
A n A u t h o r i z a t i o n M o d e l and
Its Formal Semant ic s

El i sa Ber t ino , 1 Francesco Buccafurr i , 2 E lena Fer ra r i , 1 P a s q u a l e Rul lo 3

1 Dipart imento di Scienze dell 'Informazione
Universitk di Milano - Milano, I taly
{bertino, f errarie}�9 unimi, it

2 Dipart imento DIMET
Universitk di Reggio Calabria, Reggio Calabria, I ta ly

bucca�9 ing. unirc, it

3 Dipart imento di Matemat ica
Universitk della Calabria, Arcavacata di Rende, Rende, I ta ly

rullo�9 ing. unicr, it

A b s t r a c t . This paper describes an advanced authorization mechanism
based on a logic formalism. The model supports both positive and neg-
ative authorizations. I t also supports derivation rules by which an au-
thorization can be granted on the basis of the presence or absence of
other authorizations. Subjects, objects and authorization types are or-
ganized into hierarchies, supporting a more adequate representation of
their semantics. From the authorizations explicitly specified, addit ional
authorizations are automatical ly derived by the system based on those
hierarchies. The combination of all the above features results in a pow-
erful yet flexible access control mechanism.
The specification language of the system is an extension of Ordered Logic
with ordered domains. This is an elegant yet powerful formalism whereby
the basic concepts of the authorization model can be natural ly formal-
ized. Its semantics is based on the notion of stable model and assigns, to
a given set of authorization rules, a multiplicity of (stable) models, each
representing a possible way of assigning access authorizations. This form
of non-determinism entails an innovative approach to enforce access con-
trol: when an access request is issued, the appropriate model is chosen
on the basis of the accesses currently under execution in the system.

1 I n t r o d u c t i o n

T h e i n t roduc t i on of an access cont ro l sy s t em wi th in any o rgan iza t i on entai ls
two ma in tasks . T h e first is t he iden t i f ica t ion and speci f ica t ion of su i tab le ac-

cess con t ro l pol ic ies . A n access cont ro l po l i cy es tabl i shes for each sub jec t t he
ac t ions h e / s h e can per fo rm on which o b j e c t w i th in t he sy s t em under which
c i rcumstances . The second t a s k is the deve lopmen t of a su i t ab l e access con-

t ro l m e c h a n i s m imp lemen t ing the s t a t ed policies. M a n y advanced appl ica t ions ,

128 Elisa Bertino et al.

such as workfiow systems, and computer-supported cooperative work, have ar-
ticulated and rich access control requirements. These requirements cannot be
adequately supported by current access control mechanisms which are tailored
to few, specific policies. In most cases, either the organization is forced to adopt
the specific policy built-in into the access control mechanism at hand, or access
control policies must be implemented as application programs. Both situations
are clearly unacceptable. A possible solution to this problem is the development
of advanced access control mechanisms, which extend the expressive power of ac-
cess control mechanisms currently available in commercial DBMSs and research
prototypes. Extending the expressive power of existing authorization models
has, as its counterpart, an increase of the complexity of the model. A method
to manage such increased complexity is to provide a formal semantic foundation
for the model. In this paper we present a step in this direction by proposing an
authorization mechanism based on a logic formalism. The model is based on the
closed policy with negative authorizations and the enforcement of the "strongest
authorization takes precedence" principle. Our model also provides the possibil-
ity of specifying derivation rules by which new authorizations can be derived on
the basis of the presence or absence of other authorizations. Authorizations can
be granted to a single user as well as to a group or to a role. Subjects, objects,
and authorization types are organized into hierarchies, supporting a more ade-
quate representation of their semantics. Authorizations automatically propagate
along these hierarchies according to a set of propagation rules. The combination
of all the above features results in a powerful yet flexible authorization model.

The authorization specification language of the system is an extension of Or-
dered Logic (OL) [5, 6, 13] with ordered domains. This is an elegant yet powerful
formalism whereby the basic concepts of the authorization model can be directly
represented. Its semantics is an extension of the stable model semantics of logic
programs [10, 20] to deal with hierarchies, ordered domains, and true negation.
According to this semantics, more stable models can be assigned to a given set
of authorization rules, each representing a consistent set of assignments of access
authorizations. This form of non-determinism entails an innovative approach to
enforce access control: when an access request is issued, the set of authorization
rules against which the access request must be verified is chosen on the basis of
the accesses currently under execution in the system.

The development of flexible authorization models has been addressed in other
papers [2-4, 9, 11, 19]. Most of the previous proposals, however, have one or more
of the following shortcomings: (i) only group [4, 9, 11] or role hierarchies [19] are
supported; (ii) only propagation rules [9,19] or derivation rules [2, 3, 11] are
supported; (iii) very limited form of derivation rules are supported [2, 3, 9] (iv)
very restrictive conflict resolution policies with no exceptions are adopted [2-4];
(vi) object hierarchies are not supported [2-4, 11]; (vii) access mode hierarchies
are not supported [2-4, 9, 11]. By contrast, our model integrates most of the
features of the abovementioned models into a common framework and provides a
semantic foundation for them. Additionally, our model has an articulated conflict

An Authorization Model and Its Formal Semantics 129

resolution policy, to deal with authorization conflicts and exceptions, and an
innovative approach to enforce access control.

From the side of logic formalisms for security specifications, Jajodia et al.
[12] propose a logic language for expressing authorization rules and show how
this language can express most of the access control policies proposed so far.
Programs that can be written in this language are a subset of stratified Datalog
programs and therefore they are able to express only a limited set of authoriza-
tion specifications. By contrast, in this paper we propose a very general language
to express authorization specifications without syntactic restrictions (like strat-
ification). Hence, we do not restrict ourselves to the consideration of programs
having a unique model rather we allow a multiplicity of models to be associated
with a given program. To deal with this multiplicity, we have developed a strat-
egy that , each time an access request is submitted to the system, allow us to
select the appropriate model against which the access request must be checked.
A logic language, based on modal logic, has been proposed by Abadi et al. in
[1]. However, their logic is mainly devoted to express concepts such as roles, del-
egation of authorizations, or the operation of certain protocols. A general logic
language for expressing authorization rules has also been proposed by Woo and
Lam in [22]. Although their language is very expressive, it suffers from several
drawbacks. The most important is that it is not always possible to decide whether
an access request can be authorized or not, because of conflicting authorizations,
and no mechanisms are provided to deal with such inconsistencies.

The remainder of this paper is organized as follows. Section 2 presents the
basic elements of our authorization model. Section 3 provides the logic framework
to express the various components of our model. Section 4 deals with access
control. Finally, Section 5 concludes the paper and outlines future work.

2 Overview of the Authorizat ion Mode l

In this section we illustrate our authorization model.

2.1 S u b j e c t s , O b j e c t s a n d P r i v i l e g e s

Our model relies on three basic components.
The first component is a set of subjects S to which authorizations are granted.

Subjects can be single users (i.e., elements of a set U), groups (i.e., elements of a
set G) or roles (i.e., elements of a set R). Roles are named collection of privileges
and represent organizational agents intended to perform certain job functions
within an organization. Users in turn are assigned appropriate roles based on
their qualification. To enable users to successfully execute their tasks, each role
has some authorizations associated with it. A user can be authorized to play
several roles. When a user takes on a role, he/she is allowed to exercise all the
privileges associated with the role. Moreover, a role may be played by several
users. 1 Usually, roles within an organization are hierarchically organized. For

1 We assume that there is some mechanism in place that associates users with roles.

130 Elisa Bertino et al.

Top Manag~ . / -- , , .
Administrative Teclmlcal

Employee

Fig. 1. An example of role hierarchy

instance the role Manager is considered at higher level than the role Accountant .
To reflect this situation we assume that roles are organized according to a partial
order, denoted as -~R. Therefore, the set R together with the -~R relation forms a
hierarchy, 2 referred to as role hierarchy. Such hierarchy reflects the organizational
position of roles within a given organization. Let ri, r j E R be roles. We say that
ri dominates rj in the hierarchy (rk -~R rj) , if r~ precedes rj in the ordering. An
example of role hierarchy is illustrated in Figure 1.

Groups are sets of users and/or roles. A user or role may belong to several
groups. A partial order is defined on the set G of groups, denoted as -~c, which
represents the group-subgroup relationship. Given two groups gi and gj, gi -~G gj
if and only if g3 is a subgroup of gk. The set G and the -4c relation form a
hierarchy, referred to as group hierarchy.

The second component of our authorization model is a set of objects O,
denoting the resources to be protected. On the set of objects O a partial order
is defined, reflecting the way objects are organized in terms of other objects.
Given two objects ok and oj, we say that oj is a component of object ok, denoted
ok -~o 03, if oi precedes oj in the ordering. The set O and the -~o relation form
a hierarchy, referred to as object hierarchy. An example of object hierarchy is
illustrated in Figure 2.

mot

l~mployee_Info Public_hffo Program

Employ ~ E m ~ y e e ~ l o y . _ S e P i ~
EvaluaIon Salary_Info Personal_Data C_programs Cobol Assembler_ programs I~ograms

Fig. 2. An example of object hierarchy

2 By hierarchy we mean a poset (S, ~), where S is a set and -~ is a partial order over
S.

An Authorization Model and Its Formal Semantics 131

The last component of our model is a set of privileges P, denoting the access
modes subjects can exercise on the objects in the system. In real situations,
interactions exist among privileges. For instance, it is reasonable to assume tha t
the w r i t e privilege is stronger than the r e a d privilege. For this reason, also the
set of privileges P is organized into a hierarchy, called privilege hierarchy, by
means of a partial order -~p. We say tha t a privilege pj is a sub-privilege of
privilege Pi if and only if the relation p~ -~p pj holds. This means tha t privilege
pj is subsumed by privilege pi.

2.2 Posit ive and Negat ive Authorizat ions

Authorizations can be either positive or negative. A positive authorization states
tha t a subject is authorized for a given privilege on a given object, whereas a
negative authorization states tha t a subject must be denied access to a given
object. In the following we use the notat ion (s, o,p, g) to denote positive au-
thorizations, and the notation -~(s, o,p, g) to represent negative authorizations,
where s C S, o 6 O, p 6 P and g C U U R (a description of the formal model is
reported in Section 3). Tuple (s, o,p,g) states tha t subject g authorizes subject
s to exercise privilege p on object o, whereas -~(s,o,p,g) states tha t g prevents
s from exercising privilege p on o.

Note tha t roles can appear as grantor in an authorization. The reason is that ,
in our model, a user can connect to the system either as a role or as a single
user (we refer to the role with which the user connects as the user 's active role).3
When a user logs into the system as a role, all the actions he/she performs (such
as granting or revoking authorizations) are considered as if they are performed
directly by the user's active role rather than by the user itself.

Example 1. Authorization (Employee, r e a d , P u b l i c _ I n f o, Bob), granted by Bob,
authorizes the role Employee to read the object P u b l i c _ I n f o , whereas authoriza-
tion -~ (Employee, read,Employee_Evaluation, Manager), granted by the role
Manager, prevents the role Employee from reading Employee_Evaluation.

2.3 Derivation Rules

Beside explicit authorizations, the model supports the specification of deriva-
tion rules stating the permission or denial for subjects to exercise privileges on
objects on the basis of the presence or absence of other permissions or denials.
Derivation rules can be used to derive both positive and negative authorizations,
and represent a compact way to specify a set of authorizations.

Example 2. The following are examples of derivation rules tha t can be expressed
in our model:

1. User Ann is denied to exercise the e x e c u t e privilege on C_Programs if the
role Programmer has an authorization to w r i t e it.

3 For simplicity, we make the assumption that a user is allowed to take on only one
role in a session

132 Elisa Bertino et al.

2. Users Ann, Bob, and John must have exactly the same authorizations on all
the objects.

3. The roles A d m i n i s t r a t i v e Manager and Techn ica l Manager must have
mutually exclusive write authorizations on object Employee_Evaluation.

The language to express derivation rules will be illustrated in Section 3. As
it will be clear in that section, the presence of negation in derivation rules
(whereby new authorizations are derived based on the absence of others) may
cause the existence of several sets of access authorizations. Consider, for instance,
the third rule in the above example, where the authorization to write object
Employee_Evaluation can be derived for the role Administrative Manager
provided that the role Technical Manager is not authorized to write the same
object, and vice versa. Clearly, two sets of assignments can be derived in this
case, one in which only Administrative Manager has the permission to write
Employee_Evaluation and the other in which only Technical Manager has this
permission.

2.4 Derivation of Authorizat ions a long Role , G r o u p , Ob j e c t , and
Privi lege Hierarchies

Our model supports two different types of implicit authorizations: the first, dis-
cussed in the previous section, consists of authorizations derived from the deriva-
tion rules specified by the user. The second derives from the role, group, object
and privilege hierarchies. Authorizations automatically propagate along these
hierarchies according to a set of propagation rules. These propagation rules ap-
ply to both explicit authorizations and authorizations implicitly given through
derivation rules.

As far as the role hierarchy is concerned, we consider the following propaga-
tion rules: 1) a positive authorization given to a role r propagates to all roles
which precede r in the role hierarchy (that is, to all roles r' such that r' -~R r);
2) a negative authorization given to a role r propagates to all the roles following
r in the role hierarchy (that is, to all roles r' such that r -<n r ') .

Note that the above propagation rules are directly implied by the semantics
given to the -<2 relationship and they are used in practice by commercial DBMSs
(such as [18]) supporting the notion of role. Since the lower is the level of a role in
the role hierarchy, the lower is its position within an organization, it is reasonable
to assume that the access privileges given to a role subsume the access privileges
given to all roles with a lower position in the hierarchy.

Example 3. Consider the role hierarchy in Figure 1. From the explicit authoriza-
tions:

(Administrative Manager, write, Employee_Personal_Data, Bob),
(Administrat • Manager, execute, Program_Repository, John)

the following authorizations are derived:
(Top Manager,write,Employee_Personal_Data,Bob),
-I (Secretary, execute, Program_Repos it ory, John),
-~ (Accountant, execute, Program_Repos it ory, John),
-~ (Employee, execute, Program_Repository, John).

An Authorization Model and Its Formal Semantics 133

Moreover, we assume that an authorization, either positive or negative, given
to a group propagates to all the members of the group. Thus, if a user logs
into the system as a role he/she has all the authorizations explicitly given to
the role (or derived through propagation and/or derivation rules) and all the
authorizations of the groups to which the role belongs to; if he/she connects as
a single user, then he/she has all his/her personal authorizations and all the
authorizations of the groups to which he/she belongs to.

Similarly to the role hierarchy, authorizations propagate along the privilege
hierarchy according to the following rules: 1) a positive authorization for privilege
p on object o implies a positive authorization on o for all the privileges following
p in the privilege hierarchy; 2) a negative authorization for p on o implies a
negative authorization on o for all the privileges preceding p in the privilege
hierarchy.

Example ~,. Consider the authorizations of Example 3 and suppose that w r i t e
-~p read. The following additional authorizations are derived:

(Administrative Manager, read, Employee_Personal_Data, Bob),
(Top Manager, read, Employee_Personal_Data, Bob).

Finally, authorizations granted on a given object propagates to all the objects
which are direct or indirect components of it.

Example 5. Consider the object hierarchy illustrated in Figure 2. From the
authorizations of Examples 3 and 4 we derive a negative authorization for
Administrative Manager, Secretary, Accountant, and Employee to execute
C_Programs, Cobol_Programs, and Assembler_Programs.

2.5 Conflict Resolut ion Policy

In our model conflicts may arise due to the simultaneous presence of a positive
and a negative authorization with the same subject, object and privilege. We
do not consider the simultaneous presence of conflicting authorizations as an
inconsistency, rather we define a conflict resolution policy which is based on the
notion of strongest authorization. The conflict resolution policy enforced by our
model keeps into account:

- the grantors of the conflicting authorizations, that is, their relative positions
in the role hierarchy; the authorization granted by the higher level grantor is
considered as prevailing. Clearly this conflict resolution mechanism applies
when both the conflicting authorizations are granted by a role;

- the object hierarchy, in that when conflicts are not solved by the role hier-
archy, the authorization specified at a lower level in the object hierarchy is
considered as dominating;

- the sign of the authorizations, since when conflicts cannot be solved by con-
sidering the role and/or object hierarchy, we consider as prevailing negative
authorizations.

Example 6. Consider the following authorizations:

134 Elisa Bertino et al.

(Employee,write,Employee_Info,Top Manager),
~(Employee,write,Employee_Info,Administrative Manager),
~(Consultant,execute,Program_Repository,Technieal Manager),
(Consultant,execute,Program_Repository,Tom).

- (Employee,write,Employee_Info,Top Manager) prevails over
(Employee,write,Employee_Info,Administrative Manager) since Top

Manager -<R Administrative Manager;
- -~ (Consultant, execute,Program_Repository,Technical Manager) prevails

over (Consultant, execute ,Program_Repository,Tom). In this case the con-
flict cannot be solved neither by the role nor by the object hierarchy. Thus,
the negative authorization is considered as prevailing.

2.6 S t r o n g A u t h o r i z a t i o n s

The authorization model we have defined so far is characterized by a high degree
of flexibility. However, this flexibility implies some loss of control from the owner
of the object. As an example, let us suppose that a user, say Bob, when playing
the role Employee, writes some information into one of his objects, say ol, and
that he does not want to disclose this information to Al ice . He therefore grants
a negative authorization for the r e ad privilege to A l i ce on object ol. However,
the negative authorization issued by Bob does not always ensure that A l i ce is
forbidden to r e a d object ol. For instance, if a user playing the role Manager
grants A l i c e a positive authorization for the r e a d privilege on object ol, this
latter authorization overrides the authorization granted by Bob.

To overcome this drawback we introduce the concept of strong authorizations,
that is, authorizations not admitting exceptions with respect to the role hierar-
chy. Strong authorizations can be specified either explicitly or through derivation
rules. The basic idea is that: i) strong authorizations cannot be overridden by
weak authorizations; ii) conflicts among strong authorizations are solved in fa-
vor of the authorization specified at the lower level in the object hierarchy. If
the objects on which the authorizations are specified are not related by the -<o
hierarchy, the negative authorization is considered as prevailing.

Note that the notion of strong authorization we propose is different from the
one adopted by other models (see, for instance, [19]) supporting weak and strong
authorizations. In these models, strong authorizations can never be overridden
by other strong authorizations. This implies tha t the insertion of a strong au-
thorization must be rejected by the system if it conflicts with an existing strong
authorization. This clearly prevents strong authorizations to be granted through
derivation rules. To avoid these shortcomings, we allow strong authorizations to
be overridden by other positive or negative strong authorizations, under spe-
cific circumstances. However, this possibility does not invalidate the usefulness
of strong authorizations: a user can retain complete control over an object o by
issuing a negative strong authorization on all the direct/ indirect components of
o which do not have any component object.

An Authorization Model and Its Formal Semantics 135

3 F o r m a l M o d e l

In this section we present the language whereby authorizations are specified in
our system and give its formal semantics. The language is based on an extension
of Ordered Logic (OL) [5, 6, 13] by ordered domains.

3.1 The Authorization Specification Language

An authorization program encodes the rules whereby authorizations are granted
within a given system. The components of such a system, namely, subjects,
objects and privileges, along with their relationships, are modeled by the notion
of program domain, tha t we next formMly define.

Definition 1. (P r o g r a m D o m a i n) A (program) domain consists of the fol-
lowing components:

1. A countable set S of labels, called subject identifiers. This set is partitioned
into three subsets, namely, G (groups), R (roles) and U (users). On G the
partial order relation ~G is defined. The set R contains a built-in role denoted
-[-R. The set R U U is partially ordered by _R in such a way that 1-R --~R a,
for all a E R U U and, further, a --R b, with a r -I-R, implies a, b E R
(the element -[-R is used to model strong authorizations). We denote by -~R
the reflexive reduction of ___R. 4 Yhrther, the following functions are given:
User_Groups : G --* 2 U that , given a group g, returns the users members
of g; and Role_Groups : G --* 2 R that , given a group g, returns the roles
members of g.

2. A countable set O of labels, called object identifiers. 0 is partially ordered by
~-o and the poset (O, -~o) has a top element denoted T o , tha t is, an element
such that T o ~ o o, for all o E O. This element is used to define properties
that must hold on all the elements of O. The partial order ~-o models a
part-of relation among objects. We denote by -~o the reflexive reduction of

~ o .
3. A countable set P of labels, called privilege identifiers. P is partially ordered

by _p . We denote by -~p the reflexive reduction of _ p .

From now on, we assume that a domain D has been fixed. Further, we assume
tha t the following sets are given: 1) A s e t / - / o f predicate symbols of two types:
built-in and user-defined. There is a unique built-in predicate symbol, namely,
auth, of arity 3, which has type S • P • (RU U). User-defined predicate symbols
are untyped and have a fixed arity; 2) a set A of variable symbols.

We next define our language based on the fixed domain D (from which con-
stants are taken) and the above defined s e t s / I and A (thus, henceforth, every
notion is implicitly defined on D, H and A).

A term is either a constant (of D) or a variable (in A). An atom is of the
form: p(tl, ..., tn), where p is a predicate symbol (in/-/) , n is the arity of p and
t l , . . . , tn are terms. I f p is built-in (i.e., p =- auth) and its type is T1 x T2 • ~-3,

4 Given a partial order R, the reflexive reduction of R is ((a, b) e Rla ~ b).

136 Elisa Bertino et al.

then, for each t~ which is a constant, ti E Ti holds. A simple literal is either
a positive literal Q or a negative literal -~Q, where Q is an atom and -~ is the
true negation symbol. A referential literal is of the form o.L, where o E O and
L is a simple literal. A literal is either a simple or a referential literal. Two
simple (resp. referential) literals are complementary if they are of the form Q
and -~Q (resp. o.Q and o.-~Q). Given a literal L, we denote its complementary
literal by -~.L. Two literals are conflicting if they are of the form auth(s,p,g)
and -~auth(s',p',g') (resp. o.auth(s,p,g) and o.-~auth(s',p',g')), where s -- s'
and p -- pP.

A clause r is an expression of the form:

H ~ A1, ...,AN,not B1, ...,not Bm n >_ 0, m > 0

where H, A1, ..., A~ and B1, ..., Bm are literals and not is the negation by failure
symbol [15]. H is the head of r, whereas A1, ..., AN, not B1, ...,not Bm, n >_
0, m > 0, is the body of r. Note that the head H may be a negative literal. We
often denote the head literal of r by Head(r) and the body of r by Body(r).

D e f i n i t i o n 2. (P r o g r a m Ru le) A (program) rule is a pair (o, r) where o E O
and r is a clause such that Head(r) is a simple literal. A program rule (o, r)
whose head predicate symbol is auth is called authorization rule. If the body of
r is the empty conjunction, then (o, r) is an explicit authorization; otherwise, it
is a derivation rule (whereby implicit authorizations are derived).

An authorization rule (o, r), where Head(r) is of the form, say, auth(s, p, g)
(resp. -~auth(s, p, g)), is used to express a positive (resp. negative) authorization
for privilege p granted by g to subject s on object o.

Example 7. The rule: (Publ ic_Info , -~auth(Employee, read, Bob) ~-) encodes an
explicit negative authorization to r e a d Pub l i c_ In fo granted by Bob to the role
Employee. With the rules:
r l : (C_Programs, auth(hmy, read, Tom) ~- not others_subj_has_write_auth)
r2 : (others_subj_has_write_auth ~- C_Programs.auth(X, w r i t e , Y), X ~ Amy)
Tom authorizes Amy to r ead object C_Programs provided that nobody else has
an authorization to w r i t e it.

D e f i n i t i o n 3. (A u t h o r i z a t i o n P r o g r a m) An (authorization) program P is a
finite set of program rules. We call each maximal subset of rules in 1) having the
same object identifier a component of 7).

For simplicity, and without loss of generality, we assume that user-defined
predicates are local to components.

Example 8. Consider the program 7 ~ consisting of the following rules:

r1: (Employee_Evaluation, auth(Administrative Manager,write,Top
Manager) *- not auth (Technical Manager,write,Top Manager))

r2: (Employee_Evaluation, auth(Technical Manager,write,Top Manager)
+- not auth (Administrative Manager,write,Top Manager) >

An Authorization Model and Its Formal Semantics 137

r3: (Program_Reposi tory, au th (Bob , read ,Ann) +--)
r4: (Employee_Salary_Info, a u t h (A c c o u n t a n t , w r i t e , T o p Manager)

~- not E m p l o y e e _ E v a l u a t i o n . a u t h (A d m i n i s t r a t i v e Manager ,wr i te ,X))

Rules r l and r 2 express that the role Top Manager prevents roles
A d m i n i s t r a t i v e Manager and Technica l Manager to simultaneously have the
w r i t e privilege on Employee_Evaluation.

3.2 S tab le M o d e l Seman t i c s

Throughout this section, we assume that an authorization program 7) is given.

The Base Bp of 7) is the set of all ground (both base and referential) liter-
als constructible from the predicate symbols of the language and the constants
occurring in the program. An interpretation (for 7)) is any subset I of B~. An
interpretation is consistent if no conflicting literals occur in it. Given an inter-
pretation I, a ground (either simple or referential) literal L is true (resp. false)
wrt I if L E I (resp. -~.L E I). Let r be a ground rule and I an interpretation;
the body of r is true wrt I if every A~, 1 < i < n, is true wrt I and every Bj,
1 < j < m, is not true w. r . t . I . The rule r is true wrt I if either the head of r is
true wrt I or its body is not true wrt I. We denote by 7)g the set of all ground
rules obtained from each rule (o, r} C 7) by replacing each variable appearing in
r by each constant appearing in the program. Further, given an object o E O and
a rule r, let o.r denote the rule obtained from r by replacing each simple literal
L by o.L. Next we define the notion of ground version of 7) where authorization
propagation along hierarchies is made explicit.

Def in i t i on 4. (G r o u n d Vers ion of an A u t h o r i z a t i o n P r o g r a m) Let 7)~ =
UoeO{(5, o.r) I 5 ~ o o and (5, r) 6 7)g}(the closure of 7)g w.r.t, the object hierar-
chy). The ground version of 7), denoted G(7)), is inductively defined as follows:
- Base: if (5, o.r) E 7)g then (5, o.r) 6 G(7));
- Induction: if (5, o.r} C G(7)), where r is an authorization rule, then:

1. if Head(r) is of the form auth(s ,p , g), then G(7)) = G(7)) U Z1 U r2 U Za,
where:

- Z l = {(5, o.r')lr' = au th (s l , p ,g) ~- au th(s ,p ,g) , s e G and (sl 6
User_Groups(s) U Role_Groups(s) or s ~_c sl)}, that is, a positive au-
thorization granted to a group propagates to all subgroups, users and
roles members of that group.

- ~2 = {(5, o.r')lr' = au th (s l , p ,g) +-- au th(s ,p ,g) , s 6 R and sl -<R s},
that is, a positive authorization granted to a role propagates to all the
roles preceding it in the role hierarchy.

- ~3 = {(5, o.r')lr' = au th (s ,p l , g) ~- a u t h (s , p , g) , p -<p p l} , that is, a
positive authorization for a privilege p implies a positive authorization
for all the privileges following p in the privilege hierarchy.

2. if Head(r) is of the form ~auth(s , p, g), then G(7)) = G(7)) U O1 U 6~2 [3 6~3,
where:

138 Elisa Bertino et al.

- - 8 1 = {(6, o . r ') [r ! : ~auth(s i ,p ,g) +-- ~auth(s ,p,g) , s E G and
(si E User_Groups(s) URole_Groups(s) or s -<c Sl)}, that is, a negative
authorization granted to a group propagates to all subgroups, users and
roles members of that group.

- 82 = {(5, o .r ')[r '= -~auth(sl,p,g) +-- -~auth(s,p,g),s �9 R and s -<R
Sl)}, that is, a negative authorization granted to a role propagates to all
the roles following it in the role hierarchy.

- 83 = {(5, o.r')]r' = -~auth(s, pi ,g) +-- -~auth(s,p,g),pl -<p p}, that is,
a negative authorization for privilege p implies a negative authorization
for all the privileges preceding p in the privilege hierarchy.

Thus, G(/)) is a set of elements of the form (5, o.r), that we call referential
rules. In (5,o.r), 5 is the source object and o is the referenced object. A refer-
ential rule (5, o.r) defines an authorization for the (referenced) object o which
is inherited from the (source) object 5. The usefulness of the notion of source
object will be clarified later on when our conflict resolution policy is formally
introduced.

A referential rule (6, o.r) �9 G(~P) is t rue wrt an interpretation I if o.r is true
w r t / . We note that in the ground version of a program conflicts may appear.
Formally, conflicting rules are defined as follows:

D e f i n i t i o n 5. (Conf l i c t i ng Ru le s) Two referential rules r i = (Ol,O.r) and
r2 = (o2, o'.r') in G(P) are conflicting if both the following conditions hold:
1) o = o' (i.e., they refer to the same object); 2) Head(r) and Head(r') are
conflicting literals (see subsection 3.1)

We next define our conflict resolution policy.

D e f i n i t i o n 6. (D e f e a t i n g) Let I be an interpretation for P and let r l =
<oi,o.r>
�9 G(7 ~) be a referential rule. We say that r i is defeated in I if there exists
r2 = (o2, o'.r') �9 G(P) such that r i and r2 are conflicting rules, the body of r2
is true in I and (at least) one of the following conditions holds (next g and g'
are the grantors appearing in Head(r) and Head(r'), respectively):

- g' -<R g, that is, g' is a grantor stronger than g (recall that either g' ---- T R ,

thus r2 defines a strong authorization, or g and g' are both roles);
- g and g' are incomparable w.r.t. -<R (i.e., neither g' -~R g nor g -<it g') and

oi -<o 02 (thus, the source object of r 2 is a part of the source object of rl) ;
- g and g' are incomparable w.r.t. -<R, oi and o2 are incomparable w.r.t. -<o

and Head(r') is a negative literal.

Now we are ready to provide the definition of model of an authorization
program.

D e f i n i t i o n 7. (A u t h o r i z a t i o n P r o g r a m M o d e l) A model for 7) is an in-
terpretat ion M such that every referential rule in G(P) is either true in M or
defeated in M.

An Authorization Model and Its Formal Semantics 139

P r o p o s i t i o n 31 Let M be a model ofT). Then, M is a consistent interpretation.

To define stable models, we need the following preliminary definition.

Def in i t i on 8. (R e d u c t i o n of an A u t h o r i z a t i o n P r o g r a m) Given an inter-
pretation I for 7), the reduction of 7) w.r.t. I , denoted Gx(7)), is the following set
of ground rules: GI(7)) -- {o.rl3(6, o.rl �9 G(7)) not defeated in I and Body(r) is
true w.r.t. I}.

Note that GI(P) can be regarded as a Datalog program (with negation by
failure) [14, 21] simply by considering each referential literal of the form, say,
o.p(tl,..., tn) (resp. o.-~p(tl, ..., t~)), as a simple literal with predicate symbol o.p
(resp. o.-~p). Thus, given a set X of rules, the immediate consequence operator
Tx is defined in the usual way:

Tx : 2s~--'2 s~
I ~-~{L �9 Bp] 3r �9 X s.t. Head(r) = L, and Body(r) is true wrt I}.

Def in i t i on 9. (S tab le M o d e l) Let M be a model of 7). M is a stable model
of P if M = T~M(p))(~).

Example 9. Consider the program 7) of Example 8 and let:

M1 -- {Employee_Evaluat ion.auth (Administrative Manager, write, Top
Manager), Program_Reposit ory.auth (Bob, read, Ann) }

be an interpretation for 7). GMI (7)) = {rl, r3}. Clearly, MI = TI~MI (9))(@)
and, thus, MI is a stable model of 7). It can be easily shown that:

M2 = {Employee_Evaluation.auth(Technical Manager,write,Top Manager),
Employee_Salary_Inf e.auth (Accountant, write, Top Manager),
Pr ogram_Reposit ory.auth (Bob, read, Ann) }

is also a stable model of P.

Thus, in general, a program is assigned with a number (possibly zero) of
stable models. Each stable model represents a consistent way of assigning access
authorizations to users.

Example 10. Consider Example 9 above. According to the two stable models
associated with 7), it is possible to simultaneously authorize A d m i n i s t r a t i v e
Manager to write Employee_Evaluation and Bob to read Program_
Repository and the same happens if we consider Technical Manager instead
of Admnistrative Manager. By contrast, it is not possible to simultaneously au-
thorize Administrative Manager to write Employee_Evaluation and Account-
ant to write Employee_Salary_Info.

140 Elisa Bertino et al.

4 A c c e s s Control

An access request is represented as a triple (s,p, o), with s E U U R, p E P, and
o E O. Tuple (s, p, o) states that subject s requires to exercise privilege p on
object o.

L e t / ' p be the set of stable models of 7). Each model belonging t o / ' p rep-
resents a consistent way of assigning access authorizations. The problem then
arises of what model to select, among those i n / ' p , in order to verify whether an
access request can be authorized.

In our access control policy, the choice of the model against which access
requests must be verified is driven by the privileges the subjects are exercising
on the objects in the system when the access request is issued. Given an access
request a, the access control mechanism selects from Fp a stable model which:
i) satisfies a and ii) is compatible with all the current accesses. If such a model
exists, the access is authorized; otherwise, it is denied. Clearly, enforcing this
policy requires the system to maintain information on the set of accesses tha t
are currently in execution.

An algorithm enforcing access control is illustrated in Figure 3. The al-
gorithm makes use of two sets, namely Current_Access and Current_Model.
Current_Access is the set of current accesses: (s, p, o) E Current_Access if and
only if subject s is currently exercising privilege p on object o. Current_Model is
the model of 7) currently chosen as valid. Moreover we make use of function Hg
that , given a model M, returns the set of access requests that can be authorized
according to tha t model. Formally, f ig(M) = {(s,p, o) l o.auth(s,p,g) E M}.

Algorithm 41 Access Control Algorithm

INPUT:
O U T P U T :

M E T H O D :

1) An access reques t (s ,p , o), 2) An au tho r i za t i on p rog ram
1) A U T H O R I Z E if the access reques t can be author ized ,
2) R E J E C T , otherwise.

1. Let Current_Access be the set of cur ren t accesses
2. i f (s, p, o) E YIg (Current_Model) t h e n

Curren t_Access := Current_Access U {(s, p, o)}
r e tu rn A U T H O R I Z E

e n d i f
3. i f 3 M ~ F p such t h a t (((s , p , o) } UCurren t_Access) C Hg(M) t h e n

Curren t_Model :~- M
Curren t_Access :-~ Current_Access U { (S, p, o)}
r e tu rn A U T H O R I Z E

e n d i f
4. r e tu rn R E J E C T

Pig. 3. Access Control Algorithm

Example 11. Consider the program P of Example 9. Assume that Current_Model
= M1 and Current_Access = {(Bob , read ,Program_Repos i to ry)} . Let

An Authorization Model and Its Formal Semantics 141

(Technical Manager,write,Employee_Evaluation) be a new access request.
(Technical Manager,write,Employee_Evaluation) (L 1-1g(M1). However,
(Technical Manager, writ e, Employee_Evaluat ion) E Hg(M2) and
Current_Access C Bg(M2), then the request is authorized and inserted into
Current_Access. Current_Model is set equal to M2. Suppose now that the ac-
cess request (Accountant ,wr i t e ,Employee_Salary_Info) is submitted to the
system. This request is denied since there does not exist a stable model M
of 7 ~ such that (Acconntan t ,wr i te ,Employee_Salary_Info) E FIg(M) and
Current_Access C_ FIg(M).

A few concluding remarks on the complexity of the described algorithm. It is
well known in logic programming that computing stable model semantics is an
exponential task (unless P=NP) [16]. In particular, deciding whether a program
admits a stable model is NP-complete. In principle, this is not a drawback, as it
means that it is possible to express some NP-complete problems. Without any
form of syntactic restrictions (no stratified negation [21], no limitation on the
structure of both hierarchies and conflicts, etc.), the language offers a general
tool whereby the user is free to model very complex application domains. On
the other hand, a number of efficient techniques have recently been proposed to
drastically improve the computation of stable models [20, 7, 17, 8]. As a result, the
approach becomes feasible for many problems of practical interest. We argue that
(real) security applications fall into this category of problems, as it is reasonable
to assume that the sources of complexity (i.e., unsolvable conflicts, unstratified
negation by failure [21]) are, in general, limited.

5 Conclusions

In this paper we have presented an advanced authorization mechanism based
o n a logic formalism. The model provides several notable features such as posi-
tive/negative and weak/strong authorizations, derivation and propagation rules,
and the support for both roles and groups. Moreover, we have proposed an in-
novative approach for both access control and authorization conflicts resolution.

We plan to extend this work along several directions. First we are developing
more articulated resolution policies, taking into account other aspects, such as
the group hierarchy. We also plan to extend the current model to incorporate
temporal features [2, 3] and to allow a user to take on multiple roles in a section.
A third direction concerns implementation issues.

References

1. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G. A Calculus for Access Control
in Distributed Systems. ACM Trans. on Programming Languages and Systems,
15(4):706-734, 1993.

2. Bertino, E., Bettini, C., Ferrari, E., Samarati, P. A Temporal Access Control Mech-
anism for Database Systems. IEEE TKDE, 8(1):67-80, 1996.

142 Elisa Bertino et al.

3. Bertino, E., Bettini, C., Ferrari, E., Samarati, P. An Access Control Mechanism
Supporting Periodicity Constraints and Temporal Reasoning. ACM TODS, to ap-
pear.

4. Bertino, E., Jajodia, S., Samarati, P. Supporting Multiple Access Control Policies
in Database Systems. Proc. of the IEEE Symposium on Research in Security and
Privacy, Oakland (CA), 1996.

5. Buccafurri, F., Leone, N., Rullo, P. Stable Models and their Computation for Logic
Programming with Inheritance and True Negation. Journal of Logic Programming,
27(1):5-43, 1996.

6. Buccafurri, F., Leone, N., Scarcello, F. On the Expressive Power of Ordered Logic.
A I Communications, 9:14-13, 1996.

7. W. Chen, D.S. Warren. Computing of Stable Models and its Integration with
Logical Query Processing. IEEE TKDE, 17:279-300, 1995.

8. Eiter, T., Leone, N., Mateis, C., Pfeifer, C., Scarcello, F., A Deductive System for
Nonmonotonic Reasoning, Proc. of the ~th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR '97), LNAI 1265, Berlin, 1997.

9. E. Fernandez, E.B. Gudes and H. Song. A Model for Evaluation and Administra-
tion of Security in Object-Oriented Databases. IEEE TKDE, 6:275-292, 1994.

10. Celfond, M., Lifschitz, V. The Stable Model Semantics for Logic Programming.
Proc. 5th Int. Conf. on Logic Programming, pp. 1070-1080, 1988.

11. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E. A Unified Framework
for Enforcing Multiple Access Control Policies. Proc. of ACM-SIGMOD, 1997.

12. Jajodia, S., Samarati, P. Subrahmanian, V.S. A Logical Language for Express-
ing Authorizations. Proc. IEEE Symposium on Research in Security and Privacy,
Oakland (CA), pp. 31-42, 1997.

13. Laenens, E., Saccs D., Vermeir, D. Extending Logic Programming. In Proc. of
ACM-SIGMOD, 1990.

14. Lifschitz, V. On the Declarative Semantics of Logic Programs with Negation. Foun-
dation of Deductive Database and Logic Programming, pp. 89-148, 1997.

15. Lloyd, J. W. Foundations of Logic Programming, Springer-Verlag, 1987.
16. Marek, W., Truszczyfiski, M., Computing Intersection of Autoepistemic expan-

sions, Proc. of the 1st Int. Workshop on Logic Programming and Non Monotonic
Reasoning, pp. 37-50, 191.

17. Niemel~, I., Simons, P., Efficient Implementation of the Well-founded and Stable
Model Semantics. Proc. of the 1996 Joint Int. Conf. and Symposium on Logic
Programming, pp. 289-303, Bonn, Germany, 1996.

18. Oracle Corporation. Oracle8 Server Concepts, 1997.
19. Rabitti, F., Bertino, E., Kim, E., Woelk, D. A Model of Authorization for Next-

Generation Database Systems. ACM TODS, 16(1):88-131, 1991.
20. Subrahmanian, V.S., Nau, D. and Vago, C. WFS § Branch and Bound = Stable

Models. IEEE TKDE, 7(3):362-377, 1995.
21. Ullman, J.D. Principles of Database and Knowledge-Base Systems, Vol. 1 and 2,

Computer Science Press, 1989.
22. Woo, T.Y.C, Lain, S.S. Authorizations in Distributed Systems: A New Approach.

Journal of Computer Security, 2(2 ~ 3):107-136, 1993.

