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Abstract. We present a method of 3D/2D image registration. The algorithm is 
based on the property of near projective invariance in tubular objects. The 
skeletons of tubular anatomical structures (e.g., intracerebral blood vessels) are 
used as registration primitives. Experiments with Magnetic Resonance 
Angiogram (MRA) patient studies and both simulated and actual X-ray 
angiograms suggest that the algorithm is very accurate and robust. The algorithm 
requires only a small number of primitives. In addition, the algorithm is relatively 
insensitive to the choice of tubular structures used. Experimental results 
justifying these claims are included. 

1 Introduction 
The objective of 3D/2D image registration can be described thus: Given a 2D image 

and a 3D model, determine the position and orientation (i.e., pose) of the imaging 
device when the 2D image was taken. In this paper, we describe an algorithm for 
reg i s te r ing  3D Magnet ic  Resonance  A n g i o g r a m  (MRA) images  with X- ray  
angiograms. The imaging device for our application is a digital fluoroscope. Many 3D/ 
2D registration algorithms have the following paradigm. First, image structures 
common to both 3D and 2D imaging modalities arc chosen as registration primitives. 
Examples include the images of external fiducial markers. The images are assumed 
registered when the projected 3D registration primitives are within a small distance of 
coinciding with their 2D counterparts. Second, for a given choice of primitives, an 
objective function is formulated. The objective function has a minimum value when the 
primitives coincide. Finally, an optimization algorithm to minimize the objective 
function is chosen. 

Registration primitives include points, curves, and surfaces. The projection 
involved in registering 3D with 2D images complicates the choice of registration 
primitives. Not all types of primitives can be unambiguously projected. For example, 
3D surfaces may overlap and project onto the same part of the 2D plane. In this paper, 
we show that the property of near projective invariance permits us to use the skeleton 
curves of tubular objects as registration primitives. With local exceptions, 3D curves 
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can be projected unambiguously as 2D curves. Section 2 describes this property in 
greater detail. 

2 Method 
A 3D tubular structure such as a blood vessel generally appears as a 2D tube under 

projection. This section describes the property of  projective invariance and its 
application in 3D/2D registration. Section 2. I presents the concept of  projective 
invariance and applicable conditions. Section 2.2 describes conditions where projective 
invariance is inapplicable. 

2.1 Near Projective Invariance 

A 3D tube contains a central axis or skeleton such that cross sections of the object 
made perpendicular to the skeleton are circular. A 2D tube contains a skeleton which is 
equidistant from the tube's boundaries. Tubes are not required to have constant width. 
Generally, the projection of a 3D tube is a 2D tubular shadow. For a given projection, if 
the 3D skeleton projects onto the 2D skeleton of the projection's shadow, projective 
invariance is preserved. That is, a 3D tube is said to preserve projective invariance if 
the projection of the 3D skeleton and the 2D skeleton of the tube's projection are the 
same. 

Strict projective invariance is preserved where the tubular object is not overlapped 
under projection. Liu [1] enumerates such conditions in detail. In practical situations, 
intensifier induced image distortions, the resolution of the imaging device, and the 
characteristics of X-ray image formation affect invariance. While strict invariance is 
not preserved, it is minimally affected. Tubular objects exhibit the property of near 
projective invariance in this situation. That is, the projected 3D skeleton only differs 
slightly from the projection's 2D skeleton. Tests using both simulated and actual X-ray 
angiograms suggest that this difference does not significantly affect registration results, 
as shown in section 4. 

Near  project ive invariance simplif ies  the use of  tubular objects for 3D/2D 
registration. The problem is reduced to that of registering sets of curves. Curves are 
computationally simple structures from which a fast, highly accurate registration 
algorithm can be developed. This algorithm is described in section 3. 

2.2 Exceptions to Near Projective Invariance 

A tube may not display near projective invariance throughout its length. The 
invariance property is not preserved when tubes overlap under projection. Such 
segments should not be used for registration. Two kinds of overlap are possible: local 
and non-local overlaps. 

A local overlap or self-occlusion occurs when a contiguous portion of the same tube 
overlaps under projection. Fig. 1 illustrates this case. The object is a tubular helix. The 
helix's axis is perpendicular to the view direction. The left image shows the tube and its 
3D skeleton. The right image is a projection of the tube with the projection's 2D 
skeleton. The tube's 3D skeleton forms a cusp after projection whereas the 2D skeleton 
is smooth and does not extend as far out the bend as its 3D complement. 

A non-local overlap occurs when portions of two distinct tubes or when two non- 
contiguous portions of the same tube overlap under projection. Fig. 2 illustrates. The 
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Fig. 1: The effect of self occlusion on projective invariance. Left: 
projection of the 3D skeleton. Right: The projected tube's 2D skeleton 

middle image is an angiogram. The side images are magnified regions where ambiguity 
arises due to non-local overlaps. From these images, it is not clear whether the 
projected vessels cross or are just touching. 

Fig. 2: A lateral X-ray angiogram of the head. Highlighted 
areas contain overlapping projections of distinct vessels 

3 The Registration Algorithm 

Our goal is to register 3D MRA studies with X-ray angiograms. By the property of 
projective invariance, registering blood vessels with their corresponding projections is 
equivalent to registering the projected 3D skeletons with their 2D analogues. A 3D/2D 
registration algorithm was developed that uses the skeletons directly. The algorithm 
accepts as input the set of 3D skeletons extracted from volume data, the set of 2D 
skeletons extracted from X-ray images, and the correspondence between the 3D and 2D 
skeletons. The algorithm returns the pose required to register the primitives. The set of 
3D skeletons is assumed to be rigid. Liu [1] develops the registration algorithm at 
length. In this paper, we summarize its key aspects. Section 3.1 describes our method of 
extracting tubular skeletons. Section 3.2 describes the objective function. Section 3.3 
briefly outlines the optimization method. 
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3.1 Extracting Tubular Skeletons 

Tubular skeletons are extracted directly f rom digital images.  Extract ion is 
performed via cores [2], a method of multi-scale object description. For tubular 
structures, cores encode the object as a curve in 91n x 9t + space, where n is the 
dimensionali ty of the tube. The core-middle, or spatial component  of the core, 
corresponds to the tube's skeleton. Fritsch's algorithm [3] is used to extract cores from 
X-ray angiograms. The 3D extraction of core-middles from MRAs is performed using 
Aylward's algorithm [4]. 

3.2 Computing the Disparity Value 

From the property of projective invariance, tubular structures are accurately 
registered with their projections when the projected 3D skeletons overlap their 
corresponding 2D equivalents.  This section describes a method for measuring 
registration accuracy based on the degree of overlap or disparity between skeletons. 

Let C be the skeleton of a 3D tubular blood vessel, and c be the skeleton extracted 
from the vessel 's  projection. Let P be the perspective projection function. Under 
perfect registration, projective invariance implies that P(C)  perfectly overlaps c.  
When they are misregistered, c and P(C) will be misaligned. Given a projected 3D 

and 2D curve pair (P(C), c), take a set of evenly spaced points Po, Pl ..... Pn along 

P(C). For each point Pi, the corresponding point qi o n  c is located by computing the 

intersection of c with the line perpendicular to the tangent of P(C) at Pi. If more than 

one intersection exists, the closest is selected. If there are no intersections, then Pi does 

not have an analogue on c. Fig. 3 illustrates a few cases. Note that either c or P(C) 

P( C) 
P(C) 

C 

Fig. 3: Computing the disparity between 2D and projected 3D skeletons 

may be incomplete. Fig. 3 (middle) illustrates point pairing when c is incomplete. 

The disparity value is taken to be the mean-square value of all point pairs (Pi, qi) 
for all curve pairs (P(C), c). In our registration algorithm, the association of 3D 
skeletons with their 2D counterparts  is per formed by the user. Under perfec t  
registration, the disparity is at most small positive value. When misregistered, a 
significantly larger non-zero value is obtained. The disparity value changes according 
to the projection P.  We write Cost(P) to denote the objective function. 
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3.3 Optimizing Cost(P) 

Various methods for optimizing Cost(P) exist [5]. Liu [1] describes an efficient 

method based on computing the partial derivatives of P with respect to the pose 
(registration) parameters. The method is similar to that described in [6]. This section 
summarizes the discussion in [1]. 

Since rigid registration is assumed, P can be expressed as a six-parameter function 

(3 rotations and 3 translations). Let X be the vector of parameters. Let Px be the 

projection computed using the parameters in X. Given an approximation X 0 to the 

final solution, the algorithm uses Newton's method to compute the actual solution 
Xso t . From section 3.2, a set of point pairs ( P i ,  q i )  for each curve pair (P(C), c) can 

be computed. The disparity function Cost(P) is minimal when Pi = qi for all point 

pairs. A refinement X 1 to X 0 is obtained by computing a least squares solution for AX 

in qi = Pi + Jacobian(P)]~ �9 AX for all points (P i ,  q i )  " Jac~ is the partial 

derivative of P w.r.t. X evaluated at X -- 0 and AX is a 6-dimensional correction 

vector. Given AX, X 1 can be computed. The process is repeated for X 2, X 3 . . . . .  X n or 

until Cost(Px,) falls below an arbitrary threshold. 

4 Experiments 
This section describes experiments to evaluate the algorithm's accuracy and 

performance under various conditions. Both simulated and actual X-ray angiograms are 
used. Using simulated X-ray angiograms with known poses permit registration 
accuracy to be quantified. The actual pose is perturbed by arbitrary amounts to derive 
the initial approximation. The effect of the perturbation is to displace all points in the 
3D volume from their actual positions. The registration algorithm is used to correct the 
perturbation. The total number of 3D skeletons available is considerably larger than the 
set of 3D skeletons actually used for registration. By computing the difference between 
the initial and final displacements of all 3D skeletons, a measure of the algorithm's 
accuracy in recovering the initial pose can be determined. In the following discussion, 
the function MAX(posel,pose2) computes the maximum displacement among all 3D 
skeletons between two states. For example, pose1 may be the actual pose and pose2 
may be the computed pose returned by the algorithm. The function MIN(posel,pose2) 
can be similarly defined. 

Experiments in sections 4.1 through 4.3 used two 3D MRA studies of the head as 
input. Study A is a 256 x 256 x 61 scan with voxel size 0.78ram • 0.78ram x 1.3mm. 
Study B is a 256 x 256 x 48 scan from a different patient. The voxel size for this study 
was 0.62ram • 0.62mm • lmm. In both studies, the imaging parameters were chosen 
to highlight intracerebral vessels. For each study, a set of 3D curves representing the 
central axis of intracerebral vessels was extracted using Aylward's algorithm (section 
3.1). 204 curves were extracted from Study A while 223 vessels were extracted from 
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Study B. Simulated X-ray angiograms were generated by applying a perspective 
projection on these segmented vessels. 

In contrast, the experiment in section 4.4 used actual patient angiograms. A 
digitally subtracted angiogram was acquired (XRA Y1 ). A simple algorithm was used to 
cor rec t  for image distort ion.  In addit ion,  an MRA dataset  (Study C) of  size 
2 5 6 •  was a c q u i r e d  f r o m  the s a m e  pa t i en t .  The  v o x e l  s ize  was  
0.86mm x 0.86mm x 1.1mm. 

In the following sections, details of each experiment are presented together with the 
results. Section 4.1 is a test of the algorithm's interactive performance. Section 4.2 
evaluates the algorithm's ability to converge. Section 4.3 describes an experiment to 
test the algorithm's sensitivity to the choice of registration primitives. Sections 4.1 
through 4.3 use synthetic 2D images. Section 4.4 describes an experiment to evaluate 
the algorithm using actual angiograms. 

4.1 Interactive Performance Test 

This experiment evaluates the algorithm's interactive performance. Three trials 
were conducted. Trials 1 and 2 were conducted using Study B whereas trial 3 was 
conducted using Study A. In each trial, a simulated X-ray angiogram was generated 
from an arbitrary viewpoint and the pose noted. A perturbation was introduced to the 
actual pose to produce the initial pose. The amount and nature of perturbation differed 
for each trial. To ensure fairness, the individual generating the angiograms and 
perturbations was different from the individual performing the registration. The actual 
pose was not known to the latter until after the experiment. The individual performing 
the registration was free to extract a number of 2D skeletons from each simulated 
angiogram. Between 27 and 37 curves per image were extracted using Fritsch's 
algorithm (section 3.1). Correspondence between the 2D and 3D skeletons was 
manually established. The registration algorithm was executed until Cost(P) did not 
show any further improvement. The current solution at that point was noted. The 
program required approximately 3-5 minutes of run time on an HP 712/80 workstation 
with 64Mb of memory. 

Table 1 shows the results. In each case, MAX(actual, initial) was in the range of a 
few centimeters. That is, the initial misregistration displaced all 3D skeletons on the 
order of centimeters. After registration, MAX(actual,final) was in the range of tenths of 
a millimeter. That is, the largest amount of misregistration among all 3D skeletons is in 
the tenths of a millimeter. We emphasize that we measure the misregistration of all 3D 
skeletons (more than 200), not just the skeletons used for the registration (27 to 37). 
The results indicate that the registration algorithm performs very well in an interactive 
environment. The set of 2D primitives was selected with no particular limitations other 
than ensuring that curves were chosen from all parts of  the projected image. The 
algorithm is sufficiently robust to converge to the true solution in each case. This 
sugges ts  that  the a lgor i thm is re la t ive ly  insens i t ive  to the choice  of  init ial  
approximation as well as having a strong tolerance to the choice of registration 
primitives. The next two sections provide additional proof to these claims. 
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Exp. 

1 

2 

3 

Max. initial misregistration (cm) Max. final misregistration (cm) 

4.04 x 10 ~ 1.16 x 10 -2 

2.85 x 10 ~ 9.60 x 10 -2 

5.03 x 10 ~ 9.59 x 10 -2 

Table 1: Results of registration accuracy test. 
4.2 Test of  Robustness 

This is a test of the algorithm's ability to converge to the true solution given a range 
of initial poses. A good registration algorithm should be relatively insensitive to the 
choice of starting pose, quantified by the capture  radius.  T h e  algorithm is said to have 
a capture radius of at least r if it converges to the correct solution from any choice of 
initial pose that displaces all 3D skeletons by at  least  r .  In practice, there are an infinite 
number of possible starting positions where the initial misregistration is at least r .  
Moreover, the capture radius is partially dependent on the 2D and 3D images used. An 
approximation of the capture radius can be determined by using a large number of trials 
and datasets representative of typical cases. 

Two experiments were conducted. The first used Study A, and the second used 
Study B. For each experiment a simulated angiogram was generated from an arbitrary 
pose. Thirteen 2D curves were extracted from each angiogram. These curves form the 
set of 2D registration primitives. Correspondence between 2D and 3D curves was 
established manually. For each experiment, 100 trials were performed. In each trial, the 
actual pose was given random perturbations to produce an initial pose. Up to +30 ~ 
rotation and +10 c m  translation in all three coordinate axis were used for experiments 
on Study A. Up to +25 ~ rotation and +5 c m  translation in all three coordinate axis 

were used for experiments on Study B. For each perturbation, M I N ( a c t u a l ,  i n i t i a l )  
was determined. That is, the set of more than 200 3D skeletons was initially at  l eas t  
that distance away from their actual position. The registration algorithm was executed 
until C o s t ( P )  fell below 1.75 x 10 -5 c m  2 or 100 until iterations have occurred. The 

computed solution was noted. M A X ( a c t u a l ,  c o m p )  was determined. That is, the set 
of all 3D skeletons was displaced at  m o s t  that distance from their final position after 
registration. 

Fig. 4 are scatterplots of  the results. The abscissa gives the initial minimum 
misregistration. That is, all 3D skeletons were displaced from their true position by at  
l eas t  that amount. The ordinate gives the maximum final misregistration. That is, all 
skeletons were displaced by at  mos t  that amount after registration. Apart from a single 
outlier in Study B, the capture radius is at least 15 c m  in both studies. For each 
experiment, the set of trials formed two distinct groups. One group terminated with 
misregistrations in excess of 10 c m  whereas the other has misregistrations less than 
0.1 c m .  This suggests that the algorithm's objective function is remarkably free of 
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local minima over a wide region surrounding the actual solution. Either the algorithm 
converged to the true solution with little residual error or it did not converge at all. 
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Fig. 4: The results of the capture radius experiment. 
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4.3 Sensitivity to Choice of Primitives 

This experiment evaluates the algorithm's performance as a function of the number 
of curves used and their 3D spatial distribution. Two experiments were performed. The 
first used Study A whereas the other used Study B. The same angiograms and sets of 
2D skeletons described in section 4.2 were used. In each experiment, an initial pose 
was generated by applying a perturbation to the actual pose. Each experiment has three 

series of trials. For each series, a random subset of k 2D curves were chosen of the 13 

available. In every series, k was chosen to be 4, 8, and 10. Fifty trials were held for 
each series. Fig. 5 illustrates the organization of this experiment. 

Experiment 

Study A Study B 

k = 4  k = 8  k = l O  k = 4  k = 8  k = l O  
50 trials 50 trials 50 trials 50 trials 50 trials 50 trials 

I I I I I ] 
Results in Results in Results in Results in Results in Results in 
fig. 6 top fig. 6 top fig. 6 top fig. 6 bot. fig. 6 bot. fig. 6 bot. 

(diamonds) (squares) (triangles) (diamonds) (squares) (triangles) 

Fig. 5: Organization of experiment to evaluate sensitivity to choice of primitives 

In each trial, the 3D spatial distribution of the 3D curve primitives were quantified 

using Spread3D, a moment of inertia measure sensitive to the number of curves used 

as well as the spatial distribution or "spread" of 3D primitives [1]. The algorithm was 
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executed until Cost(P) fell below 1.75 x 10 -5 cm 2 or until 100 iterations have 
occurred. The computed pose was noted and MAX(actual, comp) determined. 

Fig. 6 plots the results. The absicca gives the value of Spread3D. The ordinate 
gives the amount of residual misregistration when the algorithm halts. While four 
curves converged with submillimeter accuracy in some cases, the number of curves 
used is too small to be reliable. Using eight curves, the algorithm is very likely to 
succeed. With ten curves, there is virtual certainty. As the number of curves increased, 
Spread3D also increased. Having a larger value for Spread3o generally produced 
more accurate results. Spatial distribution is not just a function of the number of curves 
used. In both experiments ,  there is considerable overlap between the range of  
Spread3D achieved using 8 and 10 curves. This suggests that a well chosen but 
smaller set of curves can perform just as well as a larger set of poorly chosen curves. 
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Fig. 6: Choice of registration primitives experiment. Top: Study A. Bottom: Study B 

4.4 Clinical Test 

Unlike the previous experiments which used synthetic angiograms, this experiment 
evaluates the algorithm's performance by registering an actual patient angiogram 
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(XRA Y1 ) with its corresponding MRA (Study C). True angiograms have more sources 

of errors and present a greater challenge to the algorithm. With actual angiograms, the 
true pose is not known. We evaluated the algorithm's performance by comparing its 
performance with a manual registration using the same images. A neurosurgeon 
familiar with the patient registered the projected 3D skeletons against the 2D image. 
The manual attempt was then compared with the algorithm's solution. Fig. 7 (top) 
illustrates the results. The attempt used an anterior-posterior (AP) orientation as the 
starting pose. The effort  took approximately one hour. The bottom figure was 
registered using our algorithm from the same starting pose. The attempt took 
approximately l0 minutes in total. Approximately 5 minutes of this time was spent by 
the user determining the correct correspondence between 2D and 3D skeletons. 

The registration results appear very similar, indicating that the algorithm performs 
at least as well as manual registration but requiring only a fraction of the latter's time. 
In some places (notably vessel "B"), the algorithm performed noticeably better than the 
neurosurgeon. Since the entire intracerebral circulation was not highlighted, some 3D 
vessel skeletons did not have a corresponding 2D vessel. For example, vessels "A" and 
~C ~" 

Fig. 7: Results of registration experiment on clinical data. Top: Manual 
registration by neurosurgeon. Bottom: Registration via our algorithm 
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5 Discussion 
3D/2D registration algorithms have applications in surgical instrument guidance 

(e.g., [7], [8], and [9]) and in anatomical model synthesis (e.g., [10]). An accurate, 
robust registration algorithm significantly improves the accuracy of reconstruction and 
surgical guidance. Sections 4.1 through 4.4 demonstrated our algorithm's accuracy and 
robustness. The algorithm is capable of submillimeter accuracy over a wide range of 
starting poses and choice of primitives. 

An advantage of our registration method is the use of curves as registration 
primitives. Point based algorithms (e.g., [11] and [12]) generally rely on a few 
landmarks for registration. These methods have the advantage of computational 
simplicity and thus speed. However, errors in locating fiducial points can result in 
decreased accuracy. Some surface based algorithms register the surface's silhouette 
with the 2D image. However, determining the silhouette may be computationally 
expensive or may require auxiliary data structures. In contrast, the projection of a curve 
is generally still a curve. Curves may be treated as a locus of points. By using curves as 
registration primitives in our algorithm, we retain the computationally simplicity of 
point based registration without sacrificing registration accuracy. By the principle of 
projective invariance, registering the skeletons of tubular structures such as blood 
vessels is equivalent to directly registering the vessels themselves. Thus, our algorithm 
is well suited to the task of registering X-ray angiograms to 3D MRA. 

The use of cores as a method of extracting primitives enhances the accuracy and 
robustness of our algorithm. Cores are remarkably robust in the presence of image 
noise and differences in image resolution [13]. In addition, cores are little affected by 
variations in normal vessels which do not have perfectly circular cross-sections. 

The algorithm as described requires both 2D and 3D tubular anatomical objects. For 
some applications, such structures may not be available in adequate numbers. We have 
proposed a novel method to overcome this problem [9]. 

One shor tcoming of our present  implementa t ion  is the need for manual  
correspondence between 2D and 3D vessel skeletons. Since angiograms are typically 
taken from standard poses, it may be possible to automatically associate the vessels 
based on their relative projected positions on the 2D image [14]. 

6 C o n c l u s i o n  

This paper described our method of 3D/2D registration. Our algorithm is based on 
the principle of projective invariance which permits the skeletons of tubular anatomical 
structures (e.g., blood vessels) to be used as registration primitives. Using curves as 
registration primitives is computationally straightforward and does not sacrifice 
accuracy. Experiments under test conditions where truth is known show that our 
method is capable of submillimeter accuracy. Elaborate preprocessing is unnecessary. 
Our algorithm is robust, and converges to the true solution even from large initial 
misregistrations. In addition, our algorithm requires only a small number (typically less 
than 10) of curve pairs to achieve submillimeter accuracy. An experiment conducted 
using actual X-ray and 3D MRA studies suggest that the algorithm is at least as 
accurate as a manual registration performed by an expert, but takes only 20% of the 
time required by the latter. 
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