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Abst rac t .  In this paper we address the problem of spatio-temporal 
acoustic boundary detection in echocardiography. We propose a phase- 
based feature detection method to be used as the front end to higher-level 
2D§ reconstruction algorithms. We develop a 2D+T version of 
this algorithm and illustrate its performance on some typical echocar- 
diogram sequences. We show how our temporal-based algorithm helps 
to reduce the number of spurious feature responses due to speckle and 
provides feature velocity estimates. Further, our approach is intensity- 
amplitude invariant. This makes it particularly attractive for echocar- 
diographic segmentation, where choosing a single global intensity-based 
edge threshold is problematic. 

1 I n t r o d u c t i o n  
This paper develops a novel technique for finding acoustic boundaries in 2D and 
2D +T echogram sequences. Most prior work has involved the development of 
2D spatial processing methods, based on, for example, template mask feature 
detection [1]; 'snakes' [2], or integrated backscatter (IBS) boundary detection 
[3]. However, spatial methods ignore temporal continuity, which can potentially 
be used to improve the reliability of feature detection. Herlin and Ayache inves- 
t igated this idea [4]. They proposed tracking cardiac boundaries using a method 
that  employed a spatio-temporal based version of the Deriche edge detector [5] 
and assumed a Gaussian noise model. However, their approach was not fully 
developed or validated on clinical data. 

Acoustic image feature detection needs to be robust to speckle noise and 
attenuation imaging artefacts. Speckle noise corrupts the data by introducing 
sharp changes in the image intensity profile, while attenuation artefacts alter the 
intensity of equally significant cardiac structures depending on their orientation 
with respect to the ultrasound beam. This suggests that measures based on 
phase information rather than intensity derivatives may be more appropriate for 
acoustic feature detection. 

In previous work we have discussed the application of phase-based feature 
extraction methods to echocardiographic data [7]. We used a local-phase mea- 
sure to selectively detect step edges associated with cardiac boundaries in ID 
echocardiographic profiles. Local phase was computed via the convolution of the 
image with a quadrature pair of filters [6]. A scalogram was used to show that 
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local phase signatures of cardiac boundaries are detectable and well localised 
at large scales. This is not the case for small scale speckle noise. Further, we 
showed that  step-like cardiac boundaries can be selectively extracted according 
to the value of their local-phase signature which is different from that  of the 
ridge-like structures associated with speckle. We applied this approach to 1D 
acoustic boundary detection in a Kalman-filter based tracking algorithm, and 
showed that  this method gives better  tracking performance than using simple 
gradient-based edge detection. 

Unfortunately, the technique used in [7] cannot be readily extended to two 
or more dimensions. Building on the work of Kovesi [8], in the rest of this paper 
we present a new phase-based measure that  shares the good localisation and 
selectivity properties of local phase but which can be extended to 2D and 2D+T.  
We also show how the 2D+T version of this algorithm provides an estimate of 
feature velocity. We are currently investigating how this idea can provide input 
to a higher level algorithm. 

The outline of the paper is as follows. Section 2 presents the 2D acoustic 
feature detection algorithm and motivates the need for spatio-temporal analy- 
sis. This leads us to propose a 2D+T measure in Section 3 and to show how 
feature velocity can be estimated. Section 4 presents preliminary experimental 
segmentation results on real 2D cardiac sequences. We conclude with a summary 
and a discussion of current and future work in Section 5. 

2 T h e  2 D  f e a t u r e  a s y m m e t r y  a l g o r i t h m  
Kovesi proposed a 2D multi-scale, intensity-invariant, feature detection measure 
for finding step features in visual images [8]. In [7] we showed that  a simplified 
version of this algorithm, using a single large scale, gives well localised segmen- 
tat ion results. We call this measure 2D feature asymmetry, FA2D(x,y), which 
we define as, 

FA2D(x,y) = E [[IOm(X'Y)I - le'~(x'Y)N - TmJ -Am--(x-~ +--~c (1) 

Here ore(x, y) (era(x, y)) is the output  of a convolution of an image with an 
orientable odd (even) symmetric log-Gabor wavelet filter, and the summation is 
taken over m filter orientations. Am is the local energy amplitude of the ruth 
filter response given by Am(x, y) = x/era(x, y)2 + Om(X, y)2, [] denotes zeroing of 
negative values and ~ avoids division by zero. The orientable 2D fl ters  are defined 
by "spreading" a log-Gabor function into two dimensions. Namely, an orientable 
filter tuned to a particular orientation r is constructed in the frequency domain 
by masking a radial log-Gabor function with an angular Gaussian tuned to r 

((log(w~/w~o)) 2 (r - r 2 
a ( ~ ,  r = exp-  2(log(~/~o))~ ~ ~ /  (2) 

Here r is the orientation of the filter and ar defines the extent of the spreading 
function as a scaling s of the separation between filters Ar i.e.ar = s x Ar The 
value ~/w determines the wavelength of the filters. In our experience we have 
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found that  Ar  = 30~ = 0.6,~/w = 0.55 (2 octaves), provides a good com- 
promise between even spectral coverage, orientation resolution and computation 
time for a six filter bank. The orientation-dependent noise threshold, Tm, and 
the zeroing operation make each filter respond to only those features in its ori- 
entation range. In Equation 1, amplitude normalisation provides invariance to 
contrast. Thus, the response of each feature is normalised according to the local 
energy measure around its neighbourhood. In this way local feature significance 
prevails over general feature strength. 

The result of computing 2D feature asymmetry on a short-axis ultrasound 
image with no pre-filtering is shown in Figure 2(B). In our images a filter wave- 
length of 20 pixels has been found to give good feature localisation while avoid- 
ing the detection of speckle. The results show good detection of the chamber 
boundaries. However, the limitation of using a 2D feature asymmetry measure 
is highlighted if the 2D (spatially) processed images are displayed as a movie 
sequence. In this case, a number of small flickering spurious features are ob- 
served. In any given frame, there will always be a number of spurious features, 
due to noise and artefacts, that  share similar intensity, shape and scale char- 
acteristics as responses from chamber boundaries. However, and unlike cardiac 
chamber boundaries, most of these features are not persistent from one frame to 
the next. In fact, most are due to speckle patterns that  decorrelate with tissue 
movement. To remove the flickering noise, we now extend the 2D analysis into 
the temporal domain. 

3 T h e  2 D + T  a l g o r i t h m  a n d  f e a t u r e  v e l o c i t y  e s t i m a t i o n  

The extension of the feature asymmetry measure to 2D+T involves the design 
of a set of filters oriented in a number of spatio-temporal directions. This is 
achieved by re-defining the 2D filters in 3D spherical co-ordinates, 

+ . ( 3 )  

The velocities to which each filter responds are encoded in terms of r the 
spatial orientation, and 80 the temporal orientation. Figure 1 shows a diagram- 
matic representation of the filter orientations. Twenty-one filters are located on a 
spatio-temporal hemisphere at the vertices of an 80 faceted tesselation of the unit 
sphere obtained from the subdivision of a regular icosahedron. This provides an 
approximately even distribution of filters over the spatio-temporal space. Note 
that  for 0 = 0 (time = 0 plane) only orientations in the r = [0~ ~ interval are 
required. The spread parameters are chosen to be the same, making the filters 
isotropic in the spatial and temporal dimensions (ar = ar The value of the 
spatio-temporal spread is set to a fraction (0.6) of the average angular spacing 
between filters to ensure even spectral coverage. 

In order to improve the contrast of a segmented image, the maximum filter 
output  over all orientations is taken rather than the sum. The 2 D +T feature 
asymmetry measure then becomes, 
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FA2D+T(x,y) - -  m a x  L[Jom, (x,y)J -I m,v(x,Y)t] -- T, ,vJ, (4) 
~,m Am,~(x,y) + c 

where the indices v, m respectively indicate the temporal and spatial orientation 
of each filter. 

Note that  we do not choose particular velocities but sample over all the 
spatio-temporal space. The current implementation does not optimise filter de- 
sign to a velocity range because cardiac motion varies during the cardiac cycle, 
depends on position on the heart surface, and image velocities ultimately depend 
on the temporal resolution of the data. In practice, provided that  the spatio- 
temporal  filters have sufficient resolution and tile the spatio-temporal volume 
evenly, any velocity will be detected by at least one filter. The t~ = 90 ~ filter 
detects very fast changes that  persist over time, i.e. pure temporal  steps due to 
occlusions. 

Note further that  by recording which of the filters gives the strongest response 
an estimate of feature velocity is obtained. Given the sparse sampling of the 
2D +T space the estimate can be improved by interpolating the responses around 
the maximum to approximate the true feature velocity. 

Fig.  1. The 21 2D§ T 
filter orientations. 

4 R e s u l t s  

The current implementation performs filter con- 
volutions by multiplication in the frequency domain 
using Temperton's F F T  algorithm [9]. The filters are 
built in the frequency domain using Equation 3. The 
separability of the 3D F F T  operation allows us to re- 
sample the filter's spectrum according to the relative 
data lengths of each axis in space-time. We treat  the 
2D+T volume to be isotropically sampled. In the re- 
sults presented in Section 4 the data  dimensions are 
256 x 256 pixels in space by 32 frames in time. 

In this section we present the results of applying our 2D+T acoustic boundary 
detection algorithm to a number of echogram sequences. We illustrate some of 
the distinguishing features of this type of approach to acoustic feature detection 
and highlight some potential areas of application of the technique. We encourage 
the reader to visit ht tp: / /www.robots .ox.ac.uk/~miguel /MICCAI98.html where 
the movies referred to in this section and further examples can be seen. 
4.1 C o m p a r i n g  2D a n d  2D-t-T f i l ters:  The purpose of the first experiment is 
to highlight some of the differences between 2D and 2 D +T boundary detection. 
A 2 D+T filter bank, consisting of 21 filters, was designed as described in Section 
3. The wavelength of the Log-Gabor component was 20 pixels for all the filters, 
their bandwidth was 2 octaves, t~/wo = 0.55, and s = 0.6. 

Three consecutive frames (11, 12 and 13 in the movie sequences) of the 2 D + T  
segmentation are shown in Figure 2(C). For comparison we have included the 
original data  and the results of a 2D segmentation using the same scale, Figures 
2(A) and 2(B) respectively. 
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Note the absence of small scale flicker features in the 2 D +T measure when 
compared with the 2D result. The significant features in the 2 D +T results can be 
easily traced across the three frames and they all correspond to relevant cardiac 
structure. In the 2D segmentation this is not the case. Many inconsistent blob- 
like features are detected as well as a number of short-lived small-scale line 
features corresponding to speckle. Furthermore, in the 2 D +T result the left wall 
of the ventricle is visible as a faint arc. This structure is not detected by 2D 
segmentation, The results illustrate how the 2 D + T  segmentation weighs the 
importance of spatial features according to their temporal significance. 

With larger filter scales, smoother contours are obtained and less noise is de- 
tected, but this is at the price of less accurate localisation and detail. Obviously, 
increasing the scale of the 2D filters does not remove flicker noise, (see the web 
page for an illustration of this). In Figure 3(A) we show 2D and 2 D + T  results 
on a very cluttered long axis image. This is the other standard view used to 
quantify left ventricle dynamics by cardiologists. The results show very clearly 
the removal of the flickering speckle features and the enhancement given to the 
main cardiac structures by 2D+T filtering. 

A limitation of our current 2D+T algorithm is that  it cannot detect fast 
cardiac motions that  have similar temporal characteristics to speckle; for exam- 
ple the mitral valve leaflets. At typical diagnostic frame rates (,~50Hz) the 2D 
segmentation of the mitral valve appears superior to the 2 D +T results because, 
during opening, the leaflets cannot be tracked consistently across time frames. 
This is illustrated in Figure 3(B). The whole sequences can be seen in the web 
page. Note that  this is not a problem of the algorithm itself but  of the limited 
sampling rate of the data. This can be overcome by using faster frame rates (as 
available on new commercial machines) or interpolating the sequence prior to 
detection. 
4.2 G r a d i e n t  vs. p h a s e - b a s e d  f i l te r ing:  The full spatio-temporal character 
of our method and its invariance to contrast, are illustrated in this section by 
comparison with a gradient-based spatio-temporal algorithm developed by Herlin 
and Ayache [4]. 

Herlin and Ayache used a modification of Deriche's edge detector in 3D based 
on smooth derivatives [5]. They estimated the two spatial components of the 
gradient vector N~ and Ny from the convolution of the 2 D +T intensity function 
I(x, y, t) with two spatial derivative kernels (D~, Dy) and a temporal  smoothing 
filter (Lt) so that  N~ = (D~, Ly, Lt) | I(x, y, t), and, Ny = (Lx, Dy, Lt) | 
I(x, y, t). Edges were obtained from the local maxima of the norm of the gradient 
given by, N(x, y, t) = ~/N~ + 

The result of applying the Deriche method to our short axis sequence is shown 
in Figure 3(C). The same parameters as in [4] were used. The Deriche method 
is contrast dependent and features are detected based on the size of intensity 
derivatives rather than on their spatio-temporal significance and shape. The 
result is a cluttered edge strength image where relevant and irrelevant features 
are detected with similar strength. Further, the Deriche method is not truly 
spatio-temporal. The derivation is only performed in the spatial domain and the 
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temporal  filtering only contributes by smoothing the image over time, not by 
detecting temporal  features. 
4.3 Ve loc i t y  m e a s u r e m e n t s :  Finally, we present results of feature velocity 
estimation. Velocity is estimated from the inclination of the filter exhibiting 
the strongest response. As the cardiac muscle gains speed during systole, wall 
features in the spatio-temporal domain are detected by faster moving filters 
(larger 0o). At end-systole the muscle velocity decreases to zero before diastolic 
relaxation and the features are detected by static filters in the spatial plane 
(00 = 0). Colour coded response maps for a series of views can be seen at our 
web page. Figure 3(D) shows two frames during systole and diastole. Arrows 
have been marked on the detected features after non-maximal suppression of 
the feature asymmetry image. In this case the orientation and magnitude of 
these arrows corresponds to the velocity vector estimated from the interpolated 
filter responses around the maximum. We are currently investigating how these 
measurements can provide input to an active-contour based tracker. Current 
research is also comparing this approach to velocity estimation using Doppler 
Tissue Imaging [11]. 

5 D i s c u s s i o n  
We have presented a new approach to spatio-temporal acoustic boundary de- 
tection based on phase-based methods. The main contributions of this work are 
(1) to propose a new phase-based scheme for detecting acoustic boundaries in 
echocardiographic image sequences and (2) to develop a 2 D +T version of this 
algorithm that  is resistant to temporally inconsistent speckle and that  can pro- 
vide a measure of feature velocity. A key advantage of this approach is that  it 
is intensity-amplitude invariant. This makes it especially attractive for echocar- 
diographic 3D+T reconstruction where choosing a single global intensity-based 
edge threshold is problematic due to position dependent attenuation. 

We are currently using our phase based segmentation and velocity estima- 
tion as the front end to a higher level interpretation system based on a snake 
framework similar to our work in [10, 7], and also plan to extend our ideas to 
volumetric spatio-temporal data. We also plan to perform a more detailed study 
of filter design and filter response interpolation in order to improve the accuracy 
of feature velocity estimation. Quantitative assessment and evaluation against 
related measurement protocols, particularly Doppler Tissue Imaging will also be 
performed. Finally, an interesting variant of this work might be to investigate 
the use of a symmetry  measure for speckle tracking. 
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F ig .  2. Comparison of (A) input frames, (B) 2D feature asymmetry results, (C) 2D+ T 
feature asymmetry results. 
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Fig. 3. (A) Lon 9 a:cis ffam~b 2D rind 2D§ T f~'at'~'(: asTjm~netry recruits. (B) k~dvc Rc- 
sv, lts. (1) View of the Mitral arid Aortic V, dves at opening. (2) 2D and (3) 2D§ T feature 
asymmetry results (C) l~esu~t,~ of running HcrIin arid Ayache~s method on our data. 
(D)lnterpoIated filter response velocit 2 estimates, (1) ~ystole: arrows point inwards', (2) 
die,stole: arrows point outwards. 


