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Abst rac t .  A post-processing "antofocusing" algorithm for the reduc- 
tion of motion artifacts in MR images has been developed and tested 
on a large clinical data set of high resolution shoulder images. The al- 
gorithm uses only the raw (complex) data from the MR scanner, and 
requires no knowledge of the patient motion during the scan, deducing 
that from the raw data itself. It operates by searching over the space of 
possible patient motions and optimizing the image quality. Evaluation 
of this technique on the clinical data set (for which navigator echo based 
measured motions and corrected images were available) show that the 
algorithm can correct for the effects of global translation during the scan 
almost as well as the navigator echo approach and is more robust. 

1 I n t r o d u c t i o n  

The most serious remaining limitation in many current MRI examinations is data  
corruption by patient motion. Such motion causes phase errors in the received 
signal in k-space, which leads to ghosting, blurring and other artifacts in the 
image. A wide variety of techniques have been developed to minimize or correct 
for such motion, with perhaps the most successful being the use of navigator 
echoes [1]. However, corruption due to global patient motion does not actually 
lose information - if the motion is known, and the appropriate phase corrections 
applied, the image can be perfectly restored. It is therefore possible in principle 
to correct for motion given only the raw data from the MR scanner by simply 
trying different possible motion corrections and searching for the highest quality 
resulting image with a suitable evaluation function. Such approaches are used in 
the autofocusing of synthetic aperture radar images and in certain problems in 
seismic data  processing. 

Atkinson et al. [2] recently described such an algorithm, which uses entropy 
minimization as a focus criterion. We have developed a similar algorithm which 
we term "autocorrection",  detailed below, and applied it to a clinical problem - 
high-resolution shoulder imaging - in which the sharpness of the image is critical 
to the clinical evaluation of the supraspinatus tendon and rotator  cuff. Navigator 
echoes have been shown to be effective on such images [3], and we used the data  
set from that  study to directly compare autocorrection and navigator results. 
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2 M e t h o d s  

Autocorrection does not attempt to track patient motion (as do navigator-based 
methods of motion correction), nor does it seek information about the motion 
explicitly in the k-space data, as do some phase retrieval techniques. Rather, 
autocorrection algorithms perform motion correction by defining a measure or 
metric of image quality, and evaluating many combinations of possible patient 
motions, searching for a set which optimizes this quantity after the appropriate 
corrections are made to the image. It is implicitly assumed that the metric has 
an optimal value if the object is stationary, and that any motion during the 
imaging sequence will corrupt the image and degrade this value. In other words, 
it is assumed that it is impossible to make an image better (in terms of the 
metric) than the stationary case. It is also assumed that the better the value of 
the metric, the better the image. 

In mathematical terms, autofocusing casts motion correction as an optimiza- 
tion problem, with the metric as the cost function, in a very high-dimensional 
space (as many dimensions as there are views in the acquired data). While it is 
probably impossible in practice to find the true global minimum of such a cost 
function, it appears to be possible to search the space of possible solutions in 
a way which yields very good improvements in image quality in a reasonable 
amount of time, as described below. It should be noted that similar approaches 
are used in the processing of synthetic aperture data [4] and in problems con- 
cerning the inversion of seismic data [5]. 

Atkinson et al. [2] recently showed the feasability of autofocusing for the 
reduction of MR motion artifacts, presenting an algorithm which used entropy 
minimization as the focus criterion. They considered both 2-D translation and 
rotation, and presented good results for simple test images. The algorithm we 
describe here is fundamentally similar to theirs, with improvements and dif- 
ferences as noted below. We have evaluated this autocorrection technique on 
high-resolution shoulder images, a clinical application in which maximum image 
sharpness is critical. Although this is a demanding test of the algorithm's ability 
to sharpen the image, it is also known that motion in such images is primarily 
translational along the superior-inferior direction [3]. This greatly simplifies the 
operation of the algorithm, since we need only consider one degree of freedom 
(motion along the phase-encoding direction). 

2.1 Optimization Algorithm 

The algorithm begins with the acquired k-space data (384 lines of 256 points 
each), and initially groups frequencies in blocks of 64. A given block is tem- 
porarily "corrected for" a certain trial motion by applying the phase shifts that 
would correct for that motion, if the patient had in fact moved by that amount 
during the time corresponding to the acquisition of exactly those views. After 
these phase shifts, the data is transformed to image space and the metric is cal- 
culated. This metric is compared to the results for other trial motions, and, in 
this manner, the optimal motion correction for that block of frequencies can be 
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determined. We use golden section optimization, and find the optimal motion 
to an accuracy of 0.1 pixel. This is done starting on one side of the center of k- 
space and working outward, then moving to the other side and working outward 
(although alternating sides while moving outward seems to work equally well). 
When corrections are complete for the blocks of 64, the process is begun again 
with blocks of 32, and so on until individual lines are considered one at a time. 
This procedure allows one to gradually approximate the motion record more and 
more accurately as one moves to smaller block sizes. It is not critical to start  at 
a block size of 64 (any large number is fine), and, perhaps surprisingly, it does 
not seem to be necessary to go all the way to considering each line individually. 
If one stops at blocks of 2 or even 4 lines, the correction is essentially complete - 
one has already captured the major features of the motion record, and the finer 
details are not critical to the visual appearance. 

The above paradigm of working with blocks of frequency space of gradually 
decreasing size has some similarities to the optimization strategy in [2]. Since 
they considered 2-D motions, however, they simply evaluated their metric on 
possible combinations of several discrete displacements in both x and y, rather 
than using a more sophisticated optimization scheme in 1-D as we do here. 

2.2 Cos t  ~hmct ion  

The most important  improvement we have made is the choice of a bet ter  cost 
function: we use the entropy of the gradient of the image, rather than the en- 
t ropy of the image itself. Entropy from information theory is defined in terms 
of the probability of a quantity assuming various values, and is minimized when 
most values have probability zero and a few values have high probability. In 
terms of an image, the entropy of the image itself (the metric proposed by [2]) 
is maximized when the image is dark in as large an area as possible, and its 
brightness concentrated in as few pixels as possible. It is known, however, that  
entropy is most sensitive to how close the small values are to zero, and is less 
sensitive to the behavior of the large values. Thus, entropy as an autofocusing 
metric depends critically on the dark areas of the image (especially minimizing 
ghosts in the background), and is not using information from bright areas very 
well. This was noted by [2], and we have confirmed that  a significant amount 
of dark area is necessary to the success of image entropy based autofocusing on 
test images [6]. In the shoulder data  set, initial experiments using image entropy 
as the metric failed to produce good motion correction - typically, ghosting in 
the background areas was reduced somewhat, but the image did not appear to 
sharpen sufficiently. It was also observed that  changes in entropy values did not 
correlate well with observer judgments of how much an image was improving. 

The metric used here (the entropy of the gradient) is minimized when the 
image consists of areas of uniform brightness, separated by sharp edges - since 
in such a case, the gradient is zero everywhere except at the edges, where it has 
high values. This is a fairly good model for what is expected in MR images of 
the body in ideal situations. Any blurring or ghosting will increase the entropy, 
since the gradient will be non-zero at more points and will take on smaller values 
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at the actual edge locations. This metric thus takes full advantage of both bright 
and dark areas of the image. In a separate study [7], we compared the values of 24 
separate metrics on the set of shoulder images described below both before and 
after navigator corrections, and correlated how well the change in the metrics 
predicted the improvement in image quality as judged by the observers. Gradient 
entropy had the smallest variance and gave the highest correlation with the 
observer ratings (R = 0.53, where R = 0.72 was the inter-observer variability), 
and was much superior to image entropy (R = 0.33, with high variance). 

2.3 O p t i m i z a t i o n  o n  S e l ec t ed  C o l u m n s  

The algorithm in [2] requires a long computation time (many hours for a 256x256 
image), due to the need for an inverse 2-D FFT for every new set of trial mo- 
tions to evaluate the image in real space. In our case, this time is much reduced 
due to the single degree of freedom. However, still faster processing is possible 
by considering only selected columns of an image, since evaluating their quality 
requires only 1-D FFTs. We proceed from the k-space data by performing an 
inverse FFT in x, transforming the data into hybrid space (spatial in x, fre- 
quency in y). Since the only motion we are considering is along y, which is the 
phase-encoding direction, the phase correction terms do not depend on x, and 
each column can be considered separately. We are therefore free to choose only 
columns of interest (in this case, those containing the humeral head), and need 
to inverse transform only those, greatly speeding up the calculations. We have 
to restrict the gradient used in the evaluation to consider only the y (phase 
encoding) direction, but it is in this direction that the ghosting occurs. 

This approach also allows the calculations of corrections specific to a certain 
area of interest if the motion is not truly global. This is the case in the shoul- 
der, since patient motion typically tends to be greater farther out towards the 
shoulder (the motion can be likened to a pump handle with the fulcrum along 
the central axis of the body) and the region of main clinical interest is relatively 
small. In synthetic test images, one can correct for induced motions with only a 
small number of columns [6]. In this clinical data set, we find a minimum of 32 
to 64 columns seem to be necessary for stable motion correction, probably due 
to signal to noise considerations. We will report on this in more detail in the 
future. 

3 E v a l u a t i o n  

The navigator study data set described in [3] comprises one hundred and forty 
four (144) high-resolution shoulder exams acquired under routine clinical condi- 
tions using an interleaved navigator pulse sequence. These were oblique coronal 
acquisitions with a double spin-echo sequence to provide proton-density and 
T2-weighted images. Further details of the acquisitions are provided in [3]. Raw 
k-space data representing a slice bisecting the rotator cuff was selected from each 
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of the 144 exams for autocorrection. The original, autocorrected, and navigator- 
corrected images for the selected slices were printed onto film and evaluated by 
4 observers experienced in reviewing shoulder images. For each case, they were 
asked to rank each image on the same scale of one through five (1 = non- diag- 
nostic image quality, 2 = severe motion effect, 3 = moderate motion effect, 4 = 
mild motion effect, and 5 = no observable motion corruption) as used in [3]. The 
general results were that  both correction techniques (autocorrection and naviga- 
tor echoes) significantly improve the images, and while the navigator corrections 
are slightly better overall, the autocorrection corrections are nearly as effective. 

Figure 1 shows the percentage of images which received each rating (from 
1 to 5) for the original images and the two correction techniques. Both correc- 
tion techniques significantly reduce the percentage of images with low ratings, 
increase the percentages with high ratings, and skew the distribution of rat- 
ings strongly towards the "excellent quality" side as compared to the original 
distribution. For the original images, only 23% were judged to be free of ob- 
servable motion corruption. Autocorrection and navigator echoes both increased 
this value to 39%. Conversely, 48% of the original images showed moderate mo- 
tion corruption or worse (ratings of 1-3). This number was reduced to 27% after 
navigator correction and 28% after autocorrection. 

Fig. 1. Absolute observer ratings for images. Percentages of images receiving ratings 
of 1 (non-diagnostic image quality) through 5 (no observable motion corruption) are 
plotted for original images (black), autocorrected images (light gray), and navigator 
corrected images (dark gray). Both correction techniques significantly reduce the per- 
centage of images with low ratings, increase the percentages with high ratings, and 
skew the distribution of ratings strongly towards the "excellent" side as compared to 
the original distribution. 
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Table 1 shows the changes in observer rating when the correction techniques 
were applied to the original images. Navigators were judged to have improved 
the image 307 times vs. 279 for the autocorrection (out of 576 total ratings). Au- 
tocorrection, however, was more robust: the navigator correction was judged to 
have degraded an image 6 times, while autocorrection was never judged to have 
degraded an image. Table 2 shows the average improvement in the observer rat- 
ings for an image for each technique. Images with an original rating of 5 were not 
considered in the averages, since they could not possibly be improved and were 
never degraded by either technique. The overall average improvement with au- 
tocorrection (0.71) is more than 90% of the average improvement achieved with 
navigator echoes (0.78). Figure 2 shows two examples of successful corrections 
for each technique. 

Table  1. Changes in Observer Ratings for Correction Techniques 

Change in score Autocorrection Navigator 

-2 0 0 
-1 0 6 
0 297 263 
+1 247 262 
+2 32 45 

Table  2. Average Improvement in Observer Ratings 

Observer Autocorrection Navigator 

Observer 1 0.69 0.70 
Observer 2 0.58 0.76 
Observer 3 0.89 0.92 
Observer 4 0.66 0.75 
Average 0.71 0.78 

4 D i s c u s s i o n  

It is clear that autocorrection performs well in this application to high resolu- 
tion shoulder MRI, perhaps remarkably so when one considers that it has no 
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knowledge of the actual patient motion. The effectiveness of the algorithm pre- 
sented here is perhaps 90% that  of navigator echo based correction, and (unlike 
navigators) autocorrection never degraded an image. It is possible that  this per- 
formance will improve with future refinements of the algorithm. 

Fig. 2. Two sample images showing tile original (left), autocorrected (middle), and 
navigator corrected versions (right). In these cases both techniques were judged to 
improve the image by +2 points. 

We did not a t tempt  to measure the effect of autocorrection on diagnostic 
accuracy, due to the difficulty of obtaining an independent test to establish the 
diagnosis. However, the improvements in image quality are readily apparent, and 
they are obtained without additional acquisition time, special pulse sequences, 
special hardware, or any sort of patient preparation. The autocorrection algo- 
r i thm uses only the raw (complex) data from the scanner, and can be applied 
retrospectively to any data set from any scanner for which that  information was 
saved, even data  that  is years old. 

The computation times of the algorithm as used here are long, typically 
15 minutes per slice on a Dec Alpha. We believe these times can be consider- 
ably shortened without affecting the quality of the result. Current experiments 
indicate that  a time of 2-3 minutes per slice may suffice to give the level of 
performance achieved here. Future improvements in computing hardware and in 
the algorithm should further reduce computation time. 
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The autocorrection approach can be readily extended to more complicated 
motions. Atkinson et al. (21) demonstrated corrections for 2-D translations and 
rotation, although their work was on a few test images without pathology. We are 
presently extending the algorithm to include 3-D translations and rotations, and 
will report  such results in the future. We are also researching similar approaches 
to correct other, non-motion types of artifacts, such as timing errors in EPI  
images or saturation effects in gated cardiac imaging. 

5 C o n c l u s i o n  

Autocorrection has been shown to be a practical technique for the reduction of 
motion artifacts in a demanding clinical application. The algorithm presented 
here uses only the raw (complex) data  from the scanner, requires 15 minutes of 
processing time per slice, and significantly reduces motion artifacts. It performs 
nearly as well as the navigator echo technique, which is remarkable considering 
that  the navigator is explicitly tracking patient motion while autocorrection 
uses no motion information. The algorithm never degraded an image, while the 
navigator did so 1% of the time. The algorithm is flexible and should be easily 
extensible to other types of motion in other applications and, quite possibly, to 
other types of artifacts in MR images. 
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