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Abstract. The finite element method is applied to the biomechanics of 
brain tissue deformation. Emphasis is given to the deformations induced 
by the growth of tumors, and to the deformable registration of anatom- 
ical atlases with patient images. A uniform contraction of the tumor is 
first used to obtain an estimate of the shape of the brain prior to the 
growth of the tumor. A subsequent nonlinear regression method is used 
to improve on the above estimate. The resulting deformation mapping 
is finally applied to an atlas, yielding the registration of the atlas with 
the tumor-deformed anatomy. A preliminary 2D implementation that in- 
cludes inhomogeneity and a nonlinear elastic material model is tested on 
simulated data as well as a patient image. The long-term scope of this 
work is its application to surgical planning systems. 

Keywords: brain atlas, registration, biomechanics, inverse methods 

1 I n t r o d u c t i o n  

Much attention has been given by the medical imaging community to the mod- 
eling of normal brain anatomy. Among others, applications of anatomical  mod- 
eling include computat ional  neuroanatomy [1, 2], surgical pa th  planning [3], and 
virtual medical environments [4]. However, little at tention has been given to 
modeling anatomical  abnormalities. In this work we describe steps toward the 
development of a system which simulates soft tissue deformation in the brain 
caused by the growth of tumors. The main application of our work is currently 
in the non-rigid matching of brain atlases to brains with pathologies for the pur- 
poses of pre-operative planning. In particular, brain atlases can provide a wealth 
of information on the structural and functional organization of the brain, and 
ult imately on the response of different brain regions to therapeutic  procedures 
such as radiotherapy. Since they are derived from normal brains, however, brain 
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atlases must be adapted to the pathology of each individual brain. This necessi- 
tates the development of a realistic model for the mechanics of tissue deformation 
due to the growth of a tumor. 

Recently, investigators have presented, among other topics, 2D and 3D finite 
element models of brain dynamics (see for example, Bandak et al. [5] and other 
references in the same journal issue). In the area of quasistatic brain mechanics, 
Nagashima and coworkers (see for example [6]), as well as Neff and coworkers [7], 
used 2D finite element analysis combined with poroelastic theory to allow for the 
movement of fluids through the brain, and a linear material and linear strains 
for the elastic deformations, to model edema, and hydrocephalus. 

Here, we develop a method for simulating quasi-static brain mechanics, specif- 
ically investigating the growth of a brain tumor and the resulting brain defor- 
mations. Our goal is to manipulate brain atlases, which are based on normal 
subjects, by accounting for structural changes occurring with tumor growth and 
thus facilitate neurosurgical simulations for pre-operative planning and training. 

2 M e t h o d s  

We are using a plain stress finite element method i.e. we assume that  there is 
zero stress in the direction normal to our section. Our model incorporates the 
parenchyma, the dura and falx membranes, and the ventricles. 

2.1 C o n s t i t u t i v e  m o d e l s  a n d  p a r a m e t e r s  

In this preliminary work, we assume that both white and gray matter  and the 
tumor tissue are nonlinear elastic solids. The elastic properties are based on 
the incompressible nonlinearly-elastic neo-Hookean model with w = p(11 - 3), 
where w is the strain energy function, # is the material constant. 11 = t r C  = 

~12 -~ )~2 2 -~- ~3 2, since C, the Right Cauchy Green strain tensor, under a co- 
ordinate system that  is based on the principal directions, may be written as: 
C = diag(A12, A22, ~32), where Ai, i = 1, 2, 3 are the three principle stretches. 
A stretch is defined as deformed length over original length. 

We use a value of 3 kPa for the white mat ter  tt, which, for rather small values 
of strain [8], corresponds to a Young's modulus of 18 kPa (a value that  lies in 
the range of moduli given by Metz et al. [9]). In addition, we use a value of 30 
KPa  for the gray matter  and tumor tissue #, 10 times higher than the white 
mat ter  one. 

2.2 N o r m a l i z a t i o n  o f  t h e  image  

Given a brain image that  contains a tumor we would like to explore methods 
capable of calculating the origin of the tumor (the position where it started 
growing). We use a two-part method to perform this normalization of the image. 
The first part  is based on simple contraction of the tumor shape, which effectively 
reverses the process of the tumor growth, while the second part  uses the results 
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of the first part and makes refinements based on nonlinear regression. The two 
parts of our method are explained in the following sections. 

The application of this method shrinks the tumor to a small mass (ideally 
infinitesimal), resulting in an estimate of the normal state of the brain before 
the tumor growth. A normal-to-normal atlas matching procedure [10] could then 
be applied at this point, since two "normal" brain images are involved. Finally, 
the reverse procedure can grow the tumor back to its current configuration, 
deforming the surrounding structures accordingly. So, the final image will be a 
brain map that has been deformed so as to fit the patient data. 

S i m u l a t i o n  o f  t u m o r  c o n t r a c t i o n  In the first part, reduction of the tumor 
size is simulated by uniform contraction. We apply the contraction through a 
uniform negative strain (usually around -0.6 to -0.9) inside the tumor, which 
reduces its average diameter to approximately four tenths to one tenth of the 
original size respectively. 

S i m u l a t i o n  o f  t u m o r  e n l a r g e m e n t  Tumor enlargement simulation is use- 
ful for two cases: 1) to create simulated tumor data for the validation of our 
contraction and 2) to function as the "forward" model in the nonlinear regres- 
sion/optimization (see next paragraph). In the first case, the tumor seed, a cir- 
cular mass of diameter about 1 cm, is initially placed somewhere in the brain 
image. In the second case, the tumor seed created by the contraction run is used 
instead. The subsequent tumor growth is achieved by uniform expansion, similar 
to the contraction case above. 

N o n l i n e a r  r e g r e s s i o n  The second part for the tumor-bearing image normal- 
ization is based on an inverse finite element technique (in effect a nonlinear 
regression) required for the estimation of the original position of the brain tu- 
mor. ABAQUS [11] is used for the FEM and the Marquardt  algorithm [12] is 
used for the nonlinear regression. We should note that  the first part ,  the con- 
traction, provides a mapping that  may be used in itself as a rather simple image 
normalization map. 

Since many parameters are unknown in the initial configuration, and solving 
for all of them might be too expensive, we have decided to optimize only the 
most important  ones and just use a reasonable estimate for the rest of the initial 
parameters. For example, the undeformed shapes of the ventricles are assumed 
to be known from the contraction part. The shape of the tumor seed is also 
assumed to be the same as the one resulting from the contraction step. Three 
scalar parameters are considered unknown and are optimized through this inverse 
approach: the x and y coordinates of the centroid of the tumor seed shape and 
the expansion factor required for the seed to reach the tumor size observed in 
the final images. The errors that  the regression routine minimizes against are 
the distances di (an N-sized vector) of the calculated tumor nodes from the 
experimental (observed) tumor boundary, as well as the distances of the nodes 
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on the calculated ventricles from the experimental ventricular shapes, with N 
being the number of nodes on both tumor and ventricles. So our cost function 

N f is: f = Ei=i di2 

3 R e s u l t s  

Figure 1 depicts a simulated tumor case so that  the performance of the normal- 
ization could be evaluated. The small circular black outline in panel A shows 
the original tumor seed before the simulated tumor expansion takes place. After 
the data  extraction and mesh creation phase, a mesh is obtained which is over- 
layed in panel A. By running ABAQUS with the loads, material properties, and 
boundary conditions, we obtained the deformed mesh/image in panel B. The 
simulated tumor of panel B was then treated as the starting point for applying 
the contraction part  described in Section 2.2. Panel C was produced after we 
applied the contraction method with a suitable contraction strain found by trial 
and error to give an approximately same size tumor seed as the one we started 
with (panel A). Both the finite element (deformed) mesh and the resulting image 
are shown. Ideally, we would like this image to be similar to the original image 
of Panel A since we are using some features of it, in particular the ventricle 
shapes, in our regression part. Finally, panel D is the combination of the image 
in panel B and the ventricle outlines that  correspond to the results from the 
nonlinear regression. Good agreement is observed. 

Figures 2, and 3 represent results of applying the contraction and subsequent 
regression to an actual patient tumor-bearing CT image and to the related atlas 
images. Figure 2 gives the regression results. Panel A shows the patient image 
with a white outline denoting the tumor. Panel B is the superposition of the 
deformation mapping given by the contraction strain of-0.60, and the subsequent 
regression, on the original image. 

Figure 3 displays the atlas manipulations for the regression results. Panel A 
is the original atlas [13]. Panel B presents the warped atlas using the method 
described in [10] by using the overall size of the brain and ventricles. Panel C 
presents the image of panel B deformed with the finite element deformation 
mapping to obtain an atlas that  has the characteristics of our patient tumor 
image. The vertical white lines in both panels B and C have been added to 
illustrate the mid-line shift due to the tumor. Finally, panel D is the patient 
image with a few of the structures of the atlas in panel C superimposed. In 
particular, most of the thalamic structures, the putamen, the claustrum, the 
cortex, and the ventricles have been included. 

4 D i s c u s s i o n  

The tumor contraction is easy to apply but it assumes among other things that  
at the post-tumor configuration, the residual stresses in the tissue are zero, some- 
thing obviously not true since the tissue has already been deformed by the tumor. 
The regression part  does not have this drawback but at the same time it does 
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Fig .  1. Normalization of a simulated tumor: (A) the original image and mesh with the 
simulated tumor seed. (B) the deformed image and mesh due to a "uniform" expansion 
of the tumor seed. (C) The contracted image and mesh. This image corresponds so 
panel A. Note that  the right ventricle (left side of image) is slightly larger than the 
corresponding one in A due to our neglect of residual stresses. (D) The ventricle outlines 
given by the regression overlayed on the deformed image of panel B to point out the 
correspondence. 
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Fig. 2. Regression results for an actual tumor: CT image from a patient (panel A) 
with the tumor highlighted. Pane] B is the image created by deforming the image in 
panel A based on the regression finite element mapping. Note that the slight mismatch 
between the tumor and its outline in panel A was needed to combat imperfections in 
our automatic mesh generation scheme due to the ventricle being very near the tumor. 

need the undeformed configuration of the ventricles before the tumor expansion; 
currently this is provided by the contraction phase. We plan to overcome this 
limitation by using statistical information on ventricular shapes and sizes for the 
age and sex of the particular patient. Also we may be able to utilize the inherent 
symmetry of the brain for structures relatively distant to the tumor. 

Our work is currently being extended from 2D to 3D. The 3D brain volume 
is first segmented and the finite element mesh is then created with an automatic 
mesh generator, Vgrid, provided by F. Kruggel at the Max-Planck-Institute of 
Cognitive Neuroscience, Leipzig, Germany. Results will soon be published in a 
separate article. 

In summary, we have shown the utility of the contraction as well as the 
regression techniques as a means to perform image to atlas registration for pa- 
tients with localized brain deformations due to mainly tumor enlargement. The 
technique has potential applications in radiotherapy pre-surgical planning. 
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Fig. 3. Regression results for an actual ~umor atlas manipulations: (A): Tile original 
atlas slice. (B): The atlas slice warped in overall registration with the patient 's image. 
(C): The deformation of the atlas in panel B based on tile inverse of the finite el(!inent 
mapping of figure 2. The white outline represents tile position of the tumor in the 
patient 's image. (D): Here we have superimposed some of the atlas structures from the 
deformed atlas of panel (C) on the image of figure 2, panel A. Panels B and C have 
been enhanced with the addition of a vertical white line to better visualize the midline 
shift changes. 
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