
Modelling of Soft Tissue Deformation for
Laparoscopic Surgery Simulation

G. SzSkely, Ch. Brechbiihler, R. Hutter, A. Rhomberg and P. Schmid

Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Ziirich, Switzerland

Abs t rac t . Virtual reality based surgical simulator systems offer a very
elegant solution to the development of endoscopic surgical trainers. While
the graphical performance of commercial systems already makes PC-
based simulators viable, the real-time simulation of soft tissue deforma-
tion is still the major obstacle in developing simulators for soft-tissue
surgery. The goal of the present work is to develop a framework for the
full-scale, real-time, Finite Element simulation of elastic tissue deforma-
tion in complex systems such as the human abdomen. The key for such a
development is the proper formulation of the model, the development of
scalable parallel solution algorithms, and special-purpose parallel hard-
ware. The developed techniques will be used for the implementation of
a gynaecologic laparoscopic VR-trainer system.

1 I n t r o d u c t i o n

Endoscopic operations have recently become a very popular technique for the
diagnosis as well as t reatment of many kinds of human diseases and injuries.
The basic idea of endoscopic surgery is to minimise damage to the surrounding
healthy tissue, normally caused in reaching the point of surgical intervention for
the more inacessible of internal organs. The relatively large cuts in open surgery
can be replaced by small perforation holes, serving as entry points for optical
and surgical instruments. The small spatial extent of the tissue injury and the
careful selection of the entry points result in a major gain in patient recovery
after operation.

The price for these advantages is paid by the surgeon, who loses direct con-
tact with the operation site. The necessary visual information is mediated by
a specialised camera (the endoscope) and is presented on a screen. While pre-
liminary systems experimenting with stereo optics are already available, today's
surgery is usually performed under monoscopic conditions. Due to geometrical
constraints posed by the external control of the surgical instruments through the
trocar hull, the surgeon loses much of the manipulative freedom usually available
in open surgery.

Performing operations under these conditions demands very special skills of
the surgeon, which can only be gained with extensive training. The basic optical
and manipulative skills can be learned today by using inexpensive, traditional
training devices. These training units allow one to learn navigating under mono-
scopic visual feedback, as well as to acquire basic manipulative skills. In this way

551

the surgeon becomes accustomed to completing a particular task, but because
the real-life effect is lost, gets only a limited training range in dexterity and prob-
lem solving. Additionally, the organs used by these units are generally made of
foam, hence realistic surgical training is impossible. And while experiments on
animals are sometimes used for testing new surgical techniques, practical as well
as ethical reasons strongly restrict their use in everyday surgical training.

Virtual reality based surgical simulator systems offer a very elegant solution
to this training problem. A wide range of VR simulator systems have been pro-
posed and implemented in the past few years. Some of them are restricted to
purely diagnostic endoscopical investigations [15, 13, 14], while others, for exam-
ple, allow the training of surgical procedures for laparoscopic [12, 11, 16, 24, 25],
arthroscopic [10, 18], or radiological [26] interventions.

While the graphical performance of commercial systems already renders PC-
based simulators possible [15], the real-time simulation of soft tissue deforma-
tion is still the major obstacle while developing simulator systems for soft-tissue
surgery. Different methods in use for deformation modelling include:

- Free-form deformation techniques of computer graphics [20, 22] use paramet-
ric interpolative models (as polynomial models, splines, or superquadrics,
e.g.) for deformation estimation of solid primitives. While analogy to phys-
ical deformation processes is not always obvious, such techniques have be-
come very popular in surgical simulators [24, 19] due to the resulting fast
deformation calculation.

- Different more or less justified simple physical analogies have also been used
for tissue deformation modelling. Most popular are mass-spring models [11,
25, 21] but other alternatives like space-filling spheres have also been imple-
mented [27].

- Elastically deformable surface models introduced in computer graphics and
computer vision [23] calculate surface deformations by solving the linear elas-
ticity equations using different numerical techniques. These methods allow
simulation of tissue deformation based on physical principles [12]. Full 3D
extensions of these techniques [16, 17] already represent the first attempts
for Finite Element based tissue deformation modelling.

The Finite Element Method (FEM) is a very common and accurate way to
solve continuum-mechanical boundary-value problems [1, 8]. In the case of bio-
logical tissue, we have to deal with large deformations and also with anisotropic,
inhomogeneous, and nonlinear materials. Furthermore, organs and surgical in-
struments interact, therein leading to numerical contact problems. Nonetheless,
provided an adequate formulation is chosen, even in these cases the FEM is a
very powerful tool.

Unfortunately, Finite Element calculations are notoriously slow, making them
not very appealing for real-time applications like endoscopic surgery simulations.
Accordingly, tissue deformation for surgical training systems is, up to now, only
calculated by the FEM for fairly simple physical systems [9, 16, 17].

The goal of the presented work is to develop a framework for the full-scale
real-time Finite Element simulation of elastic tissue deformation in complex

552

systems such as the human abdomen. The key for such a development is the
proper formulation of the model (see Section 2), the development of scalable
parallel solution algorithms (see Section 4) as well as dedicated parallel hardware
(see Section 3). The developed techniques will be used for the implementation
of a gynaecologic laparoscopic VR-trainer system.

2 E l a s t o m e c h a n i c a l M o d e l l i n g

To enable the virtual reality simulation of surgical operations, we must achieve
the following:

- Calculation of realistic deformations and contact forces of the organs
- Performance of the calculations in real-time
- Stable calculations for the time range of the entire simulation

2.1 Exp l i c i t F in i t e E l e m e n t F o r m u l a t i o n

A continuum can be described mathematically with the following set of partial
differential equations, satisfied for each material point:

diva + f = pii (momentum equations) (1)
div(pu) +/~ = 0 (continuity equation) (2)

a = f l (e) (constitutive law) (3)
e = f2(u) (strain formulation) (4)

where a is the Cauchy stress tensor, e is the strain tensor, f is the vector of the
volume forces, u stands for the displacements, and p is the density. A superposed
dot denotes a derivative with respect to time.

Within the FEM a body is subdivided by a finite number of well defined
elements (hexahedrons, tetrahedrons, quadrilaterals, e.g.). Displacements and
positions in the element are interpolated from discrete nodal values. A trilin-
early interpolated hexahedron consists of eight nodes lying in the corners. Fig-
ure 2(left) shows a 2D set of elements. Neighbour elements share some nodes. For
every element the equations (1)-(4) can be formulated resulting in the following
discrete system of differential equations:

Mi i + C 6 + Khu = f - r , (5)

where M is the mass matrix, C is the damping matrix, K is the incremental
stiffness matrix, u is the vector of the nodal displacements, f are the external
node forces, and r are the internal node forces. All these matrices and vectors
may be time dependent.

One possibility to solve equations in (5) is a quasi-static manner [3, 5]. In
this case the dynamic part of the equations is neglected (6 = fl = 0) and
the solution is reached iteratively. Within every iteration a huge set of linear

553

algebraic equations has to be solved. In problems with large deformation and
contact interactions the iteration hardly converges and a stable simulation over
several minutes is nearly impossible.

Otherwise, the dynamic equations have to be integrated with respect to time
[5]. The time integration of the equations can, in principle, be performed using
implicit or explicit integration schemes. Using the implicit method, the solution
has to be calculated iteratively at every discrete time step, like in the quasi-static
problem. Contrary, the explicit time integration can be performed without itera-
tion and without solving a system of linear algebraic equations. This integration
scheme is only conditionally stable; that is, only very small time steps lead to a
stable solution [4]. An estimation for the critical time step is made by At = _~L_,
where c is the maximal wave propagation speed in the medium and AL is the
smallest element length of the model. In the case of our model of an uterus and
its adnexes, this equation leads to 10'000 time steps per second (At = 100 #s).

These short t ime steps increase the computational effort but lead to a very
stable contact formulation. The disadvantage of this method - - that many steps
have to be taken - - is not so significant since each step is much less time con-
suming than in an implicit algorithm.

Because of the considerations mentioned above, and based on several nu-
merical tests, we decided to solve the problems with an explicit Finite Element
formulation. Unfortunately, this integration scheme is not as accurate as the
implicit one and time discretisation errors will usually accumulate. In the next
section we will show a way of avoiding this problem.

2.2 Element Formulation / Constitutive Equations

The most time consuming part in the explicit formulation is the computation of
the internal element forces (see Section 2.3), including the calculation of stresses
and strains. These state variables are related to well defined reference configura-
tions. In the following we have to distinguish the updated and the total Lagrange
formulation.

Within the updated Lagrange formulation a state is related to the last suc-
cessfully calculated configuration. Here, strains are usually of an incremental
form. This leads to an accumulation of discretisation errors and in consequence
to the above mentioned lack of accuracy. Additionally, an incremental strain
formulation (even in the case of elastic materials) usually leads to remaining de-
formations in a stress free state after a load cycle [6, 7]. These errors drastically
influence the robustness of a simulation and have to be eliminated.

When a total Lagrange formulation is chosen every state is related to the
initial configuration. In this case absolute strain formulations have to be consid-
ered (e.g., Green-Lagrange or Hencky). Even with the explicit time integration
scheme this leads to an exact static solution, i.e., when the transient terms have
been eliminated by damping effects. Contrary to incremental strain formulations,
these strains lead to correct results after a load cycle and no error accumulation
occurs.

554

These considerations suggested to use a hyperelastic material law. The Moo-
ney-Rivlin law for nearly incompressible materials leads to an elegant Finite
Element formulation and is frequently used in biological tissue modelling. The
Mooney-Rivlin material law is a first a t tempt, and will probably be replaced by
a neo-Hookean law, completed with an appropriate damping model.

2.3 V o l u m e I n t e g r a t i o n

To obtain the internal forces of an element we have to solve the following integral:

fix = f Fi lB~SktdV ~ , (6)
J v o

where repeated subscripts imply summation over the range of that subscript.
f [are the internal forces in direction i of node I of the element, F~l are the
components of the deformation gradient, B / are the derivatives of the interpo-
lation functions with respect to coordinate k, Ski are the components of the 2nd
Piola-Kirchhoff stress tensor and V ~ is the initial volume of the element.

Commonly, this integral is evaluated by a numerical 8-point quadrature. That
is, the integrand will be computed with respect to 8 different integration points,
and the eight values are added with a well defined weighting factor. This com-
putation is very time consuming.

The reduced volume integration is a method to circumvent this overhead [2].
Within this scheme the integrand has to be calculated just once for each element.
Considering only the mean strains within an element, some deformation modes
(hourglass modes) are not influenced by the resulting forces. These modes have
to be controlled with additional stabilisation forces (hourglass control):

f [I 0 qstab I = F~lBkSklV fi �9 (7)

A shortcoming of commonly used formulations for the stabilisation forces is their
incremental character. Obviously, this leads to accumulated time integration
errors and to incorrect results after load cycles. Consequently we formulate these
forces with respect to the initial configuration. This method leads to very stable
results even in cases of large deformations. Furthermore, no integration errors
will be accumulated.

If Finite Elements are not distorted in the initial configuration absolute for-
mulations have an additional advantage. Many multiplications can be saved, and
even the hourglass control needs considerably fewer multiplications.

3 D e s i g n o f a r e a l - t i m e F E M C o m p u t a t i o n E n g i n e

The only way to provide the necessary computationM power for the real-time
solution of complex Finite Element systems is to build a parallel computer which
supports fully parallel algorithms for the explicit t ime integration scheme. Algo-
rithmic design as described in Section 4 below allows to scale the computation

555

to the necessary speed with the selection of an appropriate number of processor
units or processing elements (PE). The section summarises the basic require-
ments and design principles for implementing special-purpose, parallel hardware
to perform explicit Finite Element calculations.

3.1 Performance Requirements

Computation Once the necessary FE calculations and the corresponding paral-
lel algorithms are determined, we have to analyse the performance requirements
in detail to find out what kind of computer is needed to satisfy our demands.

Analysis of optimised explicit Finite Element algorithms shows that approx-
imately 700 floating point operations per element are needed in each time step.
Additional computation time has to be reserved for collision detection and han-
dling. This leads to 10 MFLOPS (Million Floating Point Operations Per Second)
per element for the chosen time step of lOOps. For 2000 elements, a total of
20 GFLOPS sustained are needed.

This amount of computational power is much too high for a state of the
art workstation. Implicit FE calculation can be implemented well on vector-
supercomputers, since the main task is to solve huge sparse systems of linear
equations [28, 29]. However, the time steps and the vectors of the explicit method
are too short, therefore a high performance parallel machine is needed.

The latest processors are able to deliver >300 MFLOPS with optimised pro-
gramming, so 64 of these will meet our demands. As Finite Element calculations
have a tendency to become unstable, accurate computation using double preci-
sion floating point operations is necessary. During the time steps, data has to be
sent and received with minimal processor involvement, requiring that very light
weight protocols be used.

Communication There are three different types of communication: exchange of
forces, collision detection and handling, and data transfer to the graphics engine.
For a FE model with 2000 elements on a 4 x 4 x 4 processor machine, 5600 force
vectors have to be exchanged each time step. This results in a communication
bandwidth of 1.35 GByte/s . This is a huge number, but the fact that data only
has to be transferred between neighbours eases our requirements.

In collision communication, we note that only part of the surface nodes are
potentially colliding with other parts of the FE model, and only about 300 vec-
tors have to be exchanged for a 2000 element model (72 MByte/s) .

Finally, the information for all the surface nodes must be sent to the graphics
engine. This takes place once every 40ms, but to avoid adding too much latency
to the system, data should be sent in a shorter time (20 time steps) . On this
basis,: 18 MByte /s have to be sent to the graphics engine interface.

3.2 Parallel Processing Architecture

According to the previous algorithmic considerations, a three-dimensional mesh
of processors can be optimally used, where every processing element (PE) is

556

$.

Global
Network

Processing Element

Fig. 1.3D Communication Architecture

connected to its six neighbours (Figure 1). Every PE calculates a cube of the
whole FE model, so it has to exchange data from the faces of its cube with PEs
that share the same faces. In addition there are also edges and corners, where
data has to be shared among processors that are not connected by a direct
channel. Such data has to be routed through other PEs. This is actually no
drawback, since in most cases the intermediate PEs have also da ta to transmit
to the same target PE, so they just add their values before transmitt ing the
received data block.

Loc a l C o m m u n i c a t i o n To achieve the necessary low latency, we have to ex-
ploit the specialties of our communication pattern. If data has to be exchanged
between processors, it must be communicated in every time step. Fortunately
it is known at programming time which data values have to be sent, in what
order, and to which destination. Secondly, when the elements are assigned to
the processors, only those processors with elements sharing nodes on the com-
mon face of the cubes have to exchange data (collision detection is an exception
to this). Bearing this in mind, the best way to provide sufficient communica-
tion bandwidth with low latency and minimal software overhead is to use point
to point communication and to transmit pure data without additional address
information. There is no need for routing information when point to point chan-
nels are used, and sending only data values minimises software overhead on the
sender side. But the data still has to be recognised by the receiver. The address
information, however, of the data is implicitly given by the order within the time
step it is sent. It is known at compile time which values have to be exchanged, so
the tool that partitions the elements also sets up the order in which data values
are sent and received.

G l o b a l C o m m u n i c a t i o n Communication takes place mostly between neigh-
bours, although data for collision detection has to be exchanged between two

557

processors that may be far away within the mesh. Par t of these data values has
to be broadcast to all other processors. Additionally, several processors can send
and receive data at the same time.

Routing such da ta through the local channels is very inefficient. Bandwidth is
used tha t is needed for local communication. The routing may consume processor
t ime which can be bet ter utilised for FE calculation and routing through several
PEs increases latency to an unacceptable level. Therefore, such messages are
bet ter sent over a global network over which any PE can exchange da ta with
all others. Da ta must be identified, thus packets of da ta must be sent with
information concerning the receiver as well as an identification.

4 Partitioning the Model for Parallel Computation

Explicit FE computat ion suggests element-wise parallelism, decomposing the
spatial domain. Each element is mapped to exactly one processor, and one
processor computes the internal forces of several elements (see Figure 2 left).
Whenever elements residing on different processors share common nodes, these

Fig. 2. Left: A small 2D model serves for illustrating the concepts on paper. The six
different shades of gray illustrate an arbitrary assignment of elements to 2 x 3 processors.
Middle: The coordinates of the processors to which parts of the model (groups of
elements) are assigned. Dashed lines show x borders, dotted lines y borders. Right:
The model is partitioned in submodels. Grey shades indicate batches for recovery,
arrows mark nodes on the border
nodes must be represented on all involved processors. The resulting force acting
on such a distributed node emerges from the communication among the con-
tr ibuting processors, which t reat the foreign forces like external forces, adding
them to their own.

4.1 Parallel C o m p u t a t i o n

Due to the inherently 3D nature of the problem, 3D processor networks appear
to be the optimal topology for a multiprocessor architecture. PEs are are labelled
with "coordinates", which generally do not correspond to geometric coordinates
(see Figure 2 middle).

558

The mapping of elements to processors should balance the computat ional
load while minimising the demand for communication bandwidth.

A force acting on a node must be applied exactly once. This is inherently
given for inner forces (from recovery). Inertial and gravity forces are applied
only on one PE, where the node is circled black in Figure 2(right). Other nodes
(circled gray) initialize forces to 0.

The mapping defines the sequence of computat ion and communicat ion which
have to run on the parallel computer . To make effective use of the parallel archi-
tecture, the load should be balanced among the single processors, and waiting for
da ta from other processors should be minimised. The procedure sketched below
aims at this goal. The te rm "recovery" means determining the interior reaction
forces within one element (eqn. (6)).

The summation over all elements is split into four phases with communication
interlaced between them. Nodes on the x border are marked with a horizontal
arrow. Before sending in direction x, all elements with such a node must be
computed; they are in batch x, and the figure shows them shaded in a darker
gray. While the forces are being transferred, elements in the y batch (lighter
gray) are recovered. (No z batch exists in the 2D illustration.) The remaining
elements are local to the PE; they belong to the "inner" batch (white).

recover elements in batch x
send x border nodes in direction x

recover elements in batch y
add foreign forces from direction x
send y border nodes in direction y

recover elements in batch z
a d d foreign forces from direction y
send z border nodes in direction z

recover elements in "inner" batch
add foreign forces from direction z

When possible, the recovery of some "own" elements is computed between send-
ing partially assembled node forces in some direction and using the foreign forces
from said direction.

4.2 C o l l i s i o n D e t e c t i o n

The next par t is:collision detection, which uses the global network for data
transfer. We adopt an approximat ion to collision detection tha t is commonly
used with the FEM. This method only determines which nodes of one contact
partner, the slave, penetra te any face of the other contact partner , the master.
Flipping the roles of master and slave and averaging will balance this obvious
asymmetry. T o s a v e t i m e on collision detection, the dynamic behaviour of the
model is taken into account. Elements do not move faster then 10 cm/s , so i f two
elements are 2cm apar t , the earliest t ime they can touch is 100 ms or 1000 t ime

559

steps away. A collision between these elements cannot take place within the next
1000 t ime steps and therefore needs no attention. Secondly, the system is built
in a hierarchical manner. Every PE first checks bounding boxes with every other
PE, before checking for collisions on an element level.

Thus collision detection takes the following steps:

- Every 1000 t ime steps all bounding boxes are compared.
- If close enough bounding boxes are detected, the corresponding PEs establish

a communication channel to exchange the displacements of nodes that may
be involved in collisions.

- During the next 1000 time steps, the displacements of these nodes are sent
to and received from the other PEs. Collisions are detected and each PE
determines the consequences for its nodes. Because these computat ions are
symmetrical, all force vectors generated by collisions sum to zero.

Since the communication channels are only redefined every 1000 t ime steps,
software overhead is minimised.

5 C o n c l u s i o n

Explicit Finite Element analysis leads to very stable simulations even in the
case of large deformations and contact problems. The use of a total Lagrange
formulation increases the stability and eliminates integration errors in the static
solution. Reduced integration decreases the calculation costs by a factor of 5-7
and nevertheless leads to very stable and sufficiently accurate results when the
stabilisation forces are calculated with respect to the initial configuration.

Fig. 3. Deformation of the fallopian tubes with a blunt probe.

Appropriately designed parallel algorithms enable implementat ion of the ex-
plicit integration method on a large, 3-dimensional network of high-performance
processor units, allowing the subsequent usage of these techniques even in real-
t ime surgery simulator systems. The usefulness of the developed methods have

560

been demonstra ted with the simulation of deformations of the uterus ' fallopian
tubes during diagnostic gynaecological laparoscopy (see Figure 3). The imple-
mentat ion of the complete laparoscopic simulator system including the construc-
tion of the specialised FEM computat ional engine is in progress.

References

1. K.J. Bathe: Finite Element Procedures, Prentice Hall, Englewood Cliffs, New Jersey
1996

2. T. Belytschko and S. Ong: Hourglass Control in Linear and Nonlinear Problems,
Computer Methods in Applied Mechanics and Engineering, 43:251-276, 1984

3. M.A. Crisfield: Non-linear Finite Element Analysis of Solid and Structures - Vol-
ume 1: Essentials, John Wiley & Sons, Chichester 1991

4. D.P. Flanagan and T. Belytschko: Eigenvalues and Stable Time Steps for the Uni-
form Strain Hexahedron and quadrilateral, Journal of Applied Mechanics, 51:35-40,
March 1984

5. E. Hinton: NAFEMS - Introduction to nonlinear Finite Element Analysis, Bell and
Bain Ltd., Glasgow 1992

6. M. Kojic and K.J. Bathe: Studies of Finite Element Procedures-Stress Solution of
a Closed Elastic Strain Path with Stretching and Shearing Using the Updated La-
grangian Jaumann Formulation, Computers & Structures, 26(1/2):175-179, 1987

7. S. Roy et al.: On the Use of Polar Decomposition in the Integration of Hypoelastic
Constitutive Laws, International Journal of Engineering Science, 30(2):119-133,
1992

8. O.C. Zienkiewicz and R.L. Taylor: The Finite Element Method, McGraw-Hill Book
Company, London 1994

9. M.A. Sagar, D. Bullivant, G.D. Mallinson, P.J. Hunter and I.W. Hunter: A Vir-
tual Environment and Model of the Eye for Surgical Simulation, Comp. Graphics
28:205-212, 1994

10. R. Ziegler, W. Mueller, G. Fischer and M. Goebeh A Virtual Reality Medical Train-
ing System, Proc. 1 ~t In. Conf. on Comp. Vision, Virtual Reality and Robotics in
Medicine, CVRMed'95, Nice, Lecture Notes in Comp. Sci., 905:282-286, Springer-
Verlag, 1995

11. U.G. Kfihnapfel, H.G. Krumm, C. Kuhn, M. Hiibner and B. Neisius: Endosurgery
Simulations with KISMET: A flexible tool for Surgical Instrument Design, Opera-
tion Room Planning and VR Technology based Abdominal Surgery Training, Proc.
Virtual reality World'95, Stuttgart, 165-171, 1995

12. S.A. Cover, N.F. Ezquerra and J.F. O'Brian: Interactively Deformable Models for
Surgery Simulation, IEEE Comp. Graphics and Appl. 13:68-75, 1993

13. D.J. Vining: Virtual Endoscopy: Is It Really?, Radiology, 200:30-31, 1996
14. : R. Satava: Virtual Endoscopy: Diagnosis using 3-D Visualisation and Virtual

Representation, Surgical Endoscopy, 10:173-174, 1996
15. A.M. Alyassin, W.E. Lorensen: Virtual Endoscopy Software Application on a PC,

Proc. MMVR'98: 84-89, IOS Press, 1998
16. S. Cotin, H. Delingette, J.M. Clement, M. Bro-Nielsen, N. Ayache and J.

Marescaux: Geometrical and Physical Representations for a Simulator of Hepatic
Surgery, Proc. MMVR'96:139-151, IOS Press, 1996

17. M. Bro-Nielsen and S. Cotin: Real-time volumetric deformable models for surgery
simulation using Finite Elements and condensation, Comp. Graphics Forum
15(3):57-66, 1996

561

18. S. Gibson, J. Samosky, A. Mor, C. Fyock, E. Grimson, T. Kanade, R. Kikinis,
H. Lauer, N. McKenzie, S. Nakajima, H. Ohkami, R. Osborne and A. Sawada:
Simulating Arthroscopic Knee Surgery using Volumetric Object Representations,
Real-Time Volume Rendering and Haptic Feedback, Proc. CVRMed'97:369 378,
Springer-Verlag, 1997

19. C. Basdogan, Ch-H. Ho, M.A. Srinivasan, S.D. Small, S.L. Dawson: Force in-
teractions in Laparoscopic Simulations: Haptie Rendering of Soft Tissues, Proc.
MMVR'98:385-391, IOS Press, 1998

20. A.H. Barr: Global and Local Deformations of Solid Primitives, Computer Graphics
18(3):21-30, 1984

21. M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, H. Connacher: VR Simulation of
Abdominal Trauma Surgery, Proc. MMVR'98:117-123, IOS Press, 1998

22. T.W. Sederberg and S.R. Parry: Free-Form Deformation of Solid Geometric Mod-
els, Computer Graphics 20(4):151-160, 1986

23. D. Terzopoulos, J. Platt, A. Barr and K. Fleischer: Elastically Deformable Models,
Computer Graphics 21(4):205-214, 1987

24. Ch. Baur, D. Guzzoni and O. Georg: Virgy: A Virtual Reality and Force Feedback
Based Endoscopy Surgery Simulator, Proc. MMVR'98:110-116, IOS Press, 1998

25. M. Downes, M.C. Cavusoglu, W. Gantert, L.W. Way and F. Tendick: Vir-
tual Environments for Training Critical Skills in Laparoscopic Surgery, Proc.
MMVR'98:316-322, IOS Press, 1998

26. J.K. Hahn, R. Kaufman, A.B. Winick, Th. Carleton, Y. Park, R. Lindeman, K-
M Oh, N. A1-Ghreimil, R.J. Walsh, M. Loew, J. Gerber and S. Sankar: Training
Environment for Inferior Vena Caval Filter Placement, Proc. MMVR'98:291-297,
IOS Press, 1998

27. N. Suzuki, A. Hattori, T. Ezumi, A. Uchiyama, T. Kumano, A. Ikamoto, Y. Adachi,
A. Takatsu: Simulator for virtual surgery using deformable organ models and force
feedback system, Proc. MMVR'98:227-233, IOS Press, 1998

28. V.E. Taylor: Application-Specific Architectures for Large Finite-Element Applica-
tions, PhD Thesis, Dept. El. Eng. and Comp. Sci., Univ. of California, Berkeley,
CA, 1991

29. C. Pommerell: Solution of large unsymmetric systems of linear equations, PhD
Thesis, Department of Electrical Engineering, ETH Ziirich, 1992

