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Abs t rac t .  A Bayesian, model-based method for segmentation of Mag- 
netic Resonance images is proposed. A discrete vector valued Markov 
Random Field model is used as a regularizing prior in a Bayesian clas- 
sification algorithm to minimize the effect of salt-and-pepper noise com- 
mon in clinical scans. The continuous Mean Field solution to the MRF is 
recovered using an Expectation-Maximization algorithm, and is a prob- 
abilistic segmentation of the image. A separate model is used to encode 
the relative geometry of structures, and as a spatially varying prior in 
the Bayesian classifier, Preliminary results are presented for the segmen- 
tation of white matter, gray matter, fluid, and fat in Gradient Echo MR. 
images of the brain. 

1 I n t r o d u c t i o n  

The automat ic  segmentation of anatomical  s tructures from medical images such 
as MRI  or CT will likely benefit from the exploitation of four different kinds of 
knowledge: intensity models tha t  describe the gray level appearance  of individual 
s tructures (e.g. fluid appears  bright in T2-weighted MR/),  relative geometric 
models tha t  describe the relative geometry of s t ructures  in a subject-specific 
reference frame (e.g. femoral cartilage is at tached to the subject ' s  femur), shape 
models tha t  describe the shape of individual s t ructures  in a subject- independent 
reference frame (e.g. the brain-stem is tube-like), as well as imaging models that  
capture the relevant characteristics of the imaging process. 

EM-Segmentation,  a segmentation method for MR] images [1], employed 
Gaussian intensity models for the different tissue classes, and used an imaging 
model to account for some distortions of the signal tha t  are unique to the MRI 
process. The work reported here continues along tha t  theme, with two key parts.  
The first contribution is the addition of a regularizer to the imaging model used in 
the EM-Segmentat ion algorithm. Regtflarization combats  sal t -and-pepper  noise 
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common in clinical scans. Previous implementations of EM-segmentation deal 
with this noise effectively by pre-processing the images with structure-preserving 
intensity smoothers, particularly gradient-limited diffusion methods [2, 3]. These 
methods are quite effective, but computationally costly, and not trivial to ad- 
just. We leverage the Bayesian flavor of EM-Segmentation and regularize via a 
prior distribution on the labeling, without incurring undue additional computa- 
tional cost. Specifically, we model the prior distribution as a Markov Random 
Field (MRF), and  recover its Mean Field (MF) solution using the Expectation- 
Maximization algorithm. While MF approximations of MRFs have previously 
been usedin computer vision, we believe that the reported work is novel in its 
use of this prior in conjunction with the EM-Segmentation algorithm. 

In the second component, we propose an algorithm that leverages geometric 
relationships between structures for segmentation purposes. We observe that 
some structures can be directly segmented from medical images by using methods 
from low-level computer vision, e.g. skin surface is reproducibly segmented from 
head MRI using a combination of tkresholding, connectivity, and morphological 
operations. Other structures, such as the brain tissue in head MRI, do not have 
as salient a combination of intensity and topology as the skin, and are harder 
to segment using low-level methods. We propose a "coarse to fine" strategy in 
feature (structure) space - a strategy in which the easily identifiable ("coarse") 
structures are first segmented automatically and their geometry is then used to 
bootstrap the segmentation of other ("fine") structures in the image. We present 
an implementation of this strategy in the form of a relative geometric prior (prior 
distribution on the geometry of "fine" structures, given the geometry of "coarse" 
structures), and integrate it into the EM-Segmentation algorithm along with the 
regularizing MRF prior summarized earlier. 

Combining the two components, the contribution of this paper may be sum- 
marized as the enhancement of the EM-Segmentation algorithm using two priors: 
an MRF prior to encode piecewise-homogeneity of labels, and a spatial prior to 
encode the relative geometry of structures. 

2 B a c k g r o u n d  o n  E M  S e g m e n t a t i o n  

Expectation-Maximization (EM) The EM algorithm is an iterative scheme 
for estimating the parameters of a model that maximize the likelihood of the 
observed signal. The key step in applying the EM algorithm is to identify a 
set of hidden variables, such that it becomes possible to directly compute the 
maximum-likelihood estimate of the model using the values of the observed vari- 
ables and these hidden variables. Once the hidden variables are identified, and 
the model parameters initialized, the EM algorithm alternates between estimat- 
ing the hidden variables (as the expected values of the hidden variables using the 
estimates of the model parameters; the E-step) and the model parameters (as 
the maximum-likelihood estimates of the model given the observed and hidden 
variables; the M-step). Each iteration improves the model estimate [4], and the 
EM algorithm converges to a local minimum of the likelihood fimction. 
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E M - S e g r n e n t a t i o n  Segmentation of MRI images is a challenging problem 
due to the presence of a non-linear gain field attributable to inhomogeneities 
in the imaging equipment. The EM-Segmentation algorithm [1], approached the 
segmentation of MRI images as a maximum likelihood estimation problem and 
used the Expectation-Maximization algorithm [4] to simultaneously estimate the 
class label and gain at each voxel that  maximize the likelihood of the observed 
signal. 

The observed MRI signal was modeled as a product of the true signal gen- 
erated by the underlying anatomy, and the non-linear gain artifact. Using this 
assumption, an iterative, supervised, Expectation-Maximization style segmenta- 
tion algorithm was developed that  treats the underlying label classes as hidden 
variables and alternates between estimating those classes (E-step) and the max- 
imally probable gain field (M-step). 

In this algorithm, intensity data  is log-transformed, thus converting the mul- 
tiplicative gain field to an additive bias field. Observed log intensity, Yij, at each 
pixel is modeled as a normal distribution, independent of all other pixels: 

- -  k,  = N( j - Z , j ;  ok )  , (1) 

where N(x;  #, (7) is the Gaussian distribution, with mean # and variance ~2; y~j is 
the observed log intensity at pixel location (i, j); Fij is tissue class corresponding 
to intensity Yij; #k, ak are the mean and standard deviation in intensity for tissue 
class k; f~j is the bias field at pixe] location (i, j) .  The method used a spatially 
stationary prior probability on the tissue ]abeks F: 

Psto (r) = 1-[psto (r j) (2) 
ij 

where pstat (F~j) is the prior probability that  a given voxel belongs to a particular 
tissue class. This prior probability is constant through the iterations. The bias 
field f~ is modeled as a multi-dimensional zero mean Ganssian random variable, 
to characterize its spatial smoothness. 

The E-step computes the posterior tissue class probabilities, W~jk (posterior 
probability of pixel i j  belonging to tissue class k), when the bias field is known: 

W~jk = p(Y/j[F/j = k;flij)pstat(Fij = k) 
E m  P (Yij IF~j = m; ~ij)P,tat (Fij = m) (3) 

The M-Step computes the value of the bias field f~ that  maximizes the average 
likelihood of observation, as fl = F R ,  where P~j = ~-~k w~j~,(ri~-,k) and F is 

O*1r 2 

a linear operator that  can be approximated by smoothing filters. This step is 
equivalent to a MAP estimator of the bias field when the tissue probabilities W 
are known. Detailed derivations of these steps can be found in [1]. 

In the next two sections, we preserve this EM framework for iterating between 
tissue classification and bias field estimation, and present two different methods 
for computing spatially varying priors on tissue class to enhance the spatially 
stationary prior shown in Equation 2 and used in Equation 3 of the E-step. 
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3 Addi t ion  of Markov Prior 

As noted, EM-Segmentation [1] uses a spatially stat ionary prior on tissue class, 
i.e. at each iteration, the prior probability that  a voxel belongs to a particular 
tissue class remains constant, and is independent of the labels of voxels in its 
neighborhood. In this work, we incorporate a Maxkov prior on tissue class, un- 
der which the prior probabilities at a voxel are influenced by the labels in its 
immediate neighborhood. This prior model acts as a regulaxizer and biases the 
solution towards piecewise-homogeneous labelings. Such a regularizing prior is 
useful in segmenting scans corrupted by salt and pepper noise. 

MRF priors have been used in computer vision to model smoothness as well 
as different textures (e.g., [5]). Typical solvers for MRFs include Gibbs sampling 
[6], the Metropolis algorithm [7], I terated Conditional Modes (ICM) [8], and 
Mean-Field (MF) methods [9]. ICM solvers have been used for the segmentation 
of medical images [10,11]. 

M R F  F o r m u l a t i o n :  We describe the reformulation of the prior distribution on 
the tissue labels F (from Equation 2) as a Maxkov Random Field to represent 
the piecewise homogeneity and the local compatibility of different tissues. The 
MRF parameters are obtained from manually labeled training data, and its Mean 
Field solution is recovered using the EM framework of the previous section. 

Some notation: S = {Sij l l  < i < m, 1 < j < n} is the lattice on which 
the MRF is defined, and each site of this lattice - referred to as either Sij or 
simply i j  - corresponds to the pixel location ( i , j )  in the image. N = {Nij l l  < 
i < m, 1 < j < n} defines the neighborhood system for the MRF, where Nij 
refers to the four neighbors of pixel i j  that  share an edge with it, i.e. Nij = 
{S~,~-l, S~,~+l, s~-l,j ,  S~+l,j }. 

The tissue labels F = {F~jlS~ j 6 S} are modeled as an MRF with the 
neighborhood system N on the lattice S. F 9 is a discrete-valued random-vector 

T 1 T drawn from the set {[100.. .0] , [010.. .0] , . . .  [000.. .1] }, and assigning the 
value [0. . .  1 . . .  0] T (with a 1 in the k th position) to F~j is equivalent to assigning 
the k th tissue class to the pixel i j  in the image. P satisfies the Maxkov condition, 
given by: P ( P i j l S  \ S i j )  = P ( P i j l N i j ) , V i j ,  which means that  the value of each 
random variable Pij in the field depends only on its four neighbors. 

The Hammersley-Clifford theorem established the Markov-Gibbs equivalence 
and states that  the probability of a particular configuration 3' of any MRF F 
can be computed using the Gibbs probability of its clique potentials (a clique is 
a subset of nodes of S that  axe each others neighbors) over N: 

p(r = -~) = l e -  ~ o  vo(~) (4) 

Here Vc is a clique potential which describes the prior probability of a particular 
realization of the elements of the clique c. 

The spatially stationary prior on the labeled image F ,  given by Equation 2, 
may be interpreted as an MRF on the image lattice with zeroth order cliques, i.e. 
there is no interaction between lattice sites. We impose local spatial coherence 
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on the label ing/~ by using first-order cliques. Clique potentials are computed 
using an Ising-like model derived from training data, i.e., the prior probability of 
tissue classes k and l occuring adjacent to each other is computed from manually 
labeled images. Thus, the prior probability on the labeling, P,~rl(I1), is not 
spatially stationary; it interacts with the labels in its neighborhood system. 

Computing the field configuration with the maximum Gibbs probability is 
computationally intractable, so we use a Mean Field approximation to the gen- 
eral Markov model. We approximate the values of the field F at neighboring sites 
by their statistical means, and rewrite P,~f(F), a Mean Field approximation to 
Pmrf(F), as a product  of single site probabilities Pml (F~j, Nij): 1 

Pm (r) = , (5)  
ij 

where the single site probability pmf(Fij,Ni,j) is written as a product  of the 
single-site prior p(Fij)  and the probability of each clique involving pi• i j: 

p,~1(r~j,N~j) = 1 ~p(F~j) �9 Ph- (T~,~-1). Ph+ (T~,j+I). Pv- (T~-I,~). P,+ (Fiq-l,j) (6) 

where F~ 3. is a continuous MF approximation to Fij, - is component-wise vector 
multiplication, and Z is a normalizing constant. Equations 5 and 6 describe a 
general model for a discrete first-order pseudo-Ising MRF, using a particular 
mean-field approximation. To apply this model we must choose specific repre- 
sentations for p and each of the four neighborhood terms Pn-, Pn+, P~-, and 
P~+. In addition we need to supply values for the mean field F in Equation 6. 

Using MtLF Prior on Tissue Classes in E M  Framework: We incorpo- 
rate the model into the EM framework in the following way: For the single site 
probability p we use the independent stationary prior, Pst~t, that  was formerly 
used in the work described in Section 2. For each ofPh-,  Ph+, P . - ,  and P .+ ,  we 
use a model based on the empirical joint probability of neighboring pixels. For 
F we use the estimates on per-pixel tissue probability produced by the previous 
iteration of the EM segmentation algorithm as described in [1]. 

Since the basic EM segmentation algorithm is already computing such tissue 
probabilities, the net effect is a simple modification to the E-step that  relates 
tissue co-occurrence statistics to the tissue probabilities that  were computed on 
neighboring pixels in the previous iteration. 

Since F is a random variable drawn from unit vectors, we may write the 
probability distribution modeled by Ph- as a linear form Pn- (g) ---- An-g, where 
Ah- is a k x k matrix, where k is the number of tissue classes in the training 
data, and its mn th element Ah-,m,~ gives the prior probability of tissue class ra 
and n occuring as a horizontal pair in the image, with the left pixel in the pair 
being tissue class n and the right one being m. The distributions Ph+, Pv-, and 

1 A different tractable MRF model for brain segmentation, uzing an Iterated- 
ConditionaJ-Modes solver has been explored in [10]. 
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Pv+, and the corresponding A's are defined in a similar fashion. We use this 
representation for the neighborhood probabilities in Equation 6 since it may be 
directly evaluated on the more general vectors F.  

4 A d d i t i o n  o f  R e l a t i v e  G e o m e t r i c  P r i o r  

In this section we describe the second component of our work: a method that  
leverages geometric relationships between structures for segmentation purposes. 
The motivating observation is that  while some structures are easily segmented 
using low-level computer vision methods (primary structures),  there are struc- 
tares whose segmentation is facilitated by knowledge of their spatial layout (ge- 
ometry) relative to other structures (secondary structures). 

S u m m a r y  o f  M e t h o d :  In order to use the relative geometry information 
for segmentation of a secondary structure in a given image, we first identify a set 
of primitives in terms of which to define its local geometric relationship to one or 
more primary structures. For example, the distance between points on the outside 
surface of structure P and the closest points on the inside surface of structure 
B is a primitive that  describes local relative geometry of the two surfaces. Next, 
we construct the relative geometric model from training (segmented) images. In 
order to do this, a random variable is defined for each primitive, and segmented 
images are used to construct an empirical joint probability distribution over 
these random variables. This probability distribution serves as a mode] of the 
relative geometric relationship between the primary and secondary structures in 
question. For example, if one primitive is the distance between the outer surface 
of P and the outer surface of S, and another is the distance between the inner 
surface of P and the outer surface of S, then two random variables dl and d2 are 
defined, one for each primitive relationship, and an empirical joint probability 
distribution for dl and d2 is constructed from the segmented images. This joint 
serves as the relative geometric model for structures P and S. Following the 
construction of the model, we segment primary structures in the given image 
using appropriate algorithms. Finally, we use the geometric model as a prior 
on the spatial layout of the secondary structure, conditioned on the geometry of 
the segmented primary structures and used the EM-Segmentation algorithm to 
segment the secondary structure in question. 

Note that  this method is profitably used for the segmentation of a pair of 
structures in which one is a primary structure and the geometric relationship 
between the pair is informative (in an information theoretic sense). If either 
constraint is violated (neither of the structures is primary, or the relationship is 
uninformative), this method does not help the resulting segmentation. 

P r e v i o u s  W o r k :  A similar relative geometric prior was used in a traditional 
Bayesian classifier to segment femoral cartilage from Knee MRI images [12]. Also, 
this work is similar in spirit to landmark based segmentation [13], and different 
in its detection of a dense set of features as the landmarks. 
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Example Usage of Method to Segment Brain Tissue from MR[ Images 
We observe that the skin surface and the ventricles are easily segmented in 

head MRI images, and use those as primary structures for segmentation of brain 
tissue (white matter and gray matter); the relationship between brain tissue and 
these primary structures is well described using two primitives: ds, the distance 
to the inside skin surface, and dr, the distance to the outside ventricle surface. 

Next, we detail the algorithm for constructing the aforementioned empir- 
ical geometric model, and its usage with the EM-Segmentation algorithm for 
segmentation of white matter. 
Empi r i ca l  Jo in t  Dens i ty  Es t ima t ion :  Example images in which the skin, the 
ventricles, and white matter have been manually labeled by experts are used to 
construct a non-parametric estimate for this joint density function. In particular, 
chamfer distance transforms[14] are computed for the inside skin surface and for 
the outside ventricle surface. These chamfer maps are used to find ds~ and dvi, 
the distance to skin and ventricle surfaces for all pixels i that are labeled white 
matter, and the values are histogrammed jointly. The histogram is normalized to 
obtain an empirical estimate of the joint density of ds and dv for white matter. 
Note that instead of histogramming the values of the random variables, methods 
such as Parzen Windowing [15] could be used effectively for density estimation. 

Usage  wi th  E M - S e g m e n t a t i o n :  The class conditional density is thus: 

P(dsi, dvilxi e W M )  (7) 

where xi are the spatial coordinates of the ith data pixel; W M  is the set of all 
pixels belonging to white matter; S is the set of all pixels belonging to the skin; 
V is the set of all pixe]s belonging to the ventricles; dsi is short for dsi (S), which 
is the distance from xi to the inside surface of the skin; dvi is short for dye(V), 
which is the distance from xi to the outside surface of the ventricles. 

Bayes rule allows us to express the posterior probability that a pixel should be 
classified as white matter based on observations of its intensity and spatial rela- 
tion to the skin and the ventricles (P(x~ C WMIds~(S ), dye(V), I~)) as a product 
of the prior probability that a given pixel belongs to white matter (P(x~ e WM))  
and the class conditional density P(ds~(S), dvi(Y),hlz~ E W M )  as follows: 

P(xl �9 WMIds~, dvi, Ii) = P(dsl, dv~, I~lxl E WM)P(:c~ �9 WM) 
P(dsi, dye, I~) (8) 

where Ii is the intensity at xi, and the other terms are as in Equation 7. This 
expression may be rewritten assuming independence between the intensity at a 
pixel and its spatial relationship to skin and ventricles as: 

P(xi e WMIds~,dv,,Ii) = P(ds~, dr, ix, E WM)P(h]xi �9 WM)P(x,  �9 WM) (9) 
P(ds~, dvl, I~) 

The first term in the numerator is the class conditional density for the model 
parameters, and is estimated using the method described above. The second term 
is a Ganssian intensity model for tissue class, obtained from samples of white 
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matter  intensity. The third term is the prior probability tha t  a pixel belongs to 
white matter,  computed as a ratio of white mat ter  volume to total  head volume 
in a segmented scan. The denominator is a normalization factor. 

This spatial probability distribution (Equation 9) can be used either in con- 
junction with the Mean-Field prior of Section 3, or by itself, instead of the 
spatially stationary prior in the E-step of the EM-Segmentation algorithm. 

The above method is repeated to obtain a segmentation of gray matter.  

5 Re su l t s  

We have used the work presented in this paper to classify several images from 
different Gradient Echo brain MRI scans. Two examples are described here. 

Gradient Echo Brain M R I  w i t h  M F :  Figure 1 shows the restflts of EM 
Segmentation using a Mean-Field prior on a sagittal slice of a Gradient Echo 
brain MRI. In the left column of the figure, the top image is the gray scale slice 
with additive white noise. The second image, provided as a baseline, is its classi- 
fication (gray - gray matter ,  white - white matter,  black - air/csf, red - skin/fat) 
that  was obtained using a standard MAP classifier. The third image in the first 
column is the classification obtained using EM Segmentation with a spatially 
stat ionary prior, and the fourth image is the classification obtained using EM 
Segmentation with a Mean Field prior. Notice that  the segmentation that  uses 
the Mean-Field prior is much less fragmented compared to the segmentation 
that  uses only the spatially stationary prior. Since each of these segmentations 
is obtained by thresholding the respective weights (Wijk from Equation 3) asso- 
ciated with each tissue class, the middle and the right column of the figure show 
the weights for each tissue class (gray matter ,  white matter ,  csf/air, skin/fat) 
when the spatially stat ionary prior and Mean-Field prior are used, respectively. 
Again, the point to note is the lack of fragmentation when the MF prior is used. 

Gradient Echo Brain MRI  with  MF and Condit ional-Spatial  Priors: 
Figure 2 shows the results of EM Segmentation using a Spatial-Conditional prior 
in conjunction with a Mean-Field prior on a coronal slice of a Gradient Echo 
brain MRI. In the left column of the figure, the top image is the grayscale 
slice. The second image, provided as a baseline, is its classification (gray - gray 
matter ,  white - white matter,  black - air/csf, red - skin/fat) that  was obtained 
using a standard MAP classifier. The third image in the first column is the 
classification obtained using EM Segmentation with a spatially s tat ionary prior, 
and the fourth image is the classification obtained using EM Segmentation with 
Spatial-Conditional and Mean Field priors. Notice that  the segmentation that  
uses the relative spatial priors is much less fragmented, and shows improved 
distinction between skin and brain tissue, as well as in the segmentation of 
white mat ter  in the brain stem, compared to the segmentation that  uses only the 
spatially stat ionary prior. Since each segmentation is obtained by thresholding 
the respective weights (Wijk from Equation 3) associated with each tissue class, 
the middle and the right column of the figure show the weights for each tissue 
class (gray matter ,  white matter,  csf/air, skin/fat) when the spatially stationary 
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prior and Mean-Field prior are used, respectively. Again, the point to note is 
the lack of fragmentation due to the MF prior, and the improved distinction 
between brain tissue and skin as well as improved segmentation of white matter.  

6 D i s c u s s i o n  

T r a d e o f f  b e t w e e n  Prior and Observation:  A characteristic of Bayesian 
methods is the delicate balance that  needs to be maintained between the in- 
fluence of the prior term and fidelity to the observed data. If the degree of faith 
in the prior term is high (i.e. it models the underlying phenomenon accurately) 
and the observation noisy, then conflicts between the prior and the observations 
are resolved in favor of the prior. In contrast, ]f there is negligible noise in the 
observations, then the prior can be discarded altogether, giving rise to a prior- 
less or maximum-likelihood solution. Unfortunately, it is often the case that  the 
prior term is somewhat accurate, and the data  is somewhat noisy i.e. it is not 
as clear how the two terms should be traded off in Bayes rule. The art of main- 
taining this balance is colloquially referred to as "tweaking the Bayesian fudge 
factor" and is arguably crucial to the success of the resulting algorithm. 

Empirically speaking, in our case, the relative importance of the regularizing 
(Markov) prior is inversely proportional to the signal to noise ratio (SNR) in 
the MRI scan. Since SNR in MR scans is directly proportionally to imaging 
parameters such as the strength of the ambient magnetic field, we weigh the 
prior by these parameters. For example, a scan acquired with a 0.5 Tesla magnet 
is segmented using a higher weight on the MRF prior, as compared with a scan 
acquired using a 1.5Tesla magnet. 

How best to characterize the weighing scheme for the geometric prior is less 
obvious. It would not be unreasonable, however, to measure the variation of the 
geometric prior model across individuais and assign a relative importance that  
is inversely proportional to that  measure of variance. As a side-effect of this pro- 
cess, the variance in the relative geometric model could be used to characterize 
which structures this method is best suited for, and analyze its failure modes. 
Unless bet ter  schemes become apparent, this is the approach we plan to take for 
characterizing the importance of the geometric prior in classification. 

M o v i n g  o n t o  3D: Since the images we are dealing with are inherently 3D 
volumes, the natural  next  step is to extend the reported priors by a dimension. 
While the 3D extension of the regularizing prior is simple to conceptualize and 
implement, the extension of the geometric prior to 3D will require a convention 
for normalizing images from different subjects, so that  the prior usefully encodes 
information across a population. The Tailarach coordinate system is a popular 
normalization method and a possible choice for us. 
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Fig.  i. The results of segmentation using an MRF Prior within h3M-Segmentation. 
The top left image is the input image, and the bottom image in the first column is 
its segmentation. The middle colum shows the weights Wija (for gray matter, white 
matter, air/csf, skirl respectively) upon convergence of the EM-Segmentation algorithm 
wi~h spatially stationary priors. The right column allows the weights when the M1R,F 
prior is used with EM-Segmentation. See the text for a discussion of the results. 
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:Fig. 2. The results of segmentation using a Relative Geometric Prior within •M- 
Segmentation. The top left image is the input image, and the bot tom image in the first 
column is its segmentation. The middle colum shows the weights Wijk (for gray mat- 
ter, white matter ,  air/csf, skin respectively) upon convergence of the EM-Segmentation 
algorithm with spatially s tat ionary priors. The right column shows the weights when 
the geometric prior is used with EM-Segmentation. See the text for a discussion of the 
results. 


