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A b s t r a c t .  This paper  describes an advanced authorization mechanism 
based on a logic formalism. The model supports  both positive and neg- 
ative authorizations. I t  also supports derivation rules by which an au- 
thorization can be granted on the basis of the presence or absence of 
other authorizations. Subjects, objects and authorization types are or- 
ganized into hierarchies, supporting a more adequate representation of 
their semantics. From the authorizations explicitly specified, addit ional  
authorizations are automatical ly derived by the system based on those 
hierarchies. The combination of all the above features results in a pow- 
erful yet flexible access control mechanism. 
The specification language of the system is an extension of Ordered Logic 
with ordered domains. This is an elegant yet powerful formalism whereby 
the basic concepts of the authorization model can be natural ly  formal- 
ized. Its semantics is based on the notion of stable model and assigns, to 
a given set of authorization rules, a multiplicity of (stable) models, each 
representing a possible way of assigning access authorizations. This form 
of non-determinism entails an innovative approach to enforce access con- 
trol: when an access request is issued, the appropriate  model is chosen 
on the basis of the accesses currently under execution in the system. 

1 I n t r o d u c t i o n  

T h e  i n t roduc t i on  of  an access cont ro l  sy s t em wi th in  any o rgan iza t i on  entai ls  
two ma in  tasks .  T h e  first is t he  iden t i f ica t ion  and  speci f ica t ion of su i tab le  ac- 

cess  con t ro l  pol ic ies .  A n  access cont ro l  po l i cy  es tabl i shes  for each sub jec t  t he  
ac t ions  h e / s h e  can  per fo rm on which o b j e c t  w i th in  t he  sy s t em under  which 
c i rcumstances .  The  second t a s k  is the  deve lopmen t  of a su i t ab l e  access  con-  

t ro l  m e c h a n i s m  imp lemen t ing  the  s t a t ed  policies.  M a n y  advanced  appl ica t ions ,  
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such as workfiow systems, and computer-supported cooperative work, have ar- 
ticulated and rich access control requirements. These requirements cannot be 
adequately supported by current access control mechanisms which are tailored 
to few, specific policies. In most cases, either the organization is forced to adopt 
the specific policy built-in into the access control mechanism at hand, or access 
control policies must be implemented as application programs. Both situations 
are clearly unacceptable. A possible solution to this problem is the development 
of advanced access control mechanisms, which extend the expressive power of ac- 
cess control mechanisms currently available in commercial DBMSs and research 
prototypes. Extending the expressive power of existing authorization models 
has, as its counterpart, an increase of the complexity of the model. A method 
to manage such increased complexity is to provide a formal semantic foundation 
for the model. In this paper we present a step in this direction by proposing an 
authorization mechanism based on a logic formalism. The model is based on the 
closed policy with negative authorizations and the enforcement of the "strongest 
authorization takes precedence" principle. Our model also provides the possibil- 
ity of specifying derivation rules by which new authorizations can be derived on 
the basis of the presence or absence of other authorizations. Authorizations can 
be granted to a single user as well as to a group or to a role. Subjects, objects, 
and authorization types are organized into hierarchies, supporting a more ade- 
quate representation of their semantics. Authorizations automatically propagate 
along these hierarchies according to a set of propagation rules. The combination 
of all the above features results in a powerful yet flexible authorization model. 

The authorization specification language of the system is an extension of Or- 
dered Logic (OL) [5, 6, 13] with ordered domains. This is an elegant yet powerful 
formalism whereby the basic concepts of the authorization model can be directly 
represented. Its semantics is an extension of the stable model semantics of logic 
programs [10, 20] to deal with hierarchies, ordered domains, and true negation. 
According to this semantics, more stable models can be assigned to a given set 
of authorization rules, each representing a consistent set of assignments of access 
authorizations. This form of non-determinism entails an innovative approach to 
enforce access control: when an access request is issued, the set of authorization 
rules against which the access request must be verified is chosen on the basis of 
the accesses currently under execution in the system. 

The development of flexible authorization models has been addressed in other 
papers [2-4, 9, 11, 19]. Most of the previous proposals, however, have one or more 
of the following shortcomings: (i) only group [4, 9, 11] or role hierarchies [19] are 
supported; (ii) only propagation rules [9,19] or derivation rules [2, 3, 11] are 
supported; (iii) very limited form of derivation rules are supported [2, 3, 9] (iv) 
very restrictive conflict resolution policies with no exceptions are adopted [2-4]; 
(vi) object hierarchies are not supported [2-4, 11]; (vii) access mode hierarchies 
are not supported [2-4, 9, 11]. By contrast, our model integrates most of the 
features of the abovementioned models into a common framework and provides a 
semantic foundation for them. Additionally, our model has an articulated conflict 
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resolution policy, to deal with authorization conflicts and exceptions, and an 
innovative approach to enforce access control. 

From the side of logic formalisms for security specifications, Jajodia et al. 
[12] propose a logic language for expressing authorization rules and show how 
this language can express most of the access control policies proposed so far. 
Programs that  can be written in this language are a subset of stratified Datalog 
programs and therefore they are able to express only a limited set of authoriza- 
tion specifications. By contrast, in this paper we propose a very general language 
to express authorization specifications without syntactic restrictions (like strat- 
ification). Hence, we do not restrict ourselves to the consideration of programs 
having a unique model rather we allow a multiplicity of models to be associated 
with a given program. To deal with this multiplicity, we have developed a strat- 
egy that ,  each time an access request is submitted to the system, allow us to 
select the appropriate model against which the access request must be checked. 
A logic language, based on modal logic, has been proposed by Abadi et al. in 
[1]. However, their logic is mainly devoted to express concepts such as roles, del- 
egation of authorizations, or the operation of certain protocols. A general logic 
language for expressing authorization rules has also been proposed by Woo and 
Lam in [22]. Although their language is very expressive, it suffers from several 
drawbacks. The most important  is that  it is not always possible to decide whether 
an access request can be authorized or not, because of conflicting authorizations, 
and no mechanisms are provided to deal with such inconsistencies. 

The remainder of this paper is organized as follows. Section 2 presents the 
basic elements of our authorization model. Section 3 provides the logic framework 
to express the various components of our model. Section 4 deals with access 
control. Finally, Section 5 concludes the paper and outlines future work. 

2 Overview of the  Authorizat ion Mode l  

In this section we illustrate our authorization model. 

2.1 S u b j e c t s ,  O b j e c t s  a n d  P r i v i l e g e s  

Our model relies on three basic components. 
The first component is a set of subjects S to which authorizations are granted. 

Subjects can be single users (i.e., elements of a set U), groups (i.e., elements of a 
set G) or roles (i.e., elements of a set R). Roles are named collection of privileges 
and represent organizational agents intended to perform certain job functions 
within an organization. Users in turn are assigned appropriate roles based on 
their qualification. To enable users to successfully execute their tasks, each role 
has some authorizations associated with it. A user can be authorized to play 
several roles. When a user takes on a role, he/she is allowed to exercise all the 
privileges associated with the role. Moreover, a role may be played by several 
users. 1 Usually, roles within an organization are hierarchically organized. For 

1 We assume that there is some mechanism in place that associates users with roles. 
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Top Manag~ . / -- , , .  
Administrative Teclmlcal 

Employee 

Fig. 1. An example of role hierarchy 

instance the role Manager is considered at higher level than the role Accountant .  
To reflect this situation we assume that  roles are organized according to a partial 
order, denoted as -~R. Therefore, the set R together with the -~R relation forms a 
hierarchy, 2 referred to as role hierarchy. Such hierarchy reflects the organizational 
position of roles within a given organization. Let ri, r j  E R be roles. We say that  
ri dominates rj in the hierarchy (rk -~R rj) ,  if r~ precedes rj  in the ordering. An 
example of role hierarchy is illustrated in Figure 1. 

Groups are sets of users and/or  roles. A user or role may belong to several 
groups. A partial order is defined on the set G of groups, denoted as -~c, which 
represents the group-subgroup relationship. Given two groups gi and gj, gi -~G gj 
if and only if g3 is a subgroup of gk. The set G and the -4c relation form a 
hierarchy, referred to as group hierarchy. 

The second component of our authorization model is a set of objects O, 
denoting the resources to be protected. On the set of objects O a partial order 
is defined, reflecting the way objects are organized in terms of other objects. 
Given two objects ok and oj, we say that  oj is a component of object ok, denoted 
ok -~o 03, if oi precedes oj in the ordering. The set O and the -~o relation form 
a hierarchy, referred to as object hierarchy. An example of object hierarchy is 
illustrated in Figure 2. 

mot 

l~mployee_Info Public_hffo Program 

Employ ~ E m ~ y e e ~ l o y . _  S e P i ~  
EvaluaIon Salary_Info Personal_Data C_programs Cobol Assembler_ programs I~ograms 

Fig. 2. An example of object hierarchy 

2 By hierarchy we mean a poset (S, ~), where S is a set and -~ is a partial order over 
S. 
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The last component  of our model is a set of privileges P,  denoting the access 
modes subjects can exercise on the objects in the system. In real situations, 
interactions exist among privileges. For instance, it is reasonable to assume tha t  
the w r i t e  privilege is stronger than the r e a d  privilege. For this reason, also the 
set of privileges P is organized into a hierarchy, called privilege hierarchy, by 
means of a partial  order -~p. We say tha t  a privilege pj is a sub-privilege of 
privilege Pi if and only if the relation p~ -~p pj holds. This means tha t  privilege 
pj is subsumed by privilege pi. 

2.2 Posit ive and Negat ive  Authorizat ions 

Authorizations can be either positive or negative. A positive authorization states 
tha t  a subject is authorized for a given privilege on a given object, whereas a 
negative authorization states tha t  a subject must be denied access to a given 
object.  In the following we use the notat ion (s, o,p, g) to denote positive au- 
thorizations, and the notation -~(s, o,p, g) to represent negative authorizations, 
where s C S, o 6 O, p 6 P and g C U U R (a description of the formal model is 
reported in Section 3). Tuple (s, o,p,g) states tha t  subject g authorizes subject 
s to exercise privilege p on object o, whereas -~(s,o,p,g) states tha t  g prevents 
s from exercising privilege p on o. 

Note tha t  roles can appear  as grantor in an authorization. The reason is that ,  
in our model, a user can connect to the system either as a role or as a single 
user (we refer to the role with which the user connects as the user 's active role).3 
When a user logs into the system as a role, all the actions he/she performs (such 
as granting or revoking authorizations) are considered as if they are performed 
directly by the user's active role rather  than  by the user itself. 

Example 1. Authorization (Employee,  r e a d ,  P u b l i c _ I n f  o, Bob), granted by Bob, 
authorizes the role Employee to read the object P u b l i c _ I n f o ,  whereas authoriza- 
tion -~ (Employee, read,Employee_Evaluation, Manager), granted by the role 
Manager, prevents the role Employee from reading Employee_Evaluation. 

2.3 Derivation Rules 

Beside explicit authorizations, the model supports  the specification of deriva- 
tion rules stating the permission or denial for subjects to exercise privileges on 
objects on the basis of the presence or absence of other permissions or denials. 
Derivation rules can be used to derive both  positive and negative authorizations, 
and represent a compact  way to specify a set of authorizations. 

Example 2. The following are examples of derivation rules tha t  can be expressed 
in our model: 

1. User Ann is denied to exercise the e x e c u t e  privilege on C_Programs if the 
role Programmer has an authorization to w r i t e  it. 

3 For simplicity, we make the assumption that a user is allowed to take on only one 
role in a session 



132 Elisa Bertino et al. 

2. Users Ann, Bob, and John must have exactly the same authorizations on all 
the objects. 

3. The roles A d m i n i s t r a t i v e  Manager and Techn ica l  Manager must have 
mutually exclusive write authorizations on object Employee_Evaluation. 

The language to express derivation rules will be illustrated in Section 3. As 
it will be clear in that  section, the presence of negation in derivation rules 
(whereby new authorizations are derived based on the absence of others) may 
cause the existence of several sets of access authorizations. Consider, for instance, 
the third rule in the above example, where the authorization to write object 
Employee_Evaluation can be derived for the role Administrative Manager 
provided that the role Technical Manager is not authorized to write the same 
object, and vice versa. Clearly, two sets of assignments can be derived in this 
case, one in which only Administrative Manager has the permission to write 
Employee_Evaluation and the other in which only Technical Manager has this 
permission. 

2.4 Derivation of  Authorizat ions  a long Role ,  G r o u p ,  Ob j e c t ,  and 
Privi lege Hierarchies 

Our model supports two different types of implicit authorizations: the first, dis- 
cussed in the previous section, consists of authorizations derived from the deriva- 
tion rules specified by the user. The second derives from the role, group, object 
and privilege hierarchies. Authorizations automatically propagate along these 
hierarchies according to a set of propagation rules. These propagation rules ap- 
ply to both explicit authorizations and authorizations implicitly given through 
derivation rules. 

As far as the role hierarchy is concerned, we consider the following propaga- 
tion rules: 1) a positive authorization given to a role r propagates to all roles 
which precede r in the role hierarchy (that is, to all roles r' such that  r' -~R r); 
2) a negative authorization given to a role r propagates to all the roles following 
r in the role hierarchy (that is, to all roles r' such that  r -<n r ') .  

Note that  the above propagation rules are directly implied by the semantics 
given to the -<2 relationship and they are used in practice by commercial DBMSs 
(such as [18]) supporting the notion of role. Since the lower is the level of a role in 
the role hierarchy, the lower is its position within an organization, it is reasonable 
to assume that  the access privileges given to a role subsume the access privileges 
given to all roles with a lower position in the hierarchy. 

Example 3. Consider the role hierarchy in Figure 1. From the explicit authoriza- 
tions: 

(Administrative Manager, write, Employee_Personal_Data, Bob), 
(Administrat • Manager, execute, Program_Repository, John) 

the following authorizations are derived: 
(Top Manager,write,Employee_Personal_Data,Bob), 
-I (Secretary, execute, Program_Repos it ory, John), 
-~ (Accountant, execute, Program_Repos it ory, John), 
-~ (Employee, execute, Program_Repository, John). 
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Moreover, we assume that  an authorization, either positive or negative, given 
to a group propagates to all the members of the group. Thus, if a user logs 
into the system as a role he/she has all the authorizations explicitly given to 
the role (or derived through propagation and/or  derivation rules) and all the 
authorizations of the groups to which the role belongs to; if he/she connects as 
a single user, then he/she has all his/her personal authorizations and all the 
authorizations of the groups to which he/she belongs to. 

Similarly to the role hierarchy, authorizations propagate along the privilege 
hierarchy according to the following rules: 1) a positive authorization for privilege 
p on object o implies a positive authorization on o for all the privileges following 
p in the privilege hierarchy; 2) a negative authorization for p on o implies a 
negative authorization on o for all the privileges preceding p in the privilege 
hierarchy. 

Example ~,. Consider the authorizations of Example 3 and suppose that  w r i t e  
-~p read.  The following additional authorizations are derived: 

(Administrative Manager, read, Employee_Personal_Data, Bob), 
(Top Manager, read, Employee_Personal_Data, Bob). 

Finally, authorizations granted on a given object propagates to all the objects 
which are direct or indirect components of it. 

Example 5. Consider the object hierarchy illustrated in Figure 2. From the 
authorizations of Examples 3 and 4 we derive a negative authorization for 
Administrative Manager, Secretary, Accountant, and Employee to execute 
C_Programs, Cobol_Programs, and Assembler_Programs. 

2.5 Conflict Resolut ion Policy 

In our model conflicts may arise due to the simultaneous presence of a positive 
and a negative authorization with the same subject, object and privilege. We 
do not consider the simultaneous presence of conflicting authorizations as an 
inconsistency, rather we define a conflict resolution policy which is based on the 
notion of strongest authorization. The conflict resolution policy enforced by our 
model keeps into account: 

- the grantors of the conflicting authorizations, that is, their relative positions 
in the role hierarchy; the authorization granted by the higher level grantor is 
considered as prevailing. Clearly this conflict resolution mechanism applies 
when both the conflicting authorizations are granted by a role; 

- the object hierarchy, in that when conflicts are not solved by the role hier- 
archy, the authorization specified at a lower level in the object hierarchy is 
considered as dominating; 

- the sign of the authorizations, since when conflicts cannot be solved by con- 
sidering the role and/or object hierarchy, we consider as prevailing negative 
authorizations. 

Example 6. Consider the following authorizations: 
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(Employee,write,Employee_Info,Top Manager), 
~(Employee,write,Employee_Info,Administrative Manager), 
~(Consultant,execute,Program_Repository,Technieal Manager), 
(Consultant,execute,Program_Repository,Tom). 

- (Employee,write,Employee_Info,Top Manager) prevails over 
(Employee,write,Employee_Info,Administrative Manager) since Top 

Manager -<R Administrative Manager; 
- -~ (Consultant, execute,Program_Repository,Technical Manager) prevails 

over (Consultant, execute ,Program_Repository,Tom). In this case the con- 
flict cannot be solved neither by the role nor by the object hierarchy. Thus, 
the negative authorization is considered as prevailing. 

2.6 S t r o n g  A u t h o r i z a t i o n s  

The authorization model we have defined so far is characterized by a high degree 
of flexibility. However, this flexibility implies some loss of control from the owner 
of the object. As an example, let us suppose that  a user, say Bob, when playing 
the role Employee, writes some information into one of his objects, say ol, and 
that  he does not want to disclose this information to Al ice .  He therefore grants 
a negative authorization for the r e ad  privilege to A l i ce  on object ol. However, 
the negative authorization issued by Bob does not always ensure that  A l i ce  is 
forbidden to r e a d  object ol. For instance, if a user playing the role Manager 
grants A l i c e  a positive authorization for the r e a d  privilege on object ol, this 
latter authorization overrides the authorization granted by Bob. 

To overcome this drawback we introduce the concept of strong authorizations, 
that  is, authorizations not admitting exceptions with respect to the role hierar- 
chy. Strong authorizations can be specified either explicitly or through derivation 
rules. The basic idea is that: i) strong authorizations cannot be overridden by 
weak authorizations; ii) conflicts among strong authorizations are solved in fa- 
vor of the authorization specified at the lower level in the object hierarchy. If 
the objects on which the authorizations are specified are not related by the -<o 
hierarchy, the negative authorization is considered as prevailing. 

Note that  the notion of strong authorization we propose is different from the 
one adopted by other models (see, for instance, [19]) supporting weak and strong 
authorizations. In these models, strong authorizations can never be overridden 
by other strong authorizations. This implies tha t  the insertion of a strong au- 
thorization must be rejected by the system if it conflicts with an existing strong 
authorization. This clearly prevents strong authorizations to be granted through 
derivation rules. To avoid these shortcomings, we allow strong authorizations to 
be overridden by other positive or negative strong authorizations, under spe- 
cific circumstances. However, this possibility does not invalidate the usefulness 
of strong authorizations: a user can retain complete control over an object o by 
issuing a negative strong authorization on all the direct/ indirect  components of 
o which do not have any component object. 
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3 F o r m a l  M o d e l  

In this section we present the language whereby authorizations are specified in 
our system and give its formal semantics. The language is based on an extension 
of Ordered Logic (OL) [5, 6, 13] by ordered domains. 

3.1 The Authorization Specification Language 

An authorization program encodes the rules whereby authorizations are granted 
within a given system. The components of such a system, namely, subjects, 
objects and privileges, along with their relationships, are modeled by the notion 
of program domain, tha t  we next formMly define. 

Definition 1. ( P r o g r a m  D o m a i n )  A (program) domain consists of the fol- 
lowing components: 

1. A countable set S of labels, called subject identifiers. This set is partitioned 
into three subsets, namely, G (groups), R (roles) and U (users). On G the 
partial order relation ~G is defined. The set R contains a built-in role denoted 
-[-R. The set R U U is partially ordered by _R in such a way that  1-R --~R a, 
for all a E R U U and, further, a --R b, with a r -I-R, implies a, b E R 
(the element -[-R is used to model strong authorizations). We denote by -~R 
the reflexive reduction of ___R. 4 Yhrther, the following functions are given: 
User_Groups : G --* 2 U that ,  given a group g, returns the users members 
of g; and Role_Groups : G --* 2 R that ,  given a group g, returns the roles 
members of g. 

2. A countable set O of labels, called object identifiers. 0 is partially ordered by 
~-o and the poset (O, -~o) has a top element denoted T o ,  tha t  is, an element 
such that  T o  ~ o  o, for all o E O. This element is used to define properties 
that  must hold on all the elements of O. The partial order ~-o models a 
part-of relation among objects. We denote by -~o the reflexive reduction of 

~ o .  
3. A countable set P of labels, called privilege identifiers. P is partially ordered 

by _p .  We denote by -~p the reflexive reduction of _ p .  

From now on, we assume that  a domain D has been fixed. Further,  we assume 
tha t  the following sets are given: 1) A s e t / - / o f  predicate symbols of two types: 
built-in and user-defined. There is a unique built-in predicate symbol, namely, 
auth, of arity 3, which has type S • P • (RU U). User-defined predicate symbols 
are untyped and have a fixed arity; 2) a set A of variable symbols. 

We next define our language based on the fixed domain D (from which con- 
stants are taken) and the above defined s e t s / I  and A (thus, henceforth, every 
notion is implicitly defined on D, H and A). 

A term is either a constant (of D) or a variable (in A). An atom is of the 
form: p(tl,  ..., tn), where p is a predicate symbol ( in/-/) ,  n is the arity of p and 
t l , . . . , tn  are terms. I f p  is built-in (i.e., p =- auth) and its type is T1 x T2 • ~-3, 

4 Given a partial order R, the reflexive reduction of R is ((a, b) e Rla ~ b). 
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then, for each t~ which is a constant, ti E Ti holds. A simple literal is either 
a positive literal Q or a negative literal -~Q, where Q is an atom and -~ is the 
true negation symbol. A referential literal is of the form o.L, where o E O and 
L is a simple literal. A literal is either a simple or a referential literal. Two 
simple (resp. referential) literals are complementary if they are of the form Q 
and -~Q (resp. o.Q and o.-~Q). Given a literal L, we denote its complementary 
literal by -~.L. Two literals are conflicting if they are of the form auth(s,p,g) 
and -~auth(s',p',g') (resp. o.auth(s,p,g) and o.-~auth(s',p',g')), where s -- s' 
and p -- pP. 

A clause r is an expression of the form: 

H ~ A1, ...,AN,not B1, ...,not Bm n >_ 0, m > 0 

where H,  A1, ..., A~ and B1, ..., Bm are literals and not is the negation by failure 
symbol [15]. H is the head of r, whereas A1, ..., AN, not B1, ...,not Bm, n >_ 
0, m > 0, is the body of r. Note that  the head H may be a negative literal. We 
often denote the head literal of r by Head(r) and the body of r by Body(r). 

D e f i n i t i o n  2. ( P r o g r a m  Ru le )  A (program) rule is a pair (o, r) where o E O 
and r is a clause such that  Head(r) is a simple literal. A program rule (o, r) 
whose head predicate symbol is auth is called authorization rule. If the body of 
r is the empty conjunction, then (o, r) is an explicit authorization; otherwise, it 
is a derivation rule (whereby implicit authorizations are derived). 

An authorization rule (o, r),  where Head(r) is of the form, say, auth(s, p, g) 
(resp. -~auth(s, p, g)), is used to express a positive (resp. negative) authorization 
for privilege p granted by g to subject s on object o. 

Example 7. The rule: (Publ ic_Info ,  -~auth(Employee, read,  Bob) ~-) encodes an 
explicit negative authorization to r e a d  Pub l i c_ In fo  granted by Bob to the role 
Employee. With the rules: 
r l :  (C_Programs, auth(hmy, read,  Tom) ~- not others_subj_has_write_auth) 
r2 : (others_subj_has_write_auth ~- C_Programs.auth(X, w r i t e ,  Y), X ~ Amy) 
Tom authorizes Amy to r ead  object C_Programs provided that  nobody else has 
an authorization to w r i t e  it. 

D e f i n i t i o n  3. ( A u t h o r i z a t i o n  P r o g r a m )  An (authorization) program P is a 
finite set of program rules. We call each maximal subset of rules in 1) having the 
same object identifier a component of 7 ).  

For simplicity, and without loss of generality, we assume that  user-defined 
predicates are local to components. 

Example 8. Consider the program 7 ~ consisting of the following rules: 

r1: ( Employee_Evaluation, auth(Administrative Manager,write,Top 
Manager) *- not auth (Technical Manager,write,Top Manager)) 

r2: ( Employee_Evaluation, auth(Technical Manager,write,Top Manager) 
+- not auth (Administrative Manager,write,Top Manager) > 
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r3: (Program_Reposi tory,  au th (Bob , read ,Ann)  +-- ) 
r4: ( Employee_Salary_Info, a u t h ( A c c o u n t a n t , w r i t e , T o p  Manager) 

~- not E m p l o y e e _ E v a l u a t i o n . a u t h ( A d m i n i s t r a t i v e  Manager ,wr i te ,X))  

Rules r l  and r 2 express that  the role Top Manager prevents roles 
A d m i n i s t r a t i v e  Manager and Technica l  Manager to simultaneously have the 
w r i t e  privilege on Employee_Evaluation. 

3.2 S tab le  M o d e l  Seman t i c s  

Throughout this section, we assume that  an authorization program 7) is given. 

The Base Bp of 7 ) is the set of all ground (both base and referential) liter- 
als constructible from the predicate symbols of the language and the constants 
occurring in the program. An interpretation (for 7)) is any subset I of B~. An 
interpretation is consistent if no conflicting literals occur in it. Given an inter- 
pretation I, a ground (either simple or referential) literal L is true (resp. false) 
wrt I if L E I (resp. -~.L E I). Let r be a ground rule and I an interpretation; 
the body of r is true wrt I if every A~, 1 < i < n, is true wrt I and every Bj, 
1 < j < m, is not true w. r . t . I .  The rule r is true wrt I if either the head of r is 
true wrt I or its body is not true wrt I.  We denote by 7)g the set of all ground 
rules obtained from each rule (o, r} C 7) by replacing each variable appearing in 
r by each constant appearing in the program. Further, given an object o E O and 
a rule r, let o.r denote the rule obtained from r by replacing each simple literal 
L by o.L. Next we define the notion of ground version of 7) where authorization 
propagation along hierarchies is made explicit. 

Def in i t i on  4. ( G r o u n d  Vers ion  of  an  A u t h o r i z a t i o n  P r o g r a m )  Let 7)~ = 
UoeO{(5, o.r) I 5 ~ o  o and (5, r) 6 7)g}(the closure of 7)g w.r.t, the object hierar- 
chy). The ground version of 7), denoted G(7)), is inductively defined as follows: 
- Base: if (5, o.r) E 7)g then (5, o.r) 6 G(7)); 
- Induction: if (5, o.r} C G(7)), where r is an authorization rule, then: 

1. if Head(r)  is of the form auth(s ,p ,  g), then G(7)) = G(7)) U Z1 U r2  U Za, 
where: 

- Z l  = {(5, o.r')lr' = au th ( s l , p ,g )  ~- au th(s ,p ,g ) ,  s e G and (sl 6 
User_Groups(s)  U Role_Groups(s) or s ~_c sl)}, that  is, a positive au- 
thorization granted to a group propagates to all subgroups, users and 
roles members of that  group. 

- ~2 = {(5, o.r')lr' = au th ( s l , p ,g )  +-- au th(s ,p ,g ) ,  s 6 R and sl  -<R s}, 
that  is, a positive authorization granted to a role propagates to all the 
roles preceding it in the role hierarchy. 

- ~3 = {(5, o.r')lr' = au th ( s ,p l , g )  ~- a u t h ( s , p , g ) , p  -<p p l} ,  that  is, a 
positive authorization for a privilege p implies a positive authorization 
for all the privileges following p in the privilege hierarchy. 

2. if Head(r)  is of the form ~auth(s ,  p, g), then G(7)) = G(7)) U O1 U 6~2 [3 6~3, 
where: 
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- - 8 1  = {(6,  o . r ' ) [ r  ! : ~auth(s i ,p ,g)  +-- ~auth(s ,p,g) ,  s E G and 
(si E User_Groups(s) URole_Groups(s) or s -<c Sl)}, that  is, a negative 
authorization granted to a group propagates to all subgroups, users and 
roles members of that  group. 

- 82 = {(5, o .r ' )[r '= -~auth(sl,p,g) +-- -~auth(s,p,g),s �9 R and s -<R 
Sl)}, that  is, a negative authorization granted to a role propagates to all 
the roles following it in the role hierarchy. 

- 83 = {(5, o.r')]r' = -~auth(s, pi ,g)  +-- -~auth(s,p,g),pl -<p p}, that  is, 
a negative authorization for privilege p implies a negative authorization 
for all the privileges preceding p in the privilege hierarchy. 

Thus, G(/)) is a set of elements of the form (5, o.r), that  we call referential 
rules. In (5,o.r), 5 is the source object and o is the referenced object. A refer- 
ential rule (5, o.r) defines an authorization for the (referenced) object o which 
is inherited from the (source) object 5. The usefulness of the notion of source 
object will be clarified later on when our conflict resolution policy is formally 
introduced. 

A referential rule (6, o.r) �9 G(~P) is t rue wrt an interpretation I if o.r is true 
w r t / .  We note that  in the ground version of a program conflicts may appear. 
Formally, conflicting rules are defined as follows: 

D e f i n i t i o n  5. (Conf l i c t i ng  Ru le s )  Two referential rules r i  = (Ol,O.r) and 
r2 = (o2, o'.r') in G(P) are conflicting if both the following conditions hold: 
1) o = o' (i.e., they refer to the same object); 2) Head(r) and Head(r') are 
conflicting literals (see subsection 3.1) 

We next define our conflict resolution policy. 

D e f i n i t i o n  6. ( D e f e a t i n g )  Let I be an interpretation for P and let r l  = 
<oi,o.r> 
�9 G(7 ~) be a referential rule. We say that  r i  is defeated in I if there exists 
r2 = (o2, o'.r') �9 G(P) such that  r i  and r2 are conflicting rules, the body of r2 
is true in I and (at least) one of the following conditions holds (next g and g' 
are the grantors appearing in Head(r) and Head(r'), respectively): 

- g' -<R g, that  is, g' is a grantor stronger than g (recall that  either g' ---- T R ,  

thus r2 defines a strong authorization, or g and g' are both roles); 
- g and g' are incomparable w.r.t. -<R (i.e., neither g' -~R g nor g -<it g') and 

oi -<o 02 (thus, the source object of r 2 is a part of the source object of rl) ;  
- g and g' are incomparable w.r.t. -<R, oi and o2 are incomparable w.r.t. -<o 

and Head(r') is a negative literal. 

Now we are ready to provide the definition of model of an authorization 
program. 

D e f i n i t i o n  7. ( A u t h o r i z a t i o n  P r o g r a m  M o d e l )  A model for 7) is an in- 
terpretat ion M such that  every referential rule in G(P) is either true in M or 
defeated in M. 
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P r o p o s i t i o n  31 Let M be a model ofT). Then, M is a consistent interpretation. 

To define stable models, we need the following preliminary definition. 

Def in i t i on  8. ( R e d u c t i o n  of  an  A u t h o r i z a t i o n  P r o g r a m )  Given an inter- 
pretation I for 7), the reduction of 7) w.r.t. I ,  denoted Gx(7)), is the following set 
of ground rules: GI(7)) -- {o.rl3(6, o.rl �9 G(7)) not defeated in I and Body(r) is 
true w.r.t. I}. 

Note that  GI(P)  can be regarded as a Datalog program (with negation by 
failure) [14, 21] simply by considering each referential literal of the form, say, 
o.p(tl,..., tn) (resp. o.-~p(tl, ..., t~)), as a simple literal with predicate symbol o.p 
(resp. o.-~p). Thus, given a set X of rules, the immediate consequence operator 
Tx is defined in the usual way: 

Tx : 2s~--'2 s~ 
I ~-~{L �9 Bp] 3r �9 X s.t. Head(r) = L, and Body(r) is true wrt I}. 

Def in i t i on  9. (S tab le  M o d e l )  Let M be a model of 7 ). M is a stable model 
of P if M = T~M(p))(~ ). 

Example 9. Consider the program 7 ) of Example 8 and let: 

M1 -- {Employee_Evaluat ion.auth (Administrative Manager, write, Top 
Manager), Program_Reposit ory.auth (Bob, read, Ann) } 

be an interpretation for 7). GMI (7)) = {rl, r3}. Clearly, MI = TI~MI (9))(@) 
and, thus, MI is a stable model of 7). It can be easily shown that: 

M2 = {Employee_Evaluation.auth(Technical Manager,write,Top Manager), 
Employee_Salary_Inf e.auth (Accountant, write, Top Manager), 
Pr ogram_Reposit ory.auth (Bob, read, Ann) } 

is also a stable model of P.  

Thus, in general, a program is assigned with a number (possibly zero) of 
stable models. Each stable model represents a consistent way of assigning access 
authorizations to users. 

Example 10. Consider Example 9 above. According to the two stable models 
associated with 7 ), it is possible to simultaneously authorize A d m i n i s t r a t i v e  
Manager to write Employee_Evaluation and Bob to read Program_ 
Repository and the same happens if we consider Technical Manager instead 
of Admnistrative Manager. By contrast, it is not possible to simultaneously au- 
thorize Administrative Manager to write Employee_Evaluation and Account- 
ant to write Employee_Salary_Info. 
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4 A c c e s s  Control  

An access request is represented as a triple (s,p, o), with s E U U R, p E P,  and 
o E O. Tuple (s, p, o) states that  subject s requires to exercise privilege p on 
object o. 

L e t / ' p  be the set of stable models of 7 ). Each model belonging t o / ' p  rep- 
resents a consistent way of assigning access authorizations. The problem then 
arises of what model to select, among those i n / ' p ,  in order to verify whether an 
access request can be authorized. 

In our access control policy, the choice of the model against which access 
requests must be verified is driven by the privileges the subjects are exercising 
on the objects in the system when the access request is issued. Given an access 
request a,  the access control mechanism selects from Fp a stable model which: 
i) satisfies a and ii) is compatible with all the current accesses. If such a model 
exists, the access is authorized; otherwise, it is denied. Clearly, enforcing this 
policy requires the system to maintain information on the set of accesses tha t  
are currently in execution. 

An algorithm enforcing access control is illustrated in Figure 3. The al- 
gorithm makes use of two sets, namely Current_Access and Current_Model. 
Current_Access is the set of current accesses: (s, p, o) E Current_Access if and 
only if subject s is currently exercising privilege p on object o. Current_Model is 
the model of 7 ) currently chosen as valid. Moreover we make use of function Hg 
that ,  given a model M, returns the set of access requests that  can be authorized 
according to tha t  model. Formally, f ig(M) = {(s,p, o) l o.auth(s,p,g ) E M}.  

Algorithm 41 Access Control Algorithm 

INPUT:  
O U T P U T :  

M E T H O D :  

1) An access reques t  (s ,p ,  o), 2) An au tho r i za t i on  p rog ram 
1) A U T H O R I Z E  if  the  access reques t  can  be  author ized ,  
2) R E J E C T ,  otherwise.  

1. Let  Current_Access  be  the  set  of cur ren t  accesses 
2. i f  (s, p, o) E YIg (Current_Model)  t h e n  

Curren t_Access  :=  Current_Access  U {(s,  p, o)} 
r e tu rn  A U T H O R I Z E  

e n d i f  
3. i f 3 M  ~ F p  such t h a t  ( ( ( s , p , o ) }  UCurren t_Access )  C Hg(M)  t h e n  

Curren t_Model  :~- M 
Curren t_Access  :-~ Current_Access  U { (S, p, o)} 
r e tu rn  A U T H O R I Z E  

e n d i f  
4. r e tu rn  R E J E C T  

Pig. 3. Access Control Algorithm 

Example 11. Consider the program P of Example 9. Assume that  Current_Model 
= M1 and Current_Access = {(Bob , read ,Program_Repos i to ry )} .  Let 
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(Technical Manager,write,Employee_Evaluation) be a new access request. 
(Technical Manager,write,Employee_Evaluation) (L 1-1g(M1). However, 
(Technical Manager, writ e, Employee_Evaluat ion) E Hg(M2) and 
Current_Access C Bg(M2), then the request is authorized and inserted into 
Current_Access. Current_Model is set equal to M2. Suppose now that  the ac- 
cess request (Accountant  ,wr i t e  ,Employee_Salary_Info) is submitted to the 
system. This request is denied since there does not exist a stable model M 
of 7 ~ such that  (Acconntan t ,wr i te ,Employee_Salary_Info)  E FIg(M) and 
Current_Access C_ FIg(M). 

A few concluding remarks on the complexity of the described algorithm. It is 
well known in logic programming that  computing stable model semantics is an 
exponential task (unless P=NP)  [16]. In particular, deciding whether a program 
admits a stable model is NP-complete. In principle, this is not a drawback, as it 
means that  it is possible to express some NP-complete problems. Without any 
form of syntactic restrictions (no stratified negation [21], no limitation on the 
structure of both hierarchies and conflicts, etc.), the language offers a general 
tool whereby the user is free to model very complex application domains. On 
the other hand, a number of efficient techniques have recently been proposed to 
drastically improve the computation of stable models [20, 7, 17, 8]. As a result, the 
approach becomes feasible for many problems of practical interest. We argue that  
(real) security applications fall into this category of problems, as it is reasonable 
to assume that  the sources of complexity (i.e., unsolvable conflicts, unstratified 
negation by failure [21]) are, in general, limited. 

5 Conclusions 

In this paper we have presented an advanced authorization mechanism based 
o n  a logic formalism. The model provides several notable features such as posi- 
tive/negative and weak/strong authorizations, derivation and propagation rules, 
and the support for both roles and groups. Moreover, we have proposed an in- 
novative approach for both access control and authorization conflicts resolution. 

We plan to extend this work along several directions. First we are developing 
more articulated resolution policies, taking into account other aspects, such as 
the group hierarchy. We also plan to extend the current model to incorporate 
temporal features [2, 3] and to allow a user to take on multiple roles in a section. 
A third direction concerns implementation issues. 
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