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A b s t r a c t .  We consider the degree-preserving spanning tree (DPST) 
problem: given a connected graph G, find a spanning tree T of G such 
that  as many vertices of T as possible have the same degree in T as in 
G. This problem is a graph-theoretical translation of a problem arising 
in the system-theoretical context of identifiability in networks, a concept 
which has applications in e.g., water distribution networks and electrical 
networks. We show that the DPST problem is NP-complete, even when 
restricted to split graphs or bipartite planar graphs. We present linear 
time approximation algorithms for planar graphs of worst case perfor- 
mance ratio 1 - e for every constant E > 0. Furthermore we give exact 
algorithms for interval graphs (linear time), graphs of bounded treewidth 
(linear time), cocomparability graphs (O(na)), and graphs of bounded 
asteroidal number. 

1 Description of the Problem and Its Practical Niche 

Analysis  of  communica t ion  or dis t r ibut ion networks is often concerned with find- 
ing spanning trees (or forests) of those networks fulfilling certain criteria. Also 
in other  contexts  spanning  trees show up as impor tan t  tools in model ing and an- 
alyzing problems. Therefore,  a myr iad  of  problems on spanning trees have been 
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studied in literature (see [5,6,8,9]). This paper deals with a virtually unexplored 
problem concerning spanning trees which we call the degree-preserving spanning 
tree (DPST) problem: given a connected graph G, find a spanning tree T of G 
with a maximum number of degree-preserving vertices, i.e., with a maximum 
number of vertices having the same degree in T as in G. 

Some closely related questions were studied before by Lewinter et al. [1,12,13] 
from a purely theoretical point of view. They published a number of short notes 
on the subject. For example, Lewinter [12] introduced the concept of degree- 
preserving spanning trees and he proved that  the number of degree-preserving 
vertices interpolates on the set of spanning trees of a given connected graph G. 
In other words: if spanning trees exist with k and l degree-preserving vertices 
respectively and k < l, then there exists a spanning tree with exactly m degree- 
preserving vertices for every m with k < m < l. 

Our at tention was initially turned to this problem through a practical appli- 
cation in water distribution networks (see [14]), which makes the DPST problem 
a nice example of theory and practice going hand-in-hand. 

Suppose that  we have to determine (or control) all flows in such a network 
by installing and using a small number of flow meters and /or  pressure gauges. 
The network can be regarded as an undirected connected graph G and the flow 
through each edge of G is described by an orientation of tha t  edge and a non- 
negative flow value. Since the sum of all flow values of edges entering a vertex is 
always the same as the sum of all flow values of edges leaving that  vertex, except 
for possible sources and sinks, it is not difficult to derive all flows in the network 
from the flows through all edges of a cotree C of G (i.e., C is obtained from G 
by removing the edges of a spanning tree). Hence it would suffice to install flow 
meters at the edges of C. However the costs of installing a flow meter is much 
higher than those of installing a water pressure gauge at some vertex. Alter- 
natively, we can derive the flow through an edge from the water pressure drop 
between the two incident vertices. If we only use pressure gauges, and want to 
minimize the costs, the problem becomes that  of finding a cotree whose edges are 
incident with a minimum number of vertices (in order to minimize the number of 
pressure gauges that  have to be installed) or, equivalently, of finding a spanning 
tree T whose complement in G has as many isolated vertices as possible, i.e., T 
has a maximum number of degree-preserving vertices. Rahal [15] independently 
discovered the cotree approach in his investigation of a steady state formulation 
for water distribution networks. 

Our problem of determining all flows in the network with minimal costs of 
measuring (installing pressure gauges) is a so-called identifiability problem (see 
Walter [16]). The concrete water distribution network that  we considered has 80 
vertices and 98 edges, making it a very sparse network. Our network is planar 
and it has outerplanari ty 2. Especially this latter fact enables us to solve the 
DPST problem in our case by a linear time algorithm. 
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2 Prel iminaries  

Throughout  let G -- (V, E)  be a graph and let n -- IVI and m --- ]E I. 
For a subset S c_ V we use G[S] to denote the subgraph of G induced by the 

vertices of S. For a subset S C_ V we also write G - S for G[V \ S], and for a 
vertex x of G we write G - x instead of G - (x}. 

For a vertex x of G we use NG(x) to denote the set of neighbors of x in G, 
and we write NG[x] = (x} U NG(x) for the closed neighborhood of x in G; the 
degree of x in G is dG(x) = ING(x)I �9 A pendant vertex of G is a vertex with 
degree one in G. We omit the subscript G from the above expressions if it is 
clear which graph G we consider. 

D e f i n i t i o n  1. A subset S C V is realizable if there exists a spanning forest 
T of G such that the degree of every vertex x E S is preserved in T (i.e., if 
dT(x) = dG(x) for every vertex x E S). I f  T is such a spanning forest, then we 
call T an S-preserving forest. If, moreover, T is chosen in such a way that IS] 
is maximum, then we call T a maximum degree-preserving forest, and IS I the 
degree-preserving number (o fT  or G). The DPST problem is the problem to find 
for a given graph G a maximum degree-preserving spanning forest. 

As an example, the degree-preserving number of a tree, a unicyclic graph, 
and a complete graph (5  K2) on n vertices are respectively n, n - 2, and 1. 

Notice that  to solve the DPST problem, it is sufficient to compute a maximum 
(cardinality) realizable set S since, given S, an S-preserving spanning forest is 
then easy to find. By p(G) we denote the cardinality of a maximum realizable set 
in G. Clearly p(G) is the sum of p(C) taken over all 2-edge-connected components 
C of G. Therefore we can restrict to 2-edge-connected graphs. 

Let W be a set of vertices of a graph G. By G~W~ we denote the graph with 
vertex set N[W] containing all edges of G incident with a vertex in W. 

L e m m a  1. Let S be a nonempty set of vertices of a graph G -= (V, E). Then S 
is a realizable set of G if and only if G[S~ is a forest. 

3 Hardness  Resul ts  

A graph G = (V, E)  is called a split graph (bipartite graph) if V can be partit ioned 
into an independent set I and a clique C (into two independent sets X and Y) 
of G. Such a graph is also denoted by G -- (I, C, E)  (G = (X, Y, E)) .  

Let G = (V, E)  be a graph. We define a split graph H with independent set 
V and clique E • {1, 2} as follows. A pair {v, (e, i)} is an edge of H if and only 
i f v E  V, e E E ,  i E  ( 1 , 2 } a n d v E e .  It is easy to see that  a set WC_ V i s a n  
independent set of G if and only if W is a realizable set in H.  Moreover, if G has 
no i~,qated vertices (i.e., vertices with degree zero), then for every realizable set 
W of H with I W] > 1 we have W C V. These simple observations lead to the 
following theorem showing that  the DPST problem restricted to split graphs is 
NP-complete. 
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T h e o r e m  1. For a given split graph H and a given integer k it is NP-complete 
to decide whether H contains a realizable set of cardinality k. 

Proof. The reduction is from the NP-complete graph problem INDEPENDENT 
SET. As seen before a graph G has an independent set of cardinality k if and 
only if the corresponding split graph H has a realizable set of cardinality k. [] 

Next we apply the same idea to bipartite graphs. Let G = (V, E) be a graph. 
We define a bipartite graph B = (V U (E x {2, 4, 6, 8}), E x {1, 3, 5, 7}, F1 I J F2), 
where 

F1 -- {{v, (e, i)} : v �9 V,e �9 E , i  �9 {1,5},v �9 e} 

F2 = {{(e, 1), (e, 2)}, {(e, 2), (e, 3)}, {(e, 3), (e, 4)}, {(e, 4), (e, 1)}, 

{(e, 5), (e, 6)}, {(e, 6), (e, 7)}, {(e, 7), (e, S)}, {(e, S), (e, 5)}: e �9 E}.  

Note that  for the maximum degrees A(B) and A(G) of B and G we get 
A(B) = max{4, 2. A(G)}. Moreover, B is planar if and only if G is planar. 

We observe that  for every edge e �9 E and every realizable set S of B, 
IS N ({e} x {1,2,3,4})[ < 2. In what follows we may assume S c_ Y U (E x 
{2, 3, 6, 7}) for all realizable sets S of B, since for every other realizable set T 
the set T'  = (T N V) U (E x {2, 3, 6, 7}) is also realizable and fulfills [TI <_ IT'I. 

Next observe that  W c_ V is an independent set of G if and only if W is a 
realizable set of B. This leads to the following theorem showing that  the DPST 
problem restricted to bipartite planar graphs is NP-complete. 

T h e o r e m  2. For a given bipartite planar .graph B of maximum degree six and 
a given integer k, it is NP-complete to decide whether B contains a realizable 
set of cardinality k. 

Proof. The reduction is from the INDEPENDENT SET problem restricted to cubic 
(i.e., 3-regular) planar graphs [9]. Let (G, k) be an instance of this NP-complete 
problem where G = (V, E) with IEI = m. As seen before a planar graph G has 
an independent set of cardinality k if and only if the corresponding bipartite 
planar graph B has a realizable set of cardinality k + 4m. [] 

Our problem remains NP-complete even when restricted to bipartite planar 
graphs of maximum degree three [7]. 

The INDEPENDENT SET problem is not only NP-complete, it is also hard to 
approximate. More precisely for every e > 0, there is no polynomial time approx- 
imation algorithm for the MAXIMUM INDEPENDENT SET problem with worst case 
ratio n 1/4-~ unless P = N P  [4], and there is no polynomial time approximation 
algorithm with worst case ratio n 1-E unless co-NP=NP [11]. By the reduction 
used in the proof of Theorem 1, approximating an optimal solution to the DPST 
problem is as hard as approximating MAXIMUM INDEPENDENT SET, e v e n  when 
DPST is restricted to split graphs. 

T h e o r e m  3. For every e > O, there is no polynomial time algorithm to approxi- 
mate a maximum realizable set of a given split graph with worst case ratio n 1/4-~ 
unless P = N P  (respectively with worst case ratio n 1-~ unless co-NP=NP). 
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4 A p p r o x i m a t i o n  for P lanar  Graphs  

In this section we apply an idea of Baker [3] to establish linear time approxi- 
mation algorithms for the DPST problem when restricted to planar graphs. We 
will prove the following theorem. 

T h e o r e m  4. For every e > 0 there is a linear time approximation algorithm of 
worst case performance ratio 1 - e for the D P S T  problem restricted to planar 
graphs. 

Let W C V be a set of forbidden vertices. A realizable set R of G is called 
maximum W-avoiding realizable set if R A W = 0 and IR[ > IR'I for every 
realizable set R ~ of G with R ~ N W = 0. 

Let G = (V, E)  be a planar graph given with a fixed embedding. We parti t ion 
V into levels L1, L 2 , . . . ,  Ld. The level L1 contains all vertices on the outer face 

f .",, i d--1 of G. For i > 1, the level Li contains all vertices on the outer face o t ~ - U j = l  L 3 . 
Let d be the largest index such that  Ld ~ ~. For technical reason set Li = ~ for 
i > d or i < 1. A planar graph is k-outerplanar if and only if it has an embedding 
defining at most k nonempty levels. 

We decompose the planar graph G into k-outerplanar graphs. Each k-outer- 
planar graph consists of k consecutive levels of G. More precisely, let k and r be 
integers with 1 < r < k. For i = 0, 1 , . . . ,  q with q = Ig~-~l we define 

I~_ r I I ik+r Gk,r,, = ,-, [ k.)3=(s_l)k+r+ 1 L3] a n d  Wk,r,~ = L(z-1)k+r+l  U Lzk+r . 

Note that  Wk,~# contains all vertices in the outer and inner level of Gk,r,,. 

L e m m a  2. For i = O, 1 , . . . , q  let Rk,r,z be a Wk,r,i-avoiding realizable set of 
Gk,r,i .  Then q U i = 0  Rk,r,~ is a realizable set  of G. 

Proof. For all i the set Wk,r,i contains the vertices on the outer and the inner 
level of the k-outerplanar graph Gk,r,,. Hence the endpoints of an arbitrary edge 
of G~Rk,r] belong to the same k-outerplanar graph. [] 

L e m m a  3. For every k > 1 there is an index r( k ) with 1 <_ r( k ) < k such that 

I R \  q U~=o Wk,~(k)# I -> ~-~ p(G). 

= Ui=0 wk,~,~. For Proof. Let R be a maximum realizable set of G and let Wk,r q 
every level L3, j = 1 , 2 , . . . , d ,  of G there exist at most two r E { 1 , 2 , . . . , k }  

k with Lj  C Wk,r. Hence Y~r=l [R n Wk,rl _< 2]RI, which implies that  there is an 
r = r(k) such that  [R N Wk,r(k)]< 2[R[. [] 

Let k > 1. For every r = 1 , 2 , . . . , k  and every i = 1 , 2 , . . . , q  let Rk,r,i 
be a maximum Wk,r,~-avoiding realizable set of Gk,r,~. By Lemma 2, Rk,r = 

q U~=0 Rk,r,i is a realizable set of G. Consequently, 

max{IRk,rl : 1 < r < k} >_ ~-~p(G).  
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For every k we develop an exact linear time algorithm computing a maximum 
W-avoiding realizable set for k-outerplanar graphs. Using standard techniques 
for graphs of bounded treewidth, it can be shown that  a linear time algorithm, 
exists [2]. Notice that  the treewidth of a k-outerplanar graph is at most 3k - 1. 
Consequently, for every fixed k we obtain a linear time approximation algorithm 
of worst case performance ratio ~-~. 

5 Interval Graphs 

D e f i n i t i o n  2. A graph is chordal if it contains no induced cycle of length more 
than three. 

Notice that  for chordal graphs, the problem of finding a maximum realizable 
set is NP-complete, since the class of split graphs is a proper subclass of the class 
of chordal graphs. However, for the class of interval graphs, which is another 
important  subclass of the class of chordal graphs, we can give a fast algorithm. 
For an introduction into these graph class we refer to [10]. 

Our first result shows that  for chordal graphs we can restrict our search for 
realizable sets to independent sets. Remember that  we may restrict to 2-edge 
connected graphs. 

T h e o r e m  5. I f  G is a 2-edge connected chordal graph, then any realizable set 
S of G is an independent set of G. 

Proof. Let G --- (V, E)  be a 2-edge connected chordal graph and assume {x, y} c 
E for two distinct vertices x, y c S. Since G is 2-edge connected, {x,y} is 
contained in a cycle of G, and, since G is chordal this implies {x, y} is contained 
in some triangle of G. This contradicts Lemma 1. [] 

If a graph G is disconnected, then a maximum realizable set of G is simply the 
union of maximum realizable sets of all components of G. If a connected graph G 
(or a component) has a bridge e, then to compute a maximum realizable set of G 
delete e and compute maximum realizable sets $1 and $2 for both  components. 
Let T1 be an Sl-preserving forest and T2 be an S2-preserving forest. Adding e 
as an edge between T1 and T2 gives a forest T which is $1 [3 S2-preserving, and 
$1 U $2 is a maximum realizable set in G. We will use the above observations 
and the following properties of 2-edge connected interval graphs. 

D e f i n i t i o n  3. An interval graph is a graph for which one can associate with 
each vertex an interval on the real line such that two vertices are adjacent if and 
only if  their corresponding intervals have a nonempty intersection. 

Interval graphs can be recognized in linear time, and, given an interval graph, 
an interval model for it can be found in linear time [10]. In the following we 
assume that  an interval model of the graph is given, and we identify the vertices 
of the graph with the corresponding intervals. Without  loss of generality we may 
assume that  no two intervals have an endpoint in common. 
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D e f i n i t i o n  4. An interval and its corresponding vertex are called minimal if  it 
is minimal with respect to inclusion, i.e., if it does not contain any other interval. 

L e m m a  4. Let G be a 2-edge connected interval graph. Then there exists a 
maximum realizable set S of G such that for every vertex p E S the corresponding 
interval is minimal. 

Proof. Let S be a max imum realizable set containing a vertex x which is not 
minimal. Then there exists an interval y contained in the interval x. By Theo- 
rem 5 we know that  a realizable set can contain only one of x and y and hence 
y ~ S. Now N(y)  c N[x], and hence, there exists a max imum realizable set 
S '  = {y} U S \ {x}. Repeat ing the arguments  we can prove the assertion of the 
theorem. [] 

Consider the ordering of the minimal intervals defined by the left endpoints. 

L e m m a  5. Let G be a 2-edge connected interval graph with corresponding in- 
terval model and let x be the first minimal interval (i.e., with the leftmost left 
endpoint). There exists a maximum realizable set S of G with x E S. 

Proof. Consider a max imum realizable set S of G containing only minimal inter- 
vals. If  x E S there is nothing to prove. Otherwise, let y be the first interval in S. 
The other intervals of S lie totally to the right of y because S is an independent 
set by Theorem 5. The right endpoint of y must be to the right of the right 
endpoint of x since the interval x is minimal. I t  follows that  S '  = {y} U S \  {x} is 
also realizable, since x lies total ly left of S \ {y} and N(z )  n N ( x )  c N( z )  n N(y )  
for all z E S \ {y}. [] 

T h e o r e m  6. There is a linear time algorithm to compute a maximum realizable 
set S for given interval graph G. 

Proof. Locate  the set of bridges B in G and compute max imum cardinality 
realizable sets for each component  of G - B. This can be done as follows. 

Consider an interval model for a 2-edge connected component.  First mark  
the minimal intervals. Take the minimal interval with the leftmost left endpoint 
as the first element of S. Consider the endpoints one by one, from left to right. 
We keep t rack of the last minimal interval in S which is totally left of the 
current position. We also keep a counter for the number of intervals tha t  have 
one endpoint to the left of the current position and tha t  overlap with the last 
interval in S. If we encounter a left endpoint of a minimal interval which starts  
to the right of the last interval in S so far, and if there is at  most  one interval 
overlapping the current position and the last interval of S, then we put this new 
minimal interval in S. 

Let S t be a max imum realizable set such that  S r S t. By the previous lemmas 
we may  assume that  S t contains minimal intervals only and tha t  S and S t have a 
common first interval. Suppose y is the first interval of S t which is not in S, and 
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tha t  Xl ,X2, . . .  ,Xp are common intervals of S and S t and Xp+l ~ y is the next 
interval of S chosen by the above procedure. We complete the proof by showing 
that  y in S'  can be replaced by Xp+l. This follows by the same arguments as in the 
proof of Lemma 5 and the following observations. By the choice of Xl, x 2 , . . . ,  Xp, 
for all i , j  C {1 , . . .  ,p} with i ~ j ,  x~ and x 3 have at most one common neighbor 
and N(Xp+l) n N(xi)  C_ N(Xp+l) N N(x~+l) (i = 1, . . .  , p -  1). If the addition of 
Xp+l to { x l , . . . ,  Xp} would cause a cycle in G~{xl, x 2 , . . . ,  Xp, Xp+l}~, then such 
a cycle would already exist in G[{x l , . . . ,  Xp}~, a contradiction to the choice of 
Xl~X2~. . .  ~Xp. [] 

6 Other  Classes of  Graphs 

In this section we list further results proven in the full version. 

T h e o r e m  7. The degree preserving spanning tree problem is solvable in linear 
time for graphs of bounded treewidth. 

D e f i n i t i o n  5. A graph G = (V, E) is a cocomparability graph if and only if 
there is an ordering Vl,V2,...,Vn of V such that i < j < k and {v~,vk} E E 
implies either {v~,v3} C E or {v3,vk } C E. Hence N(v3) A {v~,vk} • 0 for aU j 
with i < j < k. Such an ordering is called cocomparability ordering. 

T h e o r e m  8. There is an algorithm to compute a maximum degree-preserving 
forest of a cocomparability graph in time O(n4). 

D e f i n i t i o n  6. An independent set A is called an asteroidal set if for every vertex 
a c A, the set A \ {a} is contained in a component ofG - N[a]. The asteroidal 
number of a graph G, is the maximum cardinality of an asteroidal set in G. 

T h e o r e m  9. There is an algorithm to solve the degree preserving spanning tree 
problem for any graph G in time O(2/r logn),  where k is the asteroidal 
number of G. 
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