P satisfying Properties

(i) through (iv) is given in Figure 1.

Proposition 3.1 1. The class of all rankable sets is closed under order-preserving P-

isomorphisms.

2. The class of sets having an FP-computable census function is closed under length-

preserving P-isomorphisms.

Proof. (1). Let A be P-isomorphic to a rankable set B via some order-preserving

isomorphism. Since B is rankable, B is rankable. Let respectively r and r̄ be the ranking

functions for B and B. For any string x ∈ Σ∗, let lex(x) denote the lexicographic order

of x. Define the function

r′(x)
df
=

{
r(x) if x ∈ A

lex(x)− r̄(x) if x 6∈ A.

Clearly, r′ is computable in polynomial time and r′ is the ranking function for A.

(2). Let A be P-isomorphic to a set B with censusB ∈ FP via some length-preserving

isomorphism φ. Then, φ(A=n) = B=n. So, for every n, censusA = censusB. This implies

censusB ∈ FP.

So we are left with only the four conditions (i) to (iv). Since there are nonrecursive sets

with an FP-computable census function, but any set satisfying one of (i), (iii), or (iv) is

in P, condition (ii) in general cannot imply any of the other three conditions. On the other

hand, when we restrict our attention to the sets in P having easy census functions, we can

6



P

scalable

rankable

P-isomorphic to some rankable set
via some length-preserving isomorphism

easy census function

Figure 1: Inclusion structure of the sets in P satisfying Properties (i) through (iv).
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show that (ii) implies (i) if and only if P = PP. Thus, even when restricted to P sets, it is

unlikely that (ii) is equivalent to (i).

Theorem 3.2 All P sets with an easy census function are rankable if and only if P = PP.

Proof. Hemaspaandra and Rudich show that P = PP (which is equivalent to P#P = P)

implies that every P set is rankable [HR90]. Conversely, let L be any set in PP, and let A

be a set in P and p be a polynomial such that for all x ∈ Σ∗,

x ∈ L ⇐⇒ |{y | |y| = p(|x|) and x#y ∈ A} | ≥ 2p(|x|)−1.

Define

T
df
= {b#x#y | x, y ∈ Σ∗, |y| = p(|x|), b ∈ {0, 1}, and χA(x#y) = b}.

Clearly, T ∈ P. Also, the census function of T is easy to compute: Given n in unary,

compute the largest integer i such that i+ p(i) + 3 ≤ n. Then,

censusT (1
n) =

{
2i+p(i) if i+ p(i) + 3 = n

0 if i+ p(i) + 3 < n.

Since T ∈ P and censusT ∈ FP, by hypothesis T is rankable. Let r be the ranking function

for T . Since for each x ∈ Σ+,

x ∈ L ⇐⇒ r(0#x#1p(|x|))− r(1#x̂#1p(|x̂|)) < 2p(|x|)−1,

where x̂ is the lexicographic predecessor of x, and since the predicate on the right-hand side

of the above equivalence can be decided in polynomial time, it follows that L ∈ P.

Corollary 3.3 All P sets are rankable if and only if all sets in P with an easy census

function are rankable.

One might ask whether or not all P sets outright have an easy census function (which,

if true, would make Corollary 3.3 trivial). The following characterization of this question

in terms of unlikely collapses of certain function and language classes suggests that this

probably is not true. Thus, Corollary 3.3 is nontrivial with the same certainty with which

we believe that for instance not all #P1 functions are in FP.2

Theorem 3.4 The following are equivalent.

1. Every P set has an FP-computable census function.

2. #P1 ⊆ FP.

2It is not difficult to construct—by standard techniques—an oracle relative to which #P1 6⊆ FP. On the
other hand, we will show in Section 5 that, relative to some oracle, #P1 ⊆ FP, yet #P 6= FP (and thus
PP 6= P).
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3. #E = FE.

4. P#P1 = P.

5. For every language L accepted by a logspace-uniform depth 2 AND-OR circuit family

of bottom fan-in 2, censusL is in FP.

Proof. To show that (1) implies (2), let f be any function in #P1. Let M be some tally

NP machine with accM = f . Assume that M runs in time nk, for some constant k. Define

A
df
= {x | |x| = nk for some n and x encodes an accepting path of M(1n)}.

Clearly, A is in P (note that n can be found in polynomial time, since computing the kth

root of some integer can be done in polynomial time). Now from our hypothesis it follows

that censusA is in FP, and since censusA = accM , we have f ∈ FP.

Conversely, let A be an arbitrary set in P. Define M to be the tally NP machine that,

on input 1n, guesses an x ∈ {0, 1}n, and for each x guessed, accepts along the path for x if

and only if x ∈ A. Then, accM = censusA. Since by hypothesis accM ∈ FP, it follows that

censusA ∈ FP.

The equivalence of (2) and (3) can be proven by means of standard translation—this is

essentially the function analog of Book’s result that every tally NP set is in P if and only

if NE = E [Boo74] (see [Har83,HIS85] for the extension of this result to sparse sets).

The equivalence of (2) and (4) is straightforward.

It is easy to see that (2) implies (5). In order to prove that (5) implies (2), note that

computing the number of satisfying assignments for monotone 2CNF formulas is complete

for #P [Val79b] under logspace reductions. Now, given a function f in #P1, there exist

logspace computable functions R,S, ρ such that for all n, R(1n) is a monotone 2CNF formula

with ρ(1n) variables, and f(1n) equals the number of satisfying assignments for R(1n)

divided by S(1n). The reduction R can be modified so that for every n, ρ(1n+1) > ρ(1n).

Now let Cm be the circuit defined as follows: (a) if m = ρ(1n) for some n, then Cm is

a depth 2 AND-OR circuit that tests whether an assignment, given as the input, satisfies

R(1n), and (b) if not, Cm is a depth 1 AND circuit that rejects all inputs. This circuit

family F = {Cm} is logspace-uniform. Now let A be the language accepted by F . Then,

for every n, f(1n) = censusA(1
ρ(1n))/S(1n). Thus, (5) implies that f ∈ FP.

Theorem 3.4 can as well be stated for more general classes than #P1 = #1 · P. In

particular, this comment applies to #1 · C, where for instance C = NP or C = PH. Noticing

that spanP1 = #1 · NP and focusing on the first two conditions of Theorem 3.4, this

observation is exemplified as follows.

Theorem 3.5 1. Every NP set has an FP-computable census function if and only if

spanP1 ⊆ FP.

2. Every set in PH has an FP-computable census function if and only if #1 · PH ⊆ FP.
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We will show later that the conditions of Theorem 3.4 in fact are equivalent to the two

conditions stated in either part of Theorem 3.5. Next, we give some more evidence that the

collapse #P1 ⊆ FP is unlikely to hold.

Theorem 3.6 If #P1 ⊆ FP, then the following holds:

1. For any fixed k ≥ 2, PH ⊆ MODkP, and

2. P = BPP.

Proof. For the first part, notice that Toda and Ogihara [TO92] show that for each k ≥ 2

and any set L, if L ∈ PH, then L ∈ MODkP/poly with an advice computable in (the

function analog of the language class) PHMODkP. Also, they show that for every k ≥ 2,

PHMODkP ⊆ P#P[1], where the [1] in the superscript indicates that on every input at most

one call to the #P oracle is allowed. Thus, the advice function for L is in FP
#P[1]
1 . Fix

k ≥ 2 and L ∈ PH, and take an advice function f ∈ FP
#P[1]
1 that puts L into MODkP/poly.

Let T be the polynomial-time oracle transducer with function oracle g ∈ #P that witnesses

f ∈ FP
#P[1]
1 . W.l.o.g., assume that T makes exactly one oracle call on each input (by

asking a dummy query if necessary). Define the #P1 function g1 that, on input 1n, returns

the value g(qn), where qn is the one query string computed by T on input 1n. Thus, f in

fact is computable in FP
#P1[1]
1 and so, by our supposition, in polynomial time. Since L

is in MODkP/poly with polynomial-time computable advice, it follows that L ∈ MODkP.

Hence, PH ⊆ MODkP.

In order to prove the second part, notice that BPP is in P/poly [Adl78] with an advice

computable in (the function analog of) PH [Sip83,Lau83], and that PH ⊆ P#P[1] by Toda’s

Theorem [Tod91]. An argument similar to the above shows that P = BPP.

Now we show that the conditions of Theorem 3.4 in fact are equivalent to the two

conditions stated in either part of Theorem 3.5. To this end, we establish the following

theorem, which is interesting in its own right. Theorem 3.7 is the main technical contribution

in this section.

Theorem 3.7 #PPH
1 ⊆ FP#P

#P1
1 .

Remark 3.8 1. Note that Toda’s result PH ⊆ P#P[1] [Tod91] immediately gives that

#PPH ⊆ #P#P[1] and #PPH
1 ⊆ #P

#P[1]
1 . Observe that the oracle is a #P function.

In contrast to the inclusion #PPH
1 ⊆ #P

#P[1]
1 , Theorem 3.7 establishes containment

of #PPH
1 in a class in which only #P1 oracles occur. Though our proof also applies

the techniques of [Tod91,TO92], the result we obtain seems to be incomparable with

the above-mentioned immediate consequence of Toda’s Theorem.

2. It is unlikely that Theorem 3.7 can be extended to FPPH or even #PPH being contained

in FP#P
#P1
1 , since this would imply that FPPH ⊆ FP/poly and thus, in particular,
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would collapse the polynomial hierarchy. In contrast, the inclusion FPPH
1 ⊆ FP1/poly

that does follow from (the proof of) Theorem 3.7 merely implies that all tally sets in

PH have polynomial-size circuits, a true statement that has no unlikely consequences.3

3. The proof of Theorem 3.7 in fact establishes a more general claim. Since ⊕PPH/poly =

⊕P/poly [TO92], Theorem 3.7 and its corollaries can be stated even with PH replaced

by ⊕PPH (note that ⊕PPH = BPP⊕P by Toda’s result [Tod91]). However, we focus

on the PH case, as this is a more natural and more central class.

Proof of Theorem 3.7. Let f be any function in #PPH
1 . Note that #PPH

1 = #1 ·PH, since

PH is closed under Turing reductions. Thus, there exist a set L ∈ PH and a polynomial p

such that for each length n, f(1n) = | {y ∈ {0, 1}p(n) | 1n#y ∈ L} |, where for convenience

we assume that p(n) is a power of 2 for each n. By Toda and Ogihara’s result that PH ⊆

⊕P/poly [TO92], there exist a set A ∈ ⊕P, an advice function h : Σ∗ → Σ∗, and a

polynomial q such that for each length m and each x of length m, |h(1m)| = q(m), and

x ∈ L if and only if 〈x, h(1m)〉 ∈ A. Let M be a machine witnessing that A ∈ ⊕P, i.e., for

every string z, z ∈ A if and only if accM (z) is odd.

Toda [Tod91] defined inductively the following sequence of polynomials: For j ∈ N, let

s0(j)
df
= j, and for each j ∈ N and i > 0, let

si(j)
df
= 3(si−1(j))

4 + 4(si−1(j))
3.

One very useful property of this sequence of polynomials is that for all i, j ∈ N, si(j) = c ·22
i

for some c ∈ N if j is even, and si(j) = d · 22
i

− 1 for some d ∈ N if j is odd (see [Tod91] for

the induction proof).

We describe a polynomial-time oracle transducer T that, on input 1n, invokes its #P
#P1
1

function oracle g and then prints in binary the number f(1n). Fix the input 1n. First, T

transfers the input to the oracle g. Formally, function g is defined by

g(1n)
df
=

∑

y∈{0,1}p(n)

(
sℓn(accM (〈1n#y, h(1n+1+p(n))〉))

)2
,

where ℓn
df
= log p(n).

Informally speaking, that g is in #P
#P1
1 follows from the properties of the Toda

polynomials, from the closure of #P under addition and multiplication, and from the fact

that advice function h is computable in FP
#P1[1]
1 . More formally, to show that g ∈ #P

#P1
1 ,

we describe a tally NP oracle machine G and a #P1 oracle g1 for G such that, for every n,

the number of accepting paths of G on input 1n with oracle g1 equals g(1n). On input 1n,

G first gets the advice string an = h(1n+1+p(n)) of length q(n + 1 + p(n)) via one call to

some appropriate #P1 oracle, say g1. This is possible by the argument given in the proof

3Indeed, P/poly is known to contain all tally sets and even the Turing closure of the sparse sets.

11



of Theorem 3.6, where g1 is described. Then, G guesses all strings y of length p(n) and for

each y guessed proceeds as follows. For fixed y, let jy be a shorthand for accM (〈1n#y, an〉).

Then, (sℓn(jy))
2 is a polynomial of degree 22ℓn+1, which is polynomial in n. Also, the

coefficients of this polynomial are deterministically computable in time polynomial in n

(see [Tod91]). Since accM ∈ #P and #P is closed under addition and multiplication, the

function mapping 〈1n#y, an〉 to (sℓn(jy))
2 is in #P. Let G̃ be an NP machine witnessing

that this function is in #P. Then, G on input 1n can for each guessed y produce exactly

(sℓn(jy))
2 accepting paths by simulating G̃ on input 〈1n#y, an〉. Again using the closure of

#P under addition, it follows that g ∈ #P
#P1
1 , as claimed.

By the above properties of the Toda polynomials, it follows that for each y of length p(n),

if jy is even, then sℓn(jy) = c ·22
ℓn

for some c ∈ N, and if jy is odd, then sℓn(jy) = d ·22
ℓn
−1

for some d ∈ N. Thus, recalling that 2ℓn = p(n), we have

jy is even =⇒ (sℓn(jy))
2 = (c2 · 2p(n)−1)2p(n)+1, and

jy is odd =⇒ (sℓn(jy))
2 = (d2 · 2p(n)−1 − d)2p(n)+1 + 1.

Defining the integer-valued functions ĉ(n)
df
= c2 · 2p(n)−1 and d̂(n)

df
= d2 · 2p(n)−1 − d, we

obtain

(sℓn(jy))
2 =

{
ĉ(n) · 2p(n)+1 if jy is even

d̂(n) · 2p(n)+1 + 1 if jy is odd.

Thus, since f(1n) ≤ 2p(n) and since jy is odd if and only if 1n#y ∈ L, the rightmost p(n)+1

bits of the binary representation of g(1n) represent the value of f(1n). Hence, after the

value g(1n) has been returned by the oracle, T can output f(1n) by printing the p(n) + 1

rightmost bits of g(1n). This completes the proof.

Since #P1 ⊆ FP implies FP#P
#P1
1 ⊆ FP, we have from Theorem 3.7 the following

corollary.

Corollary 3.9 #P1 ⊆ FP if and only if #PPH
1 ⊆ FP, and in particular, #P1 ⊆ FP if and

only if spanP1 ⊆ FP.

Corollary 3.9 together with the equivalences of Theorems 3.4 and 3.5 gives the following.

Corollary 3.10 Every P set has an easy census function if and only if every set in PH has

an easy census function.

Köbler et al. [KST89] proved that spanP = #P if and only if NP = UP. Their proof

also establishes the analogous result for tally sets:

Lemma 3.11 (implicit in [KST89]) spanP1 = #P1 if and only if every tally NP set is

in UP.
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Using Lemma 3.11, we show that spanP1 and #P1 are different classes unless NE = UE,

or unless every sparse set in NP is low for SPP. A set S is said to be C-low for some class

C if CS = C (see, e.g., [Sch83,KS85,Sch87,KSTT92] for a number of important lowness

results). In particular, it is known that every sparse NP set is low for PNP [KS85] and for

PP [KSTT92], but it is not known whether all sparse NP sets are low for SPP. Torán’s

result that in some relativized world there exists some sparse NP set that is not contained

in ⊕P [Tor88], and thus not in SPP, may be taken as some evidence that not all sparse

NP sets are SPP-low. Since Corollary 3.12 relativizes, spanP1 6= #P1 holds relative to the

same oracle.

Corollary 3.12 If spanP1 = #P1, then

1. NE = UE and

2. every sparse NP set is low for SPP.

Proof. The first part follows from a standard upward translation argument (as mentioned

in the proof of Theorem 3.4).

For the second part, assume spanP1 = #P1, and let S be any sparse set in NP. Clearly,

S polynomial-time truth-table reduces to some tally NP set T . By Lemma 3.11, our

assumption implies that T ∈ UP, and thus T ∈ SPP. Since PSPP = SPP, S ∈ SPP.

The result now follows from the self-lowness of SPP [FFK94].

4 Enumerative Approximation of Census Functions

Cai and Hemaspaandra [CH89] introduced the notion of enumerative counting as a way

of approximating the value of a #P function deterministically in polynomial time.

Definition 4.1 [CH89] Let f : Σ∗ → Σ∗ and g : N → N be two functions. A Turing

transducer E is a g(n)-enumerator of f if for all n ∈ N and x ∈ Σn,

1. E on input x prints a list Lx with at most g(n) elements, and

2. f(x) is a member of list Lx.

A function f is g(n)-enumerable in time t(n) if there exists a g(n)-enumerator of f that

runs in time t(n).

A set is g(n)-enumeratively rankable in time t(n) if its ranking function is g(n)-

enumerable in time t(n).

Recall from the introduction Hemaspaandra and Rudich’s result that every P set is k-

enumeratively rankable for some fixed k (and indeed, evenO(n1/2−ǫ)-enumeratively rankable

for some ǫ > 0) in polynomial time if and only if #P = FP [HR90]. They conclude that it

is no more likely that one can enumeratively rank all sets in P than that one can exactly

compute their ranking functions in polynomial time. We similarly characterize the question
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of whether the census function of all P sets is nα-enumerable in time nβ for fixed constants

α and β. By the argument given in the proof of Theorem 3.4, this is equivalent to asking

whether every #P1 function is nα-enumerable in time nβ. We show that this implies

#P1 ⊆ FP, and we thus conclude that it is no more likely that one can nα-enumerate the

census function of every P set in time nβ than that one can precisely compute its census

function in polynomial time. It would be interesting to know if this result can be improved

to hold for polynomial time instead of time t for some fixed polynomial t(n) = nβ.

Theorem 4.2 Let α, β > 0 be constants. If every #P1 function is nα-enumerable in time

nβ, then #P1 ⊆ FP.

Proof. Cai and Hemaspaandra [CH91] show that for any fixed k, if #SAT (the function

mapping any boolean formula f to the number of satisfying assignments of f) is nk-

enumerable, then #P ⊆ FP. In order to prove this, they develop the following protocol for

computing the permanent of an m × m matrix A, given as parameters (the encoding of)

a polynomial-time transducer E (the enumerator for #SAT), and a prime number p: Set

A0 = A to the input matrix and repeat the following steps for i = 1, . . . ,m− 1:

1. Construct from Ai−1 an (m− i)× (m− i) matrix Bi(X), defined by

Bi(X)
df
=

m−i∑

k=1

ek(X)a1kA
(1,k)
i−1 ,

where ek(X) is a degree (m − i) polynomial in X such that ek(X) ≡ 1 if X = k

and 0 otherwise, a1k is the (1, k) entry of Ai−1, and A
(1,k)
i−1 is the (1, k)-minor of Ai−1.

Each matrix is viewed as a matrix over Z/pZ, that is, the matrix entries are reduced

modulo p. Then the following conditions hold.

• Each entry of Bi(X) is a degree (m − i) polynomial in X with coefficients in

{0, . . . , p− 1}, so perm(Bi(X)) is a degree (m− i)2 polynomial in X.

•
∑m−i

k=1 perm(Bi(k)) = perm(Ai−1).

2. Encode Bi(X) into a binary string specifying in binary p, m, and the coefficients of

Bi(X). There is some fixed constant c > 0 such that the encoding length is at most

c(m− i)3 log p. Define Qi(X)
df
= perm(Bi(X)). Then, Qi is a polynomial of degree at

most (m − i)2, whose coefficients are each length-bounded by a fixed polynomial in

p and m. Thus, there is a #P function G that maps Bi(X) to a number from which

the coefficients of Qi can be decoded in polynomial time.

3. Use E as an enumerator for G to obtain candidates g1, . . . , gt. These are all degree

(m − i)2 polynomials that are pairwise distinct. Since two distinct degree (m − i)2

polynomials can agree at no more than (m − i)2 − 1 points, there are fewer than

t2(m− i)2 ≤ t2m2− 1 points X at which any two candidate polynomials agree. Thus,
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if p ≥ t2m2, then there is an r ∈ {0, . . . , p − 1} such that gj(r) 6= gk(r) for all j 6= k.

Take the smallest such r and set Ai to Bi(r) with the entries reduced modulo p. Now,

perm(Ai) modulo p specifies which gj is correct, so we can recover perm(Ai−1) modulo

p in polynomial time.

At the end of this loop, Am is a 1 × 1 matrix, so its permanent is easy to compute.

Now working backwards again, we can recover perm(A) modulo p. If we do this for

polynomially (in the encoding length of A) many distinct primes, then by the Chinese

Remainder Theorem, we can recover the exact value of perm(A).

Valiant [Val79a] showed that the permanent of matrices whose entries are from the set

{−1, 0, 1, 2} is complete for #P. Analogously, we can show that there exists an infinite

sequence of matrices [M1,M2, . . . ] such that (i) the mapping 1n → perm(Mn) is complete

for #P1, (ii) the mapping 1n → Mn is polynomial-time computable, and (iii) for every n,

Mn is an n×n matrix whose entries are from {−1, 0, 1, 2}. Because of (iii), perm(Mn) ≤ 22n

for all n. So, by the Chinese Remainder Theorem, for every n, the exact value of perm(Mn)

can be computed from perm(Mn) modulo p for 2n arbitrary distinct primes p. Define

polynomials q and s by q(n) = 〈n, n, n, 2n〉 and s(n) = q(n)2αn2. Define the function f

from the tally strings to the set of natural numbers as follows.

• If m = 〈H,n, i, j〉 for some H, i ≤ n and j ≤ 2n, then f(1m) is G(Bi(X)) defined in

the above protocol when we simulate the protocol under the following constraints:

– The jth smallest prime > s(n) is used in place of p.

– Mn is used in place of the input matrix A0.

– H is viewed as (the encoding of) a Turing transducer and is used in place of the

enumerator E. Here, for each k with 1 ≤ k ≤ i− 1, the input given to H in the

kth round of the protocol is 〈H,n, k, j〉, not the matrix Ak. Also, H is supposed

to run in q(n)β steps and generates at most q(n)α candidates in each round. If

H does not halt in q(n)β steps or generates more than q(n)α candidates at any

point of the simulation, then the simulation is immediately aborted and the value

f(1m) is set to 0.

• If m is not of the above form, f(1m) is 0.

This function f is in #P1. First, there are only i ≤ m rounds to be simulated and each

round requires mα steps for candidate generation and some polynomial (in n) number of

steps for other computations. Second, by the Prime Number Theorem, the 2nth smallest

prime > n is O(n), so finding the jth smallest prime > s(n) requires only a polynomial

number of steps.

Now, by our assumption, there is an mα-enumerator Ê for f that runs in time mβ.

Since the number of candidates that Ê generates is at most mα and the dimension of the

matrix Mn is n, we have a prime > m2αn2. This implies that with Ê as the enumerator,

for every n ≥ Ê, every j, 1 ≤ j ≤ 2n, and every i, 1 ≤ i ≤ n, we successfully find an r for
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distinguishing the candidates. So, with Ê as the enumerator, for all n ≥ Ê, perm(Mn) is

polynomial-time computable. Hence #P1 ⊆ FP.

5 Oracle Results

In this section, we provide a number of relativized results on the existence or

non-existence of P sets simultaneously satisfying pairs of conditions chosen among the

properties (i), (ii), and (iii) from Section 3. For instance, Theorem 5.1 and its Corollary 5.2

below exhibit a relativized world in which every P set has an easy census function

(Property (ii)), yet there exists some set in P that is not rankable (Property (i)).

Theorem 5.1 There exists an oracle D such that #PD
1 ⊆ FPD 6= #PD.

From the relativized versions of Theorem 3.4 and of Hemaspaandra and Rudich’s result

in [HR90] that every P set is rankable if and only if P#P = P (which is equivalent with

FP = #P, and this equivalence itself also relativizes), we immediately obtain the following

corollary.

Corollary 5.2 There exists an oracle D such that all sets in PD have a census function

computable in FPD, yet there exists some set in PD that is not rankable by any function

in FPD.

Proof of Theorem 5.1. Balcázar et al. [BBS86] and Long and Selman [LS86] proved

that the polynomial hierarchy does not collapse if and only if it does not collapse relative to

every sparse oracle. Since their proof relativizes (i.e., it applies to the relativized polynomial

hierarchy as well), we have the following claim:

Claim 5.3 [BBS86,LS86] For every set B, PHB does not collapse if and only if for every

sparse oracle S, (PHB)S does not collapse.

Note that (PHB)S = PHB⊕S , where X ⊕ Y
df
= {0x | x ∈ X} ∪ {1y | y ∈ Y } denotes

the join of any two sets X and Y . Fix an oracle A such that PHA does not collapse (such

oracles were constructed by Yao [Yao85], H̊astad [H̊as89], and Ko [Ko89] who built on the

work of Furst et al. [FSS84]). Then, by Claim 5.3 above, for every sparse set S, PHA⊕S

does not collapse. So, in particular, PA⊕S 6= NPA⊕S for every sparse set S. Since for every

oracle B, #PB = FPB implies NPB = PB , we have that #PA⊕S 6= FPA⊕S for every sparse

set S.

So it remains to prove that there exists a sparse set T such that #PA⊕T
1 ⊆ FPA⊕T .

Then, setting D = A⊕ T completes the proof.

Assume that our pairing function 〈·, ·, ·〉 is nondecreasing in each parameter, polynomial-

time computable and invertible, and is one-to-one and onto. Let N
(·)
1 , N

(·)
2 , . . . be a standard
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enumeration of all tally NP oracle machines. For each i ≥ 1, let pi be the polynomial time

bound of N
(·)
i . Then, the function f (·) defined by

f (·)(1〈i,n,j 〉)
df
=

{
acc

N
(·)
i

(1n) if pi(n) < j

0 otherwise

is a canonical function complete for the class #P
(·)
1 .4 In particular, for every fixed set S,

f (A⊕S) is complete for #PA⊕S
1 .

The oracle set T is defined in such a way that, for any given m = 〈i, n, j〉 in unary, some

polynomial-time oracle transducer can retrieve the value of f (A⊕T )(1m) from its oracle A⊕T

by asking at most m queries. More formally, we construct T in stages such that for each

m = 〈i, n, j〉:

1k0m−k#b ∈ T ⇐⇒ 1 ≤ k ≤ |f (A⊕T )(1m)| and the kth bit of f (A⊕T )(1m) is b.

Since by the above definition, |f (A⊕T )(1m)| < m and so, in particular, NA⊕T
i (1n) cannot

query strings of length ≥ m, there is no interference between the stages of the construction

of T . It is easy to see that T is a sparse set satisfying #PA⊕T
1 ⊆ FPA⊕T .

Now we construct an oracle relative to which there exists some scalable set in P whose

census function is not easy to compute.

Theorem 5.4 There exists an oracle A such that there exists an A-scalable set B whose

census function is not in FPA.

Proof. We will construct A and B in such a way that B is PA-isomorphic to the set

R
df
= {0x | x ∈ Σ∗}, which is rankable in FP (and thus in FPA). For each n ≥ 1, we have

censusR(1
n) = 2n−1. So censusR is easy to compute, but we want B to have a hard census

function. In light of Proposition 3.1.2, we thus need the isomorphism, f , between B and R

be non-length-preserving. In particular, we will define f so as to satisfy |f(x)| ≤ |x|+1 and

|f−1(y)| ≤ |y| for all x, y ∈ Σ∗. When f is defined, we let B be the set f−1(R). To have f

and its inverse computable in FPA, we encode f and f−1 into A
df
= Af ⊕ Af−1 as follows.

For all x ∈ Σ∗, i ≥ 1, and b ∈ {0, 1}, we ensure that

〈x, i, b〉 ∈ Af∗ ⇐⇒ the ith bit of f∗(x) is b,(1)

where f∗ stands for either f or f−1. At the same time we diagonalize against FPA so as to

ensure censusB 6∈ FPA.

Let T
(·)
1 , T

(·)
2 , . . . be a standard enumeration of all deterministic polynomial-time oracle

transducers, and let p1, p2, . . . be a sequence of strictly increasing polynomials such that pi
bounds the running time of Ti (independent of the oracle used). By (1) above, implicit in

4See [Val79b] for natural #P1-complete functions.
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the definition of f and f−1 is the definition of A, so it suffices to construct the isomorphism.

The construction of f and f−1 is in stages. By the end of stage i, f will have been defined

for all strings of length up to r(i), where r will be determined below. Initially, we start with

r(0) = 0, and we define f(ǫ) = ǫ. Stage i > 0 of the construction is as follows.

Stage i: Choose ni to be the smallest integer such that ni > r(i− 1) and pi(ni) < 2ni−2.

Let A′ be the subset of A that has been decided by now. We want to define f so

that, eventually, TA
i (1ni) 6= censusB(1

ni). Simulate TA′

i on input 1ni . Whenever in

this simulation a string of the form 0〈x, i, b〉 whose membership in A has not yet been

decided is queried, we add this string to A′ and set the ith bit of f(x) to b unless we

have already put 0〈x, i, 1 − b〉 into A (and thus have set this bit to 1 − b), or unless

i > |x| + 1. The same comment applies to query strings 1〈y, j, b〉 whose membership

in A has not been decided yet and which may fix the jth bit of f−1(y). If we added

the queried string to A′, we continue the simulation in the “yes” state; otherwise, in

the “no” state. In this way, the simulation of TA′

i (1ni) may determine f (and f−1)

on at most pi(ni) < 2ni−2 bits of the strings of length ni. Thus, for no m ≥ ni is

f−1 determined on all strings of length m in R or R. Once the value TA′

i (1ni) is

computed, there is room to decide f(x) and f−1(y) for all strings x and y of lengths

between r(i−1) and pi(ni) so that f is an isomorphism mapping to
⋃pi(ni)

ℓ=r(i−1)R
=ℓ and

such that censusB(1
ni) 6= TA′

i (1ni), without changing the output value of TA′

i (1ni).

Finally, define r(i) = pi(ni).

Next, we provide an oracle relative to which there exists some set in P that is neither

scalable nor has an easy census function.

Theorem 5.5 There exists an oracle D such that D ∈ PD is not D-scalable and its census

function is not in FPD.

Proof. This is a simple interweaving of two diagonalizations. The only question is how to

construct a non-scalable set.

It is known from the work of Goldsmith and Homer [GH96] that any sparse set is scalable

if and only if it is rankable, and this holds if and only if it is P-printable.5 D will be sparse,

with at most 2 strings at each length. We assume that (T
(·)
i )i≥1 enumerates FP(·), and that

T
(·)
i runs in time ni.

At stage 2i, we guarantee that TD
i (1n) does not compute the rank of 1n in D, where

n is chosen large enough that ni < 2n. For this n, we put 1n into D. Compute TD
i (1n),

restraining any oracle strings of length ≥ n that it queries. By our choice of n, this does

not decide D=m for any m ≥ n, so we can then put in the appropriate number of strings of

length n for the diagonalization.

5A set is P-printable [HY84] if there exists a polynomial-time transducer T such that for each length n,
T on input 1n prints a list of all elements of the set up to length n.

18



At stage 2i + 1 we guarantee that TD
i (1n) does not compute the census function of D,

where n is chosen large enough that ni < 2n. Again, compute TD
i (1n), restraining any

oracle strings of length ≥ n that it queries. By our choice of n, this does not decide D=m

for any m ≥ n, so we can then put in the appropriate number of strings of length n for the

diagonalization.

Finally, we show that relative to an oracle, there exists some non-scalable set in P having

an easy census function.

Theorem 5.6 There exists an oracle A such that A ∈ PA is not A-scalable and its census

function is in FPA.

Proof. We construct the oracle A so that A has one string of each length. For those lengths

for which nothing else is decided, we put in 1n. Otherwise, we do the following.

To make the oracle A non-A-scalable, we actually make it non-PA-printable. At stage i,

choose an appropriate length n, and then compute TA
i (1n). Whenever it queries a string

of length ≥ n, restrain the string from the oracle. If it does anything except print out

A≤n, then put in the first unrestrained string of each length. If it correctly prints A up to

length n, then choose an x of each relevant length to include that neither is restrained nor

printed.

We conclude this section with a remark on a technical difficulty in proving the following

statement: “There exists an oracle E such that all sets in PE have a census function

computable in FPE , but E ∈ PE is not E-scalable.” Call this statement (S). One might

hope to prove (S) by exploiting again the fact that scalability, rankability, and P-printability

are equivalent properties on the sparse sets [GH96], which was useful in the proofs of

Theorems 5.5 and 5.6. Now, replacing in (S) non-scalability by non-rankability makes (S)

the following stronger version of Theorem 5.1: “There exists a sparse set E such that

#PE
1 ⊆ FPE 6= #PE.” However, since the oracle D = A ⊕ T constructed in the proof

of Theorem 5.1 inherently is a nonsparse set due to its A part (and it cannot be made

sparse unless one could separate the unrelativized polynomial hierarchy [LS86,BBS86]), this

approach does not work to prove (S). Therefore, to prove (S), one would need to construct a

nonsparse set E with the desired properties, and we leave this as an interesting open issue.
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