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Abstrac t .  Efficient constrained thin-plate spline warps are proposed in 
this paper which can warp an area in the plane such that two embedded 
snake grids obtained from two SPAMM frames are brought into registra- 
tion, interpolating a dense displacement vector field. The reconstructed 
vector field adheres to the known displacement information at the inter- 
sections, forces corresponding snakes to be warped into one another, and 
for all other points in the myocardium, where no information is available, 
a C 1 continuous vector field is interpolated. The formalism proposed in 
this paper improves on our previous variational-based implementation 
and generalizes warp methods to include biologically relevant contiguous 
open curves, in addition to standard landmark points. The method has 
been extensively validated with a cardiac motion simulator, in addition 
to in-vivo tagging data sets. 

1 I n t r o d u c t i o n  

MR tagging is an imaging method which offers an excellent technique for measur- 
ing non-rigid motion of the myocardium. With this method, the magnetization 
property of selective material points are altered in order to create dark stripe 
patterns within a deforming body such as the heart muscle. The resulting pat- 
tern defines a time-varying curvilinear coordinate system on the tissue [5, 15], 
which deforms with the contracting tissue. Tagged MRI, however, is limited in 
that  it can only mark a sparse set of lines and points in the myocardial tissue for 
tracking of deformations. The problem which we address in this paper is that  of 
reconstruction of dense motion fields from sparse noisy data, not very different 
from the surface reconstruction problem encountered in stereo vision [8, 12]. An 
original solution to the motion reconstruction problem was proposed in [1, 3]. 

1 Supported in part by a grant from Whitaker Biomedical Engineering Foundation, 
and grant IRI-9796207 from the National Science Foundation 
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However, in this formulation only information at tag crossings were utilized as 
part of the reconstruction algorithm. In [2], the method was further extended 
to that  of constrained thin-plate reconstruction of the displacement field from 
points and lines based on a variational solution (for related work, also please 
see [11].) In this paper, we improve on the reconstruction paradigm in [2] and 
present extensive validation of the methodologies. One advantage of this line of 
work is that  it allows for reconstruction of dense deformations between 2 ar- 
bitrary frames in a sequence of tagged images, as dense motion reconstruction 
methods generally produce displacement vector fields relative to undeformed 
tags in the initial frame. (For related work by other researchers please see [7, 9, 
14] .) 

2 Constrained Thin-Plate Splines 

Tracking tissue deformations with SPAMM using snake grids provides 2D dis- 
placement information at tag intersections and 1D displacement information 
along other 1D snake points [2]. The displacement measurement from tag lines 
however are sparse; interpolation is required to reconstruct a dense displacement 
field from which strain, torsion, and other mechanical indices of function can be 
computed at all myocardial points. In this section, we describe an efficient so- 
lution to the formulation in [2] (this improves on methods in computation time 
and order of convergence) for reconstructing a dense displacement vector field 
using localized coordinates of tag positions. In this development, we assume only 
2D motion (as is roughly the case towards the apical end of the heart). Although 
thin-plate warps have been investigated by Bookstein [6], they have been used 
to interpolate a warp given specified landmarks. 

To proceed more formally, the vector field continuity constraint is the bend- 
ing energy of a thin-plate which is applied to the x and y component of the 
displacement field (u(x, y), v(x,  y)): 

Ol = uxx + 2Uxy 

This serves as the smoothness constraint on the reconstructed vector field, char- 
acterizing approximating thin-plate splines. 

With intersection "springs" in place, the intersections of two grids are "pulled" 
towards one another by minimizing 

�9 2 = - u , n , )  2 + (v  - v n,) ( 2 )  

In (2), uint and v~ t  are the x and y components of displacement at tag intersec- 
tions as well as at intersections of myocardial contours with tag lines. The form 
of the intersection spring constraints is similar to depth constraints in surface 
reconstruction from stereo, and has also been used in a similar spirit in [14]. 
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Assuming 2D tissue motion, a further physical constraint is necessary: any 
point on a snake in one frame must be displaced to lie on its corresponding 
snake in all subsequent frames. This constraint is enforced by introducing a 
sliding spring. One endpoint of the spring is fixed on a grid line in the first 
frame, and its other endpoint is allowed to slide along the corresponding snake 
in the second frame, as a function of iterations. We minimize 

= + _ + (y  + - } (3) 

along 1D snake points. In the above equation, (x, y) are the coordinates of a point 
on the snake in the current frame, and (~, ~) is the closest point to (x + u, y + v) 
on the corresponding snake in the second frame. 

2.1 Conjugate gradient a n d  q u a s i - N e w t o n  a l g o r i t h m s  

Let (u(x,  y), v(x ,  y)) be the displacement field as before. The objective function 
�9 (u, v) which needs to be minimized is the linear combination 

(4)  

Note that  ~ and ~ are dependent on u and v respectively which makes the 
function ~3 (u, v) non-quadratic. We can derive the Euler-Lagrange equations for 
the variational problem in (4) and solve the resulting system of equations [2]. In 
this paper, we develop a more efficient approach. We follow [8] and straightaway 
discretize the flmction �9 in (4). Assuming the distance between two adjacent 
grid points to be 

U i + l ,  j - -  U i j  = U i , j +  1 --  U i j  : h ,  (5) 
the second order partial derivatives (ux~)ii, (uxu)ij and (uuu)i j at the point (i, j)  
can be approximated by 

(uxx)ij  = ui+l,j - 2ui,j + ur 
h 2 

U i + l , j + l  - -  U i + l , j -  Ui,j4-1 -{- U i , j  
I b "  

(Wy) i j  = ui,~+l - 2u i j  + ui , j-1 
h 2 (6)  

The discrete form of the function ~1 can be obtained by substituting the discrete 
derivatives into the first equation in (1). The partial derivatives of ~l can be 
calculated using the computational molecule approach discussed in [12] though 
special attention should be paid in computing the molecules near the endocardial 
and epicardial boundaries where the smoothness constraint should break in order 
not to smooth over the motion discontinuity. The endocardial and epicardial 
boundaries were each manually segmented through-out a slice sequence using a 
6 control point cubic B-spline contour. The discretization of the function ~2 and 
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calculation of its partial derivatives is almost trivial. Let us consider the function 
s which is non-quadratic. The partial derivatives 

(~3)u = (u + x -  2 ) ( 1 -  2 4 + (v + y -  #)(-Yu) 
(~3)v = (v + y - 9)(1 - 9~) + (u + x - 2 ) ( - 2 ~ )  (7) 

For simplification, we now make two approximations. For vertical grids, the 
x-coordinates of curves only vary slightly, and as the grid lines are spatially con- 
tinuous, 2~ is expected to be small. Furthermore, for vertical grids 9 changes 
minutely as a function of u, so that  9~ ~ 0. For horizontal grids, the y co- 
ordinates of curves also vary slightly along the length of grid lines, and since 
these are spatially continuous curves, 9u is expected to be small. Note that  these 
approximations will hold under smooth local deformations, as is expected in 
the myocardial tissue. Only 2u for horizontal grids, and 9. for vertical grids is 
expected to vary more significantly. The approximate derivates are now given 
by: 

(~3)~ = (u + x - 2)(1 - Thor2u) 

(~3). = (v + y -- 9)(1 -- T~rgv) (8) 

The variables Thor and T ~  are predicates equal to one if the snake point of 
interest lies on a horizontal, or a vertical grid line. Needless to say, the above 
functions can be discretized by replacing the continuous values by the corre- 
sponding values at the grid points. 

After discretization, a typical quadratic optimization problem takes the fol- 
lowing form: 

1 

f ( x )  = c - bTx  + 2 x T A x  (9) 

where x is the vector of variables, A is the constant Hessian matrix of second 
order partial derivatives and b and c are constant vectors. In the present prob- 
lem, the terms #1 and #2 can be cast in the above form. Unfortunately, in the 
term #3, the values 2 and 9 are dependent on x and y respectively which makes 
#3 non-quadratic. The discrete optimization function form of # is given by: 

~5(X) = c -- bTx  + I x T A x  + ~3~3(X) (10) 

where A, b and c are constants and include the contributions from /~1s and 
A2#2. we are now ready to look at specific minimization algorithms. 

The first algorithm we investigate is the conjugate gradient (CG) algorithm. 
For an order N quadratic problem, the CG algorithm is guaranteed to converge 
in N iterations. Moreover, it does not store the Hessian matrix and requires 
o ( N )  storage for an order N optimization problem. Note that  the CG algorithm 
does not explicitly calculate or store the Hessian matrix A and can be adapted 
to the function # in (10). We do not know the Hessian matr ix for #. However, 
we do know how to calculate the derivative V4~(p) using the derivatives for the 
functions 4~1, #2 and #3. We use this knowledge of the gradient of # in the 
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implementation of the CG algorithm. As a final point, since # is non-quadratic, 
the algorithm may not converge in N iterations. For a description of the CG 
algorithm please refer to [10]. 

Quasi-Newton algorithm is a different optimization method that we have in- 
vestigated. It differs from CG in that it has higher memory requirements but bet- 
ter convergence properties for non-quadratic functions. By quasi-Newton method 
we mean techniques which use an approximation to the inverse Hessian matrix 
in each iteration as opposed to Newton methods which use the exact inverse. 
A generic quasi-Newton algorithm calculates and stores an approximation to 
the inverse Hessian matrix in each iteration. Hence for an order N optimization 
problem, this method needs o(N 2) storage. The advantage of a quasi-Newton 
algorithm lies in that it has quadratic convergence properties for general smooth 
functions (not necessarily quadratic). A specific quasi-Newton algorithm is char- 
acterized by the approximation it uses for the Hessian matrix. The quasi-Newton 
method used in this paper is called the Davidon-Fletcher-Powell (DFP) algo- 
rithm. An overview of which is given in the [10]. 

2.2 Validat ions 

Cardiac S imulator  

To test and validate the algorithm an environment based on a 13 parameter 
kinematic model of Arts et al. [4] has been implemented as described in [13] for 
simulating a time sequence of tagged MR images. 

The motion model involves application of a cascade of linear transformations 
describing rigid (rotations and translations) as well as non-rigid transformations 
(radial compression, torsion, ellipticalization in SA and LA, as well as shear 
along x, y, and z axes). Once a chosen discretization step is assumed and a mesh 
for tessellating the 3D space is generated, the linear matrix transformations 
are applied in a sequence to all the mesh points so as to deform the reference 
model. The parameters of the motion model, referred to as k-parameters, and 
the transformations to which they correspond are as follows: 1) kl: Radially 
dependent compression, 2) k2: Left ventricular torsion 3) k3: Ellipticalization 
in long-axis (LA) planes 4) k4: Ellipticalization in short-axis (SA) planes 5) ks: 
Shear in x direction 6) k6: Shear in y direction 7) kT: Shear in z direction 8) ks: 
Rotation about x-axis 9) kg: Rotation about y-axis 10) klo: Rotation about z- 
axis 11) k11: Translation in x direction 12) k12: Translation in y direction 13) k13: 
Translation in z direction In order to simulate MR images, a plane intersecting 
the geometric model is selected, and tagged spin-echo imaging equations are 
applied for simulating the imaging process. 

For the purposes of validating 2D displacement field reconstructions, we have 
used the parameters k2, k4, ks, and kl0 for generating 2D deformations of the 
geometric model, based on which images and in addition 2D displacement vector 
fields of actual material points are produced. The error norms used in comparing 
the ground truth vector field (Vg) with the vector field measured by our warp 



172 

algorithm (Vm) are: 

1 
~L = ~ ~ I 1 ~ 1  - IV~ll, (11) 

1 V 9 �9 V,~ (12) 
t0  - E t v g t  trot.  a r c c o s  

where EL measures the average difference in length between V~ and Vm, and co 
measures the deviation in angle between V~ and Vm. to requires further expla- 
nation. As can be seen from (12), we weigh individual angle deviations by the 
magnitude of the material point displacement vector: normalized by the sum 
of magnitude of all ground truth vectors. The reason for this is to emphasize 
angle deviation of points which have large displacements, and similarly to de- 
emphasize the angle deviation of points which have a smaller displacement. 

cm cm sec 10 sec 0.6 sec sec 

k~ k, [0 deg. 0R.i25 10R6 154 o.so5 cm/pixe] 7 r~d/cm 7 r~d/cm 45 cm 

Table 1. Imaging parameters and dimensions of geometric model. Please note that TS 
is tag separation, IP is the image plane position, P~ and Ro are the inner and outer 
radii of the 2 prolate spheroids, and ss is the sample size. 
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Fig. 1. The error plots for angle and length error for k2 and k4. Please see text for 
details, 

Figures 1 and 2 show the angle and length errors by comparing Vm and Vg 
as a function of a range of values of k2,k4,k5, and klo, keeping the rest of the 
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Fig. 2. The error plots for angle and length error for k~ and kl0. Please see text for 
details. 

k parameters constant. The imaging and geometric parameters of the model for 
these experiments is shown in table 1. Additionally, as part  of the validations 
and in order to test the sensitivity of the algorithms to different values of ),1, ),2, 
and ),3, we varied each of these coefficients individually between the integers: 
0 and 10, keeping the other 2 at the constant value of 1 (excluding)`1 = 0). 
The error bars in these plots show the 3a range on either side of the error 
mean for particular values of each k parameter.  As can be seen from the figures, 
to a large degree the algorithm is insensitive to the exact values of )`i's. An 
additional remarkable point regarding the error plots is the fact that  for smaller 
motions, the value of co is larger than that for bigger motions. The reason for 
this unintuitive result can only be at tr ibuted to the larger percent inaccuracies 
in reconstruction of smaller displacements by the warping algorithm. Also, it 
should be noted that  error plots in figures 1 and 2 subsume the errors incurred 
in localization of tags and myocardial contours (in this paper, tag and contour 
localization is performed through manual placement of control points of B-spline 
curves [2].) Although the magnitude of errors are bound to be smaller if accurate 
location of contour and tag lines in the simulated images were to be used, our 
complete system for tracking and reconstruction of tag lines would not be tested, 
and furthermore since the exact location of tags and contours are not known in 
real images, results may not be a good model of realistic situations. 

Finally, Figure 3 displays true and reconstructed vector fields corresponding 
to torsion of the computational phantom. 

In-  Vivo  Va l ida t i ons  

Since "out-of-plane" movement of the LV occurs in slices close to the valve- 
plane; i.e., at the top of the LV, for the purposes of extraction of 2D deformations, 
here we only consider SPAMM image slices acquired near the ventricular apex. 
Results of application of techniques to in vivo data  of a normal human volun- 
teer is shown in figure 4. Note that  in this case, the computed dense motion 
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Fig .  3. Comparison of computed (left) and true (right) displacement vector fields cor- 
responding to torsion (k~ = -1 .0) .  

t 1 1 1 , $ 1 l l l l l . ~ - - - - - - - - - -  

�9 . . . . . .  , t ~ ~ ~ \ ~  
, , , , , , ,  I I ~ ~ \ ~  
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. . . .  , | t ~ ~ x  

, , , ~  ~ | ~ ~ 

Fig .  4. The reconstructed vector field by CG computed from deforming a 7 x 7 B-spline 
grid for a~ apical slice acquired at 90 and 180 msec after the ECG trigger. The vector 
field is displayed on the myocardial  region in the 90 msec image. 
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is computed from two deformed grids. The endocardial and epicardial contours 
were each manually segmented through-out the sequence using a 6 control point 
B-spline representation, as we have found automat ic  determination of myocar-  
dial contours in a SPAMM image sequence to be a formidable task due to the 
presence of tag lines. In order to assess the sensitivity of the vector field to 
different hi coefficient values, the following s tudy was undertaken. The vector 
field for the uniform weight factors ~1 = 1, ~2 = 1, and )~3 = 1 was chosen as 
the ground-truth.  Vector fields corresponding to different coefficient values were 
subsequently compared with this vector field. Results are illustrated in table 2. 

3 C o n c l u s i o n s  

We have described new methods for efficient reconstruction of dense displace- 
ment  vector fields from SPAMM grids. The constrained thin-plate spline methods 
warp an area in the plane such that  two embedded grids of curves are non-rigidly 
registered, thereby interpolating a dense displacement vector field. The new warp 
method t reats  intersection points of SPAMM grids as s tandard landmarks and 
forces these to come together. Furthermore,  it corresponds complete tag curves 
and brings these into alignment. Finally, where no information is available, it 
interpolates a C 1 continuous vector field. 

In addition to the developed machinery in this paper,  methods were evaluated 
using a cardiac motion simulator. The methods have been tested for accuracy 
in length as well as angle of the reconstructed displacement vectors from the 
known ground-truth,  and the results indicate tha t  constrained thin-plate spline 
reconstructions of myocardial  deformations is sufficiently accurate for measure- 
ment  of in-plane tissue deformations within a reasonable t ime and between any 
two frames in a sequence of tagged images. 

f~l[.~2[~3[Angle Error 
I1 1 1 0 
15 1 1 0.006 
10 i 1 0.008 
1 5 1 0.005 
I 1 10 1 0.006 
ll 1 5 0.005 
1 1 10 0.008 
tl 1 0 0.007 
1 0 1 )211 

Leng th  Error 
0 
0.019 
0.029 
0.012 
0.015 
0.015 
0.021 
0.018 
0.043 

Table  2. The values for angle (fraction of lr) and length errors (in cm) as a function 
of )~1, A2, and A3- The "ground-truth" in this case was chosen to be the reconstructed 
displacement field with ),i = 1. 
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