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Abs t r ac t .  Acoustic shear waves of low frequency can be detected and 
measured using a phase contrast based magnetic resonance imaging tech- 
nique called MR Elastography or phase measurement based ultrasound 
techniques. Spatio-temporal variations of displacements caused by the 
propagating waves can be used to estimate local values of the elastic- 
ity of the object being imaged. The currently employed technique for 
estimating the elasticity from the wave displacement maps, the local fre- 
quency estimator (LFE), has fundamental resolution limits and also has 
problems with shadowing and other refraction-related artifacts. These 
problems can be overcome with an inverse approach using Green's func- 
tion integrals which directly solve the wave equation problem for the 
propagating wave. The complete measurements of wave displacements 
as a function of space and time over the object of interest obtained by 
the above techniques permit an iterative approach to inversion of the 
wave equation to obtain elasticity and attenuation maps. 

1 I n t r o d u c t i o n  

New techniques tha t  can directly visualize propagat ing acoustic strain waves in 
tissue-like materials subjected to harmonic mechanical excitation have recently 
been developed: a phase contrast  based magnetic resonance imaging technique 
called MR Elastography [1, 2] and a related ultrasound technique based on the 
phase of quadrature  echo signals [3]. These techniques present the opportuni ty  
of generating medical images tha t  depict tissue elasticity or stiffness. This is 
significant because palpation, a physical examination tha t  assesses the stiffness 
of tissue, can be an effective method of detecting tumors,  but  is restricted to 
parts  of the body tha t  are accessible to the physician's hand. 

The  spat io- temporal  variations of wave displacements measured by these 
techniques allow the calculation of local mechanical properties. In particular,  
est imation of the local wavelength (or frequency) of the shear wave propagat ion 
pa t te rn  at each point in the image allows one to quantitatively calculate local 
values of shear modulus across the image and generate an image of tissue elastic- 
ity. We have previously described a local frequency estimation (LFE) algorithm 
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based on log-normal quadrature wavelet filters [4, 5] and have used it to calculate 
such images for synthetic data, test phantoms, excised tissue specimens, and in 
vivo [4]. These "elastograms" or "stiffness images" clearly depict areas of dif- 
ferent elastic moduli in these objects, and calculated values for test phantoms 
correlate well with moduli calculated independently by mechanical means [1, 4]. 
Although LFE is effective in reconstructing elasticity maps for simple objects, 
there are fundamental limits on the resolution it can achieve. The estimated val- 
ues of the local frequency (and hence the shear modulus) are inaccurate within 
half a wavelength or so of a boundary with a different object. Also, LFE can 
produce artifacts in the presence of strong refraction and reflections. These lim- 
itations can be largely overcome by using an approach based directly on the 
wave equation, inverting the equation to estimate the mechanical properties of 
the object being imaged, as described below. 

2 I n v e r s e  A p p r o a c h  

Any kind of wave propagation through an object has to satisfy the wave equa- 
tion [6, 7], 

(i) 

where p(5:) is the medium density distribution, k(@) is the complex wave number, 
k2(~ ") = w2(a(5:) + j[c~(f:)/w)], where a(~') is medium compressibility and c~(~) 
is the absorption factor, and r could be acoustic pressure or displacement. 
Since shear wave elastography provides information about r at every point 5: 
in the object, it should be possible to invert equation (1) to solve for the material 
properties p(5:), ~(~) and a(5:). This would provide the density, elasticity and 
attenuation maps for the object under investigation. We will normalize by density 
below and, from that  point on, ignore density variations - in effect, assuming a 
uniform density of 1.0 everywhere (a fairly good approximation for soft tissues). 

By a change of variable in equation (1), # = C/x/P, the equation can be 
written as the standard Helmholtz equation, 

[ v  2 + = o (2) 

where e 2 k 2 2 1 = - v ~ V  ~ .  This can be solved if the incident energy into the 
object is known (i.e., the wave equation solution in the absence of the object). 
The solution in terms of the Green's function can be written as the volume 
integral [6, 7], 

= - /// - 5:')d5:' 

V 

(3)  

where eo is the value of e for the background medium, 7 is relative value of e ~ 
(~(~))2 _ 1, g(~) is the Green's function of the wave and normalized by e~, 7(~) = . ~o - 
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~5i(2) is the incident wave distribution. Equation (3) can be used to devise an 
iterative method to solve for ~, (which we term the object function). The real part 
of ~ contains the elasticity information and the imaginary part the attenuation 
information. Such an estimator based on wave equation inversion should robustly 
handle situations with interference and refraction, which cause problems for 
local frequency estimation techniques, and should also provide higher resolution 
estimates of the mechanical properties. 

If the functions g(2) and ~(2)g(2) are written in terms of basis functions 
r which are shifted versions of each other, r = r - 2j), 

g(2)=~-~g(2j)r (4) 
J 

and 

(5) 
J 

then eq. (3) can be written as [6], 

�9 (2) = +  (2j)t(2j)c(2, 2j) (6) 
J 

where 

C(2,2j)=-e~///r 
V 

(7) 

The Green's function is a modified Bessel's function, 1 (~) ~H~ (kor), for the 2-D 
wave propagation problem and a complex sinusoid, exp(ikor), for the 3-D wave 
propagation problem. For a given sampling function, the basis function, r 
is known (e.g., sinc function for uniform sampling) and thus the coefficients, 
Cj (2, 2k), of equation (7) can be estimated numerically. 

If the field is measured at a finite set of grid points 2k, then eqn. (6) can be 
written as a linear transformation, 

J 
(8) 

This equation can be iteratively solved for the total field, ~(2), if the object 
function, 3'(2), and the incident field, ~i(2), are known. We have solved this 
forward problem by adapting a biconjugate gradient descent method previously 
shown to be useful for a related problem in diffraction tomography [8]. This 
allows the calculation of simulated data  fields for known objects. 

Conversely, if the total field, ~(2), and the incident field, ~i(2), are known, 
then the inverse problem is to solve for the object function, "y(2), obtaining the 
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elasticity and attenuation values across the object. Equation (8) can be itera- 
tively solved for 7(x) using a conjugate gradient descent based pseudo inverse 
procedure based on modifications to the software described above [8]. 

Note that the total field at each point is a complex number, of which the 
measured displacement at a given moment is the real part. These complex dis- 
placements are measurable with both MR and ultrasound based shear wave 
elastography techniques by obtaining wave field images at different phases of 
the acoustic wave. 

3 V a l i d a t i o n  

We first tested the efficacy of the inverse approach by simulating observed wave 
fields for given object functions using the forward scattering method described 
above. These wave fields were used to obtain estimates of the object function us- 
ing the local frequency estimation algorithm. These estimates were then used as 
initial guesses in the iterative conjugate gradient inverse solutions for the object 
functions to evaluate the improvements in the reconstructed object functions 
over the LFE estimates. The inverse approach was also tested on in-vivo breast 
wave field images to verify the efficacy of the inverse approach for real data. 

3.1 Simulat ions  

Simple object functions with shear modulus and attenuation variations were 
used for simulating the wave field which would be measured in a shear wave 
imaging experiment, using the forward calculation method described above. The 
simulations used an image grid size of 128 • 128 with 1 mm pixel size. Simulations 
were performed for a shear wave frequency of 250 Hz with background wave speed 
of 2.56 m/s. Figure 1 shows the object function, the computed total field, and 
the reconstruction for one such experiment. This simulation does not have noise 
added. 

The LFE was used to estimate the real part of the object function (LFE 
can not solve for the attenuation), using the real part of the field. The inverse 
approach then used this LFE estimate as its initial guess for the object function. 
From the figures it can be seen that the inverse approach shows improved edges 
and sharper object definitions than the LFE, as well as providing information 
on the attenuation (the imaginary component of the object function). 

Simulations such as this show that the LFE has good reconstruction ability, 
but objects are blurry, edges are poorly defined, and some artifacts are obvious. 
The inverse approach significantly sharpens the reconstruction and reduces the 
artifacts. If the inverse approach is started from a random initial state instead 
of from the LFE estimate, the solutions are very similar, but more iterations are 
required. Typical computation speeds are 2-3 seconds for the LFE, 1 hour for 
the inverse approach starting from the LFE (200 iterations), and 75 minutes for 
the LFE from a random initial state (250 iterations). 
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3.2 Sens i t iv i ty  to  Incorrect  Incident  Field 

The inverse algorithm requires an incident field to be defined everywhere in the 
image - essentially, what the field would be if the entire image had an object 
function of unity and zero attenuation. This may be difficult to estimate in a 
real experimental situation. To check the sensitivity of the reconstruction to 
variability in the incident field specification, reconstruction was a t tempted with 
the incident field incorrectly specified to be of twice the proper amplitude and 
wavelength. The results were that  the shear modulus (real part)  was correctly 
reconstructed, but  with an offset to the object function - that  is, the background 
was estimated to have an object function of 3.0 instead of 1.0, exactly what 
is needed to counter the effect of the incorrect input and yield the observed 
wavenumber. Similarly, the too-high amplitude specification was "corrected" by 
the algorithm by assigning a large attenuation to the pixels on the left edge of 
the image, which immediately brings the wave amplitude down to the proper 
value. This indicates that  the algorithm is quite robust to inaccuracies in the 
amplitude and background wavenumber specification for the incident field. 

Fig. 1. Results for a simulated object function consisting of three circular objects with 
differing shear modulus and attenuation embedded in a uniform background. (a) and 
(b) show the real (shear modulus) and imaginary (attenuation) parts of the object 
function. (c) shows the real part of the complex total field, with the incident waves 
coming in from the left. (d) shows the LFE result. (e) and (f) show the real and 
imaginary parts of the object function using the inverse approach. 
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3.3 Sensit ivity to Noise  

The sensitivity of the algorithm to noise in the data  was studied by adding Gaus- 
sian noise of varying amplitude to noise-free simulations such as those above. 
Fig. 2(a) shows a complicated psi-shaped object function, which (with no atten- 
uation) yields the total field shown in Fig. 2(b). The LFE does a surprisingly 
good job of reconstructing the object (Fig. 2(c)), but  artifacts and blurriness are 
evident. The inverse approach yields a much sharper and more accurate recon- 
struction (Fig. 2(d)) in the noise-free case, although some artifacts are present. 
Results when noise is added are shown in Figs. 2(e-f). At the 1% level, the noise 
has a substantial effect on the reconstruction, and at the 4% level, the recon- 
struction is seriously compromised. The LFE results at these noise levels (not 
shown) differ little from the noise-free case. It is evident that  the inverse algo- 
r i thm as currently formulated is quite sensitive to noise in the data, and reducing 
this sensitivity by regularizing the algorithm in some way is a priority for future 
research. 

Fig. 2. Results for a simulation consisting of a psi-shaped object and smaller noise 
objects in a uniform background. (a) Object function: Real part of the object function. 
The imaginary part of the object function is zero (no attenuation). (b) The total field 
produced by such an object function (real part). (c) The LFE based reconstruction of 
the real part of the object function. (d) The real and part of the object function using 
the inverse approach. (e) The real and part of the object function using the inverse 
approach, after 1% Gaussian noise was added to the total field. (f) The real and part 
of the object function using the inverse approach, after 4% Gaussian noise was added 
to the total field. 
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4 E x p e r i m e n t a l  R e s u l t s  

Fig. 3 shows the results for shear wave measurements for an in-vivo MRE breast  
exam on a volunteer. The da ta  was acquired at a shear wave frequency of 100 
Hz on a 16 cm field of view on a 256 • 256 grid. The LFE reconstruction (not 
shown) is unable to distinguish fat ty  tissue from the glandular tissue (as seen in 
the magni tude image). Some structure and distinction between the two tissues 
is seen with the inverse approach, in both the elasticity and at tenuat ion images 
(Fig. 3(b-c)). The inverse approach is thus able to provide estimates of two 
distinct quantities, shear modulus and shear wave attenuation,  which can provide 
complementary  information on tissue properties. 

Fig. 3. Elasticity mapping for in-vivo breast MRE data. (a) The MR magnitude image 
of the scan. The breast rests on a vibrating surface at the right and the chest wail 
is to the left. (b) and (c) are the real (relative shear modulus) and the imaginary 
(attenuation) parts of the reconstructed object function using the inverse approach. 

5 C o n c l u s i o n  

Acoustic shear wave elastography can provide the spat io- temporal  distribution 
of shear wave propagat ion using either a phase contrast  based MRI  technique 
or an ultrasound based echo phase imaging technique. Such low frequency shear 
wave images can be utilized to reconstruct the elasticity and at tenuat ion maps  
of the object imaged. The local frequency estimation (LFE) algorithm currently 
used provides useful reconstructions, but  with limited resolution and some sen- 
sitivity to interference and refraction. The inverse approach to reconstruction 
described here provides sharper and more robust reconstructions, as demon- 
s t ra ted on simulations as well as on experiments with in-vivo breast  images. 
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The inverse approach also provides the at tenuation maps,  which are not obtain- 
able with LFE. The inverse approach does show more sensitivity to noise than 
the LFE (not discussed here). Reducing this sensitivity to noise and speeding up 
the algorithm are priorities for future research. The inverse approach developed 
here can also be extended to 3-D quite simply via the use of the 3-D Green's  
function, al though the computat ion times may become prohibitive. 
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