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A b s t r a c t .  This paper  presents a new methodology for the automatic 
segmentation and characterization of object changes in time series of 
three-dimensional da ta  sets. The purpose of the analysis is a detection 
and characterization of objects based on their dynamic changes. The 
technique was inspired by procedures developed for the analysis of func- 
tional MRI da ta  sets. After precise registration of serial volume data  
sets to 4-D data,  we applied a new time series analysis taking into ac- 
count the characteristic time function of variable lesions. The images 
were preprocessed with a correction of image field inhomogeneities and a 
normalization of the brightness function over the whole t ime series. This 
leads to the hypothesis that  static regions remain unchanged over time, 
whereas local changes in tissue characteristics cause typical functions 
in the voxel's t ime series. A set of features are derived from the time 
series and their derivatives, expressing probabilities for membership to 
the sought structures. These multiple sources of uncertain evidence were 
combined to a single evidence value using Dempster  Shafer's theory. In- 
dividual processing of a series of 3-D da ta  sets is therefore replaced by 
a fully 4-D processing. To explore the sensitivity of t ime information, 
active lesions are segmented solely based on time fluctuation, neglecting 
absolute intensity information. 
The project is driven by the objective of improving the segmentation 
and characterization of white mat ter  lesions in serial MR data  of multiple 
sclerosis patients. Pharmaceutical  research and patient follow-up requires 
efficient and robust methods with high degree of automation.  Further, an 
enhanced set of morphometric parameters  might give a bet ter  insight into 
the course of the disease and therefore leads to a bet ter  understanding 
of the disease mechanism and of drug effects. 
The new method has been applied to two time series from different pa- 
tient studies, covering time resolutions of 12 and 24 da ta  sets over a 
period of roughly one year. The results demonstrate  that  t ime evolution 
is a highly sensitive feature to detect fluctuating structures. 
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1 I n t r o d u c t i o n  

Serial magnetic resonance imaging of patients becomes at tractive due to the min- 
imal invasive image acquisition, the speed-up in scanning and therefore patient 
time, and the high spatial and tissue resolution. The time series reveal informa- 
tion about significant changes of diseased anatomical regions, about the changes 
as an effect of a drug or radiotherapy treatment,  or about  subtle morphological 
changes caused by a neurophysiological disease. The temporal  sampling thus not 
only provides information about morphological but also functional changes. 

A typical analysis of this type which is routinely applied is the analysis of 
functional MRI data  sets. A patient is stimulated with a specific time pattern 
of visual, auditory or motor activity. Brightness changes due to local changes in 
the oxygenation state of blood are expected to show a similar time pat tern and 
can be detected by a correlation of the stimulus function with the time series of 
each pixel. Here, the signal processing aims at finding the best discrimination 
between noisy steady state signals and signals correlated with the stimulus [1]. 
The processing most often assumes that  a patient doesn't  move during the exam- 
ination, although slight object motion due to breathing, pulsation of the heart 
and swallowing is unavoidable. It has been shown that  a sub-voxel correction of 
3-D motion [2] can considerably improve the voxel-based time-series analysis. 

Pharmacological studies or patient follow-up and monitoring, are different. 
Time frequency is not in the range of seconds, but can be days, months or even 
years. The study of a tumor change in relation to chemotherapy or radiotherapy, 
for example, typically requires time intervals of weeks till months. In schizophre- 
nia, temporal changes are studied over long periods by imaging a patient with 
yearly scans. 

The development of a new segmentation technique is driven by the motivation 
to get a better  understanding of the disease process in multiple sclerosis (MS). 
Research in MS already demonstrated the power of using serial imaging [3]. Drug 
development for multiple sclerosis uses serial MRI as one measurement among 
other diagnostic features to study the temporal changes of white mat ter  lesions 
in the central nervous system. A series of patients is divided into two groups 
getting either placebo or the new drug. Patients are scanned in intervals of 1, 2 or 
4 weeks during a period of about one year. The significance of tests is increased 
by multi-center studies, collecting image data  from various hospitals using a 
standardized MR protocol. Image data are examined by radiologists, evaluating 
each scan in relation to the previous one to visually assess the occurrence of new 
lesions. A quantitative analysis of the total lesion load and of the single lesions 
is performed using interactive user operated segmentation tools. A typical study 
often comprises up to several thousands of 3-D data  sets. The manual outlining 
of lesions in large number of series of 2-D slices is not only time consuming but 
also tedious and error prone. Errors for the segmentation of small structures are 
often in the range of the volume of the observed structures. 

Automated image segmentation systems have been proposed by several groups 
[4-7]. They consist of well-designed sequences of processing steps, including pre- 
processing, bias-field correction, feature-space clustering of multi-echo MRI data  
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[8], and a matching of a statistical anatomical atlas [9, 10] to solve ambiguities 
of statistical classification. As a result, they present a significantly improved re- 
producibility and therefore a reduced inter- and intra-rater variability and allow 
an efficient processing of large amount of data. 

Previous segmentation methods mostly intend to segment lesions from sin- 
gle data  sets, not taking into account the significance of correlation in the time 
domain. In radiological examination on the light-box, however, experts use pre- 
vious scans of patients to decide about  significant changes. An early a t tempt  to 
consider the correlation in the time domain was presented by Metcalf et al. [11] 
by proposing a 4-D connected component labeling on registered segmented label 
images. The procedure serves as a postprocessing filter applied after individ- 
ually segmenting the data  sets, removing insignificant lesion candidates which 
appear only at one time point, or eliminating 4-D lesion patterns with volume 
below a predefined threshold. The aim still was an improved lesion segmenta- 
tion, although the 4-D connectivity additionally could give access to time domain 
information. 

So far, temporal changes in signal intensity patterns of multiple sclerosis le- 
sions have not been used to improve and simplify the processing of time series. 
Gut tmann [3] presented a seminal paper on characterizing the evolution of le- 
sions in serial MR data, suggesting to use this valuable information for image 
processing. The present paper will explore the time domain information inher- 
ently given by serial MR data  sets. The major question in research of disease 
mechanisms or drug studies is most often not a segmentation of static tissue or 
static lesions but of temporal changes. We claim that dynamic changes in le- 
sion voxels can be detected by analyzing the time series of each voxel, assuming 
perfectly registered and normalized data  sets. Although the ultimate goal will 
be a spatio-temporal analysis of the 4-D data  sets, this paper only focuses on 
evaluating the discrimination power of the temporal domain. 

Besides exploring time domain as a new feature for segmentation, we are 
working towards extracting a rich set of morphometric parameters.  These include 
temporal information to analyze the time course of the disease, to understand 
time correlations of lesion groups and lesion patterns, to determine the lesion load 
versus time, and finally to combine the results with anatomic atlas information to 
describe major spatial categories (periventricular, deep white matter ,  cortical) of 
lesions. Scientific visualisation of dynamic changes will be important  to visually 
assess the disease course of individual patients. 

The paper is organized as follows. Section two shortly describes the prepro- 
cessing including bias correction and image brightness normalization, and the 
combination of serial 3-D to 4-D data  sets. The new time series analysis is ex- 
plained in section three. Section four presents results obtained with data  sets 
from different pharmaceutical studies. 
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2 C o m b i n a t i o n  o f  s e r i a l  3 - D  d a t a  t o  4 - D  d a t a  

Individual magnetic resonance volume data sets acquired in weekly to monthly 
time intervals can be combined to 4-D (x, y, z; t) data sets, which allows the 
application of time-series analysis of single voxels. 

Registration The serial data sets obtained from the Brigham and Women's Hos- 
pital Boston (cf. section 4.1) have been registered by the INRIA research group 
using crest-line extraction and matching [12]. A second serial data set presented 
in this paper is processed by the KUL research group using the MIRIT regis- 
tration software package [13] which maximizes the mutual information between 
corresponding voxel intensities. Both registration methods work fully automati- 
cally. The transformation matrices are input to a geometric transformation which 
performs trilinear interpolation. 

Image brightness normalization and bias correction The corruption of the image 
brightness values by a low-frequency bias field often occurs in MR imaging and 
impedes visual inspection and intensity-based segmentation. A mathematical 
model for bias correction using parametric bias field estimation was proposed in 
[14]. We assume the original scene to be composed of tissue regions with homoge- 
neous brightness only degraded by noise. The estimation of the parametric bias 
field is formulated as a non-linear energy minimization problem. Input parame- 
ters are the statistics (mean, standard deviation) of expected categories. Using 
the same set of input parameters for each data set from series of volume images 
results in a combination of bias correction and brightness normalization. The 
presence of strong striping artifacts on one of the data sets required a two step 
procedure by first correcting for brightness changes between individual slices and 
then for the 3-D bias field [15]. 

Result of Preprocessing The normalization of brightness and correction of inho- 
mogeneity artifacts results in sets of corrected 3-D data sets. After registration, 
they are combined to form 4-D data sets. Picking a voxel and visualizing its 
time course gives a good impression of the quality of the preprocessing. We as- 
sume that the signal intensity of white matter should remain constant (figure 
lb), whereas voxels representing active lesions would show considerable changes 
(figure lc-e). 

3 T i m e  s e r i e s  a n a l y s i s  t o  d e t e c t  f l u c t u a t i n g  l e s i o n s  

Bias correction, image brightness normalization and spatial registration of serial 
3-D image data results in 4-D Ix, y,z; t] data sets. The preprocessing yields a 
spatial and intensity-based normalization of the time series. Therefore, we can 
assume that static tissue will not change brightness over time, whereas voxels 
which are part of fluctuating lesions will depict typical variations. Each voxel 
can be considered as a time series, suggesting the application of methods for 
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Fig. 1. T i m e  series  of  voxels  for heal thy  whi te  m a t t e r  (b) and typical  les ions 
(c,d).  Horizonta l  axis: t ime ,  vert ical  axis: M R  intensity.  I m a g e  (a) i l lustrates  
a typical  M R  slice present ing  whi te  m a t t e r  lesions.  T h e  pos i t ions  o f  the  
voxe l  generat ing  the  constant  t i m e  series  (b) is marked  wi th  a thin cross,  
the  les ion t i m e  series  (c) wi th  the  thick cross.  P lot  cl represents  a t i m e  
series  of  another  lesion voxel .  

one-dimensional signal processing. The signal analysis shows similarities to the 
postprocessing of functional magnetic resonance data  (fMRI), but  there is one 
significant difference. Functional MRI is measured by a repetitive stimulation of 
a certain task, which allows a comparison of the stimulation function with the 
time series of each image pixel, most often using correlation techniques. The time 
course of MS lesion voxels, on the other hand, does not follow a fixed pat tern 
and can only be characterized by a dynamic fluctuation of image brightness. 

3.1 V i s u a l i z a t i o n  o f  b r i g h t n e s s  c h a n g e s  

The time course of lesion voxels can be studied by providing two-dimensional 
images of arbi t rary profiles through 3-D image data  versus time. The displays 
illustrate fluctuations of profiles over a typical time period of one year (Fig. 2. 
Tissue boundaries in general show very small spatial displacements which can be 
explained by elastic tissue deformations, whereas some boundaries in the vicinity 
of lesions can demonstrate larger deformations due to a mass effect (see Fig. 2b 
lower middle). A characteristic feature for lesion time series is a continuous 
fluctuation with time, presenting increasing and decreasing time changes or both. 

Based on observations of typical time series of lesion voxels we developed 
features that  describe fluctuations. The set of features will be used for discrimi- 
nating between static tissue and active lesions. 

B r i g h t n e s s  D i f f e r e n c e :  A simple calculation determines the minimum and 
maximum brightness for each time series and calculates the absolute dif- 
ference /kI  = [Irma x - I m i n l .  This feature measures the maximum contrast 
change of a time series within the observed time period (Fig. 3a). 
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Fig. 2. Visualization of spatio-temporal lesion evolution, a Original image 
with profile, b space-time display (horizontal: spatial axis, vertical: time 
axis) and c other typical lesion evolution. 

Stat is t ical  measures:  Mean, standard deviation and variance form a set of 
statistical features expressing the temporal variation of brightness around 
the mean value. We expect much higher variance for lesion voxels than for 
static tissue (3b,c,d). 

Signs of  f luc tua t ion  a round  mean:  The features discussed so far do not con- 
sider the temporal pattern or the frequency of fluctuations. We therefore 
determine the number of zero-crossings of the zero-mean time series and 
evaluate the time length of positive and negative segments. A noisy static 
signal will generate a large number of sign changes with small segments, 
whereas large fluctuations will generate a small number of long segments 
(3e,f,g). 

T ime  derivatives: The gradient of the time function provides information 
about the rate of change, both for decreasing and increasing events. Fig. 2 
illustrates that lesions often appear with a large brightness change. We used 
the minimum and maximum gradient as features for our lesion analysis (3h). 
The attributed time will be further used for displaying temporal evolution 
(see results). 

: . . . . .  . . . . .  : . . . :  
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Evaluation of sign changes of 
zero-mean time series: Analysis 
of the sequence of signs: Nr. of 
"segments" (7), maximum (5), 
minimum (1) and average seg- 
ment length (2.86). 

3.2 Evidence accumula t ion  by combining uncertain measu remen t s  

The multiple features derived by signal processing provide probabilistic maps 
of the likelihood to characterize the sought structures (Fig. 3a-h). Each of this 
features is inherently uncertain, and they must somehow be combined to derive 
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Fig. 3. 2-D cuts of 3-D feature maps: Variance (a), Nr. of zero-crossing segments (b), 
length of maximum segment (c), and maximum absolute time gradient (d) 

a measurement which incorporates different properties of the typical tempo- 
ral pattern of a lesion. A pooling of evidence from different knowledge sources 
will strengthen beliefs in some cases and erode beliefs in others, even handling 
contradictory evidence. The following analysis assumes that the features are 
independent, although this might not be strictly true. A combination of prob- 
ability measures can be accomplished by using Dempster-Shafer's theory. To 
get around the computational complexity of the original DS method [16, 17], 
we used binary frames of discernment (BFOD) as proposed by [18]. Details de- 
scribing the choice of confidence factor functions (cf), basic probability assign- 
ments (cfa) and the combination rules can be found in the long paper version 
(http://www.vision.ee.ethz.ch). The design of these functions and probabilities 
represents a crucial step. However, our tests with the analysis of very different 
serial data sets showed that only minor parameter adjustments were necessary. 
The initial design and training was based on a comparison of the resulting feature 
maps with segmentation results produced by statistical classification followed by 
manual corrections. 

The Dempster's combination rule is associative and commutative, so that the 
final probability does not depend on the order in which evidence is combined 
(Fig. 4a). 

The combined 3-D data set is again probabilistic, with a value range of 
[0,.-., 1] (Fig. 4b). A binary segmentation, for example for three-dimensional 
graphical visualization (Fig. 4c), is obtained by choosing an appropriate thresh- 
old either by visual inspection of overlay images or by comparing the segmenta- 
tion output to hand-segmented training data. Tests with multiple data sets and 
visual inspection showed that the choice of the final threshold was not critical 
and revealed very similar results within a range of thresholds, provided a careful 
design of the d-functions and bpa assignments. 

4 R e s u l t s  

The new segmentation system has been applied to two time series from different 
patient studies. A first study carried out at the Brigham and Women's hospital 
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Fig. 4. Combination of fuzzy features by Dempster's rule (left) and segmented active 
lesions on 2-D slice (right). 

covers 40 patients with 24 brain scans, with a fixed sequence of scanning intervals 
of one, two and 4 weeks. Another study currently analyzed in the European 
B I O M O R P H  project [19] comprises 12 serial imaging sessions of 40 patients, 
each imaging session delivering multiple MR protocols (PD,T1,T2).  The da ta  
sets are preprocessed as described in section 2 and analyzed using the signal 
processing methods described in section 3. 

4.1 Br igham and W o m e n ' s  Hospi ta l  data  sets  

The image da ta  sets were acquired on a GE Signa 1.5 Tesla using a double echo 
spin echo pulse sequence (TR 3000ms, TE  30/80ms) half Fourier sampling (0.5 
NEX). 54 slices with 3mm slice distance and thickness and 256x256 pixels result 
in voxel dimensions of 0.96x0.96x3 mm3. The t ime series includes 24 da ta  sets 
acquired over a period of 50 weeks with a specific t ime protocol: weekly scans for 
10 weeks followed by every other week scans for 16 weeks and monthly scans for 
24 weeks. We could use 23 out of the 24 scans for our analysis. The unequally 
spaced t ime image series was converted into a regularly sampled sequence by 
linear interpolation. 

The 3-D visualizations (Fig. 5) display the t ime course of lesion evolution, 
coded as a color map  ranging from 1 to 23. Additionally, the processing results 
in a quantification of the temporal  evolution of the total  lesion load, measured 
relative to the first image da ta  set. Please remind tha t  the procedure only mea- 
sures t ime changes and excludes voxels that  remain unchanged, thus providing 
information tha t  is different from the conventional total  lesion load over time. 

4.2 B I O M O R P H  data  sets  

Image data  are acquired on a Philips T5 magnetic resonance scanner, 1.5 Tesla, 
using a double echo spin-echo pulse sequence with T R  2816ms and T E  30/80ms). 
24 axial slices 256x256 were measured, with voxel dimensions 0.9x0.9x5.5mm3. 
12 scans are measured over a period of 56 weeks: 11 scans with approximately 4 
weeks intervals and a last scan with a 13 week interval. This unequally spaced 
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time image series was converted into a regularly sampled sequence by linear 
interpolation. 

Figures 6 and 7 illustrate the segmentation result, again attributing the 
segmented lesions with the time of appearance. 

5 S u m m a r y  a n d  C o n c l u s i o n s  

We present a new image processing system for the time series analysis of serial 
data  sets representing time series. The purpose of this project was the exploration 
of the discrimination power of the time axis, which is most often not directly 
used for the segmentation of structures. On purpose, we excluded any absolute 
scalar or multi-spectral information about structures as most often used for the 
voxel-wise segmentation of lesions from MRI by multi-dimensional thresholding 
and statistical clustering. Here, we exclusively analyzed the time series of each 
voxel to demonstrate the additional information obtained by taking into account 
the temporal evolution of brightness. 

The paper describes the development of a the image analysis techniques 
for segmentation of fluctuating structures from 4-D data  sets. Analyzing the 
time series of each voxel, we derive a set of statistical and structural features 
each of which discriminates static tissue from changes in the time function. The 
extraction of each feature creates a probability map for the presence of the 
sought structure. The multiple probabilities from the different evidence sources 
are combined using The Dempster-Shafer theory. We selected this technique 
because it allows to combine different sources of evidence by considering not 
only the probability of the occurrence of a feature, but also of the absence and 
of the ignorance about the measurements. The design of the confidence factor 
functions and the transformation of confidence factors into basic probabilities 
represent a decisive step which is comparable to supervised training in statistical 
classification. Test showed that  once trained, these settings can be used for other 
data  sets as well since measurements do not directly depend on absolute intensity 
values. Further, brightness and contrast of our data sets are normalized in the 
preprocessing step. 

The analysis of normalized 4-D data  sets is automatic and takes about 10 
minutes processing time (SUN Ultra 1 with 128Mb). The results were visually 
compared with results from alternative segmentation methods and revealed a 
surprisingly good sensitivity and specifity to MS lesions. However, we have to 
keep in mind that  our analysis so far is only based on time series information of 
one M R  echo. We can expect an even higher sensitivity if multi-echo informa- 
tion could be embedded, and if we would combine the time series analysis with 
the segmentation of spatial structures. So far, data  was inspected by clinical ex- 
perts by evaluating overlays of the segmented lesions with the original MR scans 
(Fig./refiig:dem-com). A quantitative validation and tests with more serial data 
sets is currently in process and a necessary part of the BIOMORPH project [19]. 
This project also plans to implant simulated lesions in 4-D data  sets to be used 
as a validation standard. However, we can conclude from visual evaluation that  
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temporal  changes represent a highly significant feature for the identification of 
active lesions and should be considered for future analysis. Further,  temporal  
evolution and the detection of t ime changes are the most important  features for 
pharmaceut ical  studies and research, as the goal most  often is the evaluation 
of changes due the disease process or a drug t reatment .  Besides detection of 
lesion voxels, our method reveals the t ime of appearance and disappearance as 
at t r ibutes  to each voxel. A dynamic visualization of this temporal  information 
allows the detection of groups and pat terns  of lesions which show a similar t ime 
course. If additionally combined with anatomical  atlas information to link lesion 
positions to anatomy, we would get a new insight in the MS disease process and 
hopefully a new understanding of the disease mechanism. 

Currently, we are extending the time-series analysis by spatial analysis to 
develop a spatio-temporal  description of fluctuating lesion patterns.  We will also 
include information from multiple spectral  MR channels (PD, T1, T2, FLAIR) 
to replace the scalar by vector-valued measurements.  
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Fig. 5. Three-dimensional display of lesions segmented from the Brigham and Women's  
da.ta set. (a) Side-view with traatsparent intracranial cavity. (b) Time of appearance, 
(c) t ime of disappearance. (d) Plot  of total volume estimates versus time. Remember 
that  tile method analysis only fluctuations and excludes s tat ic  portions of lesions. The 
color represents the time of appearance or disappearance, respectively, coded from 1 
to 23. 

F ig .  6. Three-dimensional renderings of time ew)lution resulting flom tile 4-D analysis 
of tile BIOMORPH da.ta set. The images represent weeks 0: 28, 36 and 40. 

F ig .  7. Three-dimensional displays of lesions segmented fronl tile BIOMORPH da.ta 
set, top and side view of lesions and intracranial cavity. Tile color represents the time 
of appea.rance, coded from 1 to 12). 


