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A b s t r a c t .  In this paper we present a framework to simultaneously seg- 
ment portal images and register them to 3D treatment planning CT data 
sets for the purpose of radiotherapy setup verification. Due to the low 
resolution and low contrast of the portal image, taken with a high energy 
treatment photon beam, registration to the 3D CT data is a difficult 
problem. However, if some structure can be segmented in the portal im- 
age, it can be used to help registration, and if there is an estimate of 
the registration parameters, it can help improve the segmention of the 
portal image. The minimax entropy algorithm proposed in this paper 
evaluates appropriate entropies in order to segment the portal image 
and to find the registration parameters iteratively. The proposed algo- 
rithm can be used, in general, for registering a high resolution image to 
a low resolution image. Finally, we show the proposed algorithm's rela- 
tion to the mutual information [19] metric proposed in the literature for 
multi-modality image registration. 

1 I n t r o d u c t i o n  

Registration is the process tha t  maps  pixels from one image, called the re#fence 
image, to the pixels in another image, called the test image. For clinical diagnosis, 
t r ea tment  planning and delivery of a therapy, images from different modalities 
are often acquired as they provide complementary information about  a disease 
and also can give graphical verification of a delivered therapy. 1 

In radiotherapy for cancer patients, registration of images from different 
modalities, such as computed tomography (CT) and magnetic resonance imag- 
ing (MRI), is often used in t rea tment  planning to delineate the correct spatial 
extent of the tumor  and the surrounding normal structures. Furthermore,  regis- 
t ra t ion of images from the same modali ty is also used for routine radiographical 
verification of the radiation t reatment .  In this case, X- r ay  images are taken at  

1 Good reviews of medical image registration, with classification, for multi-modal im- 
ages can be found in [18], whereas [12] is an excellent review of registration methods 
in computer integrated surgery. 
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different energies, one at diagnostic energy (40 - 100 KV) (called the simula- 
tion image) when the treatment setup is initially simulated and others using a 
high energy (4 - 20 MV) treatment beam (called portal images) throughout the 
treatment course. Due to the high photon energy, portal images are intrinsically 
of low contrast and poor sharpness. It has remained a difficult task to automate 
the registration of the simulation and portal images. In fact, such registration is 
still performed by visual comparison in most radiotherapy centers. Many treat- 
ment centers are moving toward offering full 3D conformal treatments that are 
initially planned from 3D treatment planning CT data sets. Registration of the 
3D image set to 2D portal images is therefore necessary to fully quantify the 
three-dimensional patient setup before treatment [7, 13, 3, 6]. 

Re la t ed  Work.  To register the portal image to a 3D pre-treatment image, 
the methods proposed in the literature are either semi-automated or require 
feature extraction from the portal image. The poor quality of the portal image 
makes this a difficult problem. However, many registration algorithms require 
feature extraction as a preprocessing step. Thus, the accuracy of these registra- 
tion methods is limited by the accuracy of the method to segment features from 
the portal image. These methods are also called sparse field methods. 

Instead of using features, some registration methods work directly with the 
gray scale pixel values of the images [21, 19, 20]. The authors use cross-correlation 
of pixel intensities has been used as the match metric for aligning portal and 
simulation images [14]. Woods et al. [21], measure the mis-registration between 
two images as the dispersion, or variance, of intensities in the 2D histogram. 
However, this metric is largely heuristic. An information theoretic match metric 
has been proposed [19] which can be used for multi-modality image registration. 
These methods which directly manipulate image intensities are called dense field 
methods. The dense field methods, as compared to the sparse field methods, are 
more robust to noise as these methods do not require extraction of features to 
be registered. 

Our  Approach.  If the 2D portal and 3D CT images are properly aligned, then 
the information from the high resolution 3D CT can be used to segment the 
portal image. On the other hand, if we have an accurate segmentation of the 
portal image, an accurate registration can be obtained. Thus, this becomes a 
problem of deciding whether to try to locate structure in the portal film for 
registration purposes or to perform a crude registration first that might help 
to look for structure which could be used for better registration. In this paper 
we propose that there is no clear answer, and the registration and segmentation 
should be carried out simultaneously, each helping the other. 

Thus, we propose an iterative framework in which the segmentation and the 
registration of two images are estimated in a two stage algorithm using two 
different entropies, termed minimax entropy. In the entropy maximization step, 
the segmentation of the portal image is estimated, using the current estimates of 
the registration parameters. In the entropy minimization step, the registration 
parameters are estimated, based on the current estimates of the segmentation. 
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The algorithm can star t  at any step, with some appropriate initialization on the 
other. We derive this strategy starting from the EM algorithm and show the 
relationship to the mutual information metric. 

2 P r o b l e m  D e f i n i t i o n  a n d  M o t i v a t i o n  

Patient setup verification, before performing radiotherapy, using a portal and a 
3D CT image, is a classical pose estimation problem in computer vision. In the 
pose estimation problem, the pose of a 3D model is to be determined from a 
set of 2D images such that the model is aligned with the images. We assume 
that  a rigid transformation of the 3D CT data  set will bring it in to alignment 
with the portal  image and hence there are only six transformation parameters to 
be considered. Since our algorithm works directly on the pixel intensity values, 
we classify our algorithm as an automated,  intrinsic, global, dense-field based 
algorithm based on the classification in [18]. 

In the next subsection, we formulate the pose estimation as a maximum like- 
lihood estimation (MLE) problem. This formulation requires the knowledge of 
the joint density function between the portal and the DRR pixel intensities, de- 
noted as p(xi,  yi(T)) below. As noted earlier in the paper, we want to estimate 
a segmentation of the portal image in order to help in the registration process. 
The problem of segmenting the portal image is formulated as a labeling prob- 
lem in which each pixel is labeled either as bone or background. To incorporate 
the segmentation information, the joint density function is written in a mixture 
density form where the labels on the portal image pixels are not known. Hence, 
the segmentation labels are treated as the missing information, and the param- 
eters to be determined are the pose parameters. We formulate our problem as a 
maximum-likelihood estimation (MLE) problem in section 2.1. An algorithm for 
computing the MLE from incomplete data  is presented in [5] and is called the 
expectation-maximization (EM) algorithm. Our first thoughts were to select EM 
algorithm to compute the estimates, are due to its proven monotonic convergence 
properties, ease of programming and unlike other optimization techniques, it is 
not necessary to compute Hessians nor it is necessary to worry about setting the 
step-size. Thus, the EM algorithm may be used to estimate both the pose pa- 
rameters and the segmentation labels. However, there are several problems with 
the EM approach that  restrict its use in this problem. These are explained in 
subsection 2.2 and a minimax entropy strategy that  addresses these restrictions 
is described in section 3. 

2.1 P r o b l e m  D e f i n i t i o n  

Let, X = {x(i)}, for i = 1 , . . .  , N  2 be the N • N portal image. Similarly, let 
Y (T) = {y(i, T)} for i = 1 , . . .  , N  2 be the N x N projected 3D CT image, at 
the given transformation parameters T. Let, G = {g(i)}, for i = 1 , . . .  , N  3 be 
the 3D CT image. Note here we index pixels in the images using a single index, 
even though the images are 2D (or 3D) images. For simplicity in the formulations 
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below, we have assumed that  the portal and the projected 3D CT are of the same 
dimensions. However, this need not be true. The projected 3D CT image is also 
called the digitally reconstructed radiograph (DRR). Each pixel in the portal 
image is classified to belonging to one of two classes, bone or background. Thus, 
we formulate the pose estimation problem as a maximum likelihood estimation 
problem: 

r = argm x logp(X, alT) 

= arg mTax log ( p(X'  G, T) p(G]T) 
\ p(G,T) ] 

= arg mTax [logp(X, Y(T))  - logp(Y(T))] 

= arg m~x Z [log p(xi, Yi (T)) - logp(yi (T))] (1) 
i 

where we ignore the term p(GIT), since the 3D CT data set, G, is independent 
of the transformation parameters, T. In equation (1) we assume that  the image 
pixels are independent. The logarithm of the likelihood function is taken to sim- 
plify the mathematical formulation. Note that  for notational simplicity, we shall 
now write x(i) = xi and y(i, T) = yi(T) = y~, where the current transformation 
parameters for which the DRR is obtained should be clear from the context, 
otherwise it will be made explicit. 

M i x t u r e  M o d e l  a n d  t h e  E M .  Letting A = {1,2}, be the set of classes 
(i.e. bone, background), where non-bone pixels are defined to be background 
and using a mixture density model, we can now write the joint mixture den- 
sity model, from equation (1), for the portal image and DRR as, at pixel i, 
p(xi,yi) = ~a6AP(mi  = a) pa(xi,yi) = ~-'~aeAPi(a) pa(xi,yi), where mi 
is a random variable for the i th pixel taking values in A and Pa(xi,Yi) is the 
joint density function of the pixel intensities, given that  the portal image pixel 
is labeled a. Classifying the pixels in the portal image is equivalent to the de- 
termination of the probability mass function of mi. Let Z be the N 2 x 2 
classification matrix with zai its ith row and ath column entry satisfying the 

2 constraints )-~a=l z~i = 1, for i = 1 , . . .  , N  2. Note that  zai = 1 if the ith pixel 
of the portal image belongs to the class a, i.e., z~i E {0, 1}. Thus, z~i are the 
indicator variables. For each indicator variables, we shall define the expected 
value as < Zai >--pi(a). 

Using this notation, the EM algorithm [5] for the mixture model can be 
written as, at the kth iteration, 

E-Step: 

Q(T,T  (k-l)) = ~ ~ < z,~i >k logpa(xi,y,) -- ~ l o g p ( y i )  (2) 
i a E A  i 

M - S t e p :  
T k = arg mTax Q(T,T  (k-l)) (3) 
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where, 
< z a i > k =  ( < z ~  >k-l p~(xi'y[) ) 

~"~beA < Zbi ~>k-1 pb(xi,y[) 
where, y[ = y(i, T(k-1)). 

(4) 

2.2 L imi ta t ions  of EM Approach  and Al te rna t ive  Strategies  

For our purposes, the EM algorithm has two key restrictions. First, in the EM 
algorithm for the mixture model as formulated in equation (2), the function 
Q(T,T (k-l)) is defined only if the component density functions pa(xi,yi), Va 
are specified. The component density functions need to be determined for the 
specific problem. Thus, for the images used in prostate cancer radiotherapy, 
the joint density functions need to be determined from the projection model, 
taking into account the physics of interaction of high energy X-rays with matter. 
If the joint density functions are not known, then usually a simplified model 
has to be assumed. In this paper, we propose to estimate the unknown density 
functions from the given data instead of using simplified models. The second 
observation comes from Neal and Hinton [15] who provide a view of the general 
EM algorithm as a coordinate descent algorithm where the coordinates axes are 
the joint density functions on the missing information and the parameters to 
be estimated. (A similar view of the EM algorithm for parameter estimation of 
mixture density models has been given [8] as well). In the E-Step of the EM 
algorithm, the expected value is calculated, as the missing information is not 
known. However, this implies that the expected value in equation (2) should 
be taken with respect to the density function p(Y), instead of p(Y[X; T(k-1)). 
However, Neal and Hinton [15] show that at each iteration of the EM algorithm, 
the density function p(Y) is estimated to be p(Y[X; T (k-l)) and the question still 
remains as to the relationship between the two density functions. In our approach 
described in section 3, the max step in the minimax algorithm formalizes this 
relation. The max step can be viewed as a step for determining the density 
function on the missing information. The principle of maximum entropy [10] 
(or the principle of maximal non-committance) states that in making inferences 
on the basis of partial information we must use that probability distribution 
which has maximum entropy subject to whatever is known. This is the only 
unbiased assignment we can make; to use any other would amount to an arbitrary 
assumption of information which by hypothesis we do not have. 

We overcome the restrictions of the EM algorithm by borrowing the idea of 
averaging over the estimated density function from mutual information. Mutual 
information as a match metric has been first proposed and successfully applied 
for multi-modality image registration by [19, 4]. However, the mutual informa- 
tion match metric formulation in the literature assumes that all the pixels in 
the image are i.i.d., an assumption not true in general. The proposed minimax 
entropy algorithm described below thus aims at combining the strengths of both 
the EM algorithm and the mutual information based registration approach to 
simultaneously segment and register images. 
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3 M i n i m a x  E n t r o p y  A p p r o a c h  

The proposed minimax algorithm for solving the basic problem posed by equa- 
tion (1), in a computational form similar to the EM strategy described by the 
equations (2), (3) and (4) has two steps, the max step and the rain step, which 
are evaluated iteratively to determine the registration parameters and the prob- 
ability density function (pdf) of the portal image segmentation. The details of 
the development of the proposed algorithm are discussed elsewhere [1]. Again, 
using the notation from section 2, we see the steps mathematically as follows: 

M a x  Step: 

pk(m) = arg max[-/p(m)logp(m)dmp(m) 

+ f p ( m )  logp(m]X,Y;T (~-1)) dm] (5) 

under the constraint fp(m) dm = 1, where m is the random variable whose 
domain is the set of possible segmentations of the portal image, where each 
pixel can be labeled from the set of labels A. We assume that pixel labels are 
statistically independent, i.e., p(m) = rL p(rni = a) = YIi pi(a). 

As formulated above, the max-step simply states that the maximum entropy 
estimate of the density p(m) is simply logp(rn]X, Y; T (k-x)) [2]. This simple 
formulation of the estimated segmentation density function allows us to system- 
atically put constraints on the density function, as we show below. 

Min  Step: 

T ~ = argn~nH(m, X I r  ) 

where < ~ >k= (~--~2)~i~l < zai >k. See [1] for the development of the 
min-step. The component density function for class a, pa(x,y), is estimated as 
the weighted sum of Gaussian kernels using the Parzen window method: 

1 
p a ( W )  - 

TiED 

where, w= ( y ) and pi(a) = p(mi = a) is the probability that the ith pixel in 
the portal image belongs to class a, estimated in the max step, equation (5), 
is 2-by-2 covariance matrix, which is assumed to be diagonal and D is the set 
of pixels sampled from portal image and the DRR to estimate the conditional 
density functions. Thus, Ha (x, y) = - f  f pa(X, y)logpa(x, y) dx dy. In the min 
step, we have chosen the mutual information (MI) metric currently popular in 
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the medical image analysis community. We have found it to be more robust 
than other interesting metrics (e.g. correlation. See [1] where we present the 
relation between the two metric and show that  the MI is more sensitive to 
mis-registration then correlation). Because MI assumes that  pixels are i.i.d., in 
general this is a problem, which we get around by using a mixture densities. 
We note tha t  in [17], the authors register images with mutual information as a 
match metric while incorporating segmentation information on one of the images. 
However, the image was pre-hand segmented and thus remains fixed throughout  
the registration. In our proposed algorithm, the portal image segmentation is 
estimated simultaneously with the transformation parameters. 

An annealing schedule [11] is imposed on the estimated portal  image pixel 
segmentation distribution. The modified max step, equation (5), can thus be 
written as: 

pk(m)=arg max [--~ / p(m) 

M a x  Step :  

dm 

+ logp( fX, (7) 

under the constraint f p(m) dm= 1, where ~ = 1 Z, and t is the temperature, 
which determines the annealing schedule. 

4 R e s u l t s  

Fig. 1. (a) Volume rendered 3D CT phantom for which the simulated portal images 
were calculated. (b) Real portal image of the phantom obtained by taking the high 
energy X-ray of the phantom in the treatment room. 

The experiments were carried out on simulated and real portal  images. To obtain 
simulated portal  images, the 3D CT data  set was first rotated or translated in the 
3D space, by a known amount, and then a perspective projection was computed. 
These simulated portal  images, rendered under known parameters,  are used to 
study the accuracy of the algorithm. Note that  we assume that  the perspective 
parameters are known. 
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The 3D CT data set, shown in figure 1 (a), is a high resolution diagnostic 
energy data set obtained by scanning a pelvic phantom. The phantom is made of 
real human pelvic bone enclosed in plexi-glass with density close to soft tissue. 
After the CT data set was obtained at diagnostic energy X-rays (40 KeV), its 
voxel values were mapped to high energy X-rays (6MeV), using attenuation 
coefficient tables [9], to generate projection images close to the quality of the 
portal image. Since the diagnostic energy is known, the attenuation coefficient 
tables are used to estimate the tissue type in each voxel. Once the tissue type is 
known, the attenuation coefficient for that tissue at high energy can be estimated 
from the tables. These attenuation coefficients are used to map the phantom 
voxel values to their high energy values. In figure 1 (a), the 3D CT data set was 
rendered with the opacity value for soft tissue set close to zero. 

Figure 1 (b) shows the portal image obtained by imaging the phantom with 
X-rays at treatment energy level (6 MeV). The portal image was contrast en- 
hanced by histogram equalization. Experimentally, we found that histogram 
equalized portal images lead to more accurate results. The images shown in 
figure 4 are simulated portal images obtained at known transformation parame- 
ters to validate the proposed algorithm. Scattering of high energy X-ray photons 
leads to noise and poor contrast in the portal image. To simulate photon scatter- 
ing, varying amounts of independent and identically distributed (i.i.d.) Gaussian 
noise were added to the pixels in the simulated portal image. 

Fig. 2. Estimated segmentation results of the true portal image. (a) Results of using 
proposed minimax entropy algorithm. (b) Simple threshold. (c) Clustering algorithm 
in MEDx [16]. 

Figure 2 shows the segmentation of the real portal image, figure 1 (b), esti- 
mated by different segmentation algorithms. Figure 2 (a) shows the segmentation 
as estimated by the proposed algorithm. The pixel labels are estimated based 
on the joint density distribution. The bright pixels are labeled bone. The dark 
pixels are labeled background. Gray pixels are the pixels whose labels cannot be 
decided based on the joint probability density functions. Figure 2 (b) is the seg- 
mentation of portal image under simple, manually selected, threshold. Figure 2 
(c) is segmentation using a clustering algorithm, from MEDx. In this clustering 
algorithm, the image is segmented into three classes based on the nearness of 
the gray values to the user specified values. 
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Figure 3 shows the result of registering the real portal image, figure 1 (b), to 
the 3D CT data set, figure 1 (a). The image in figure 3 (b) is the DRR rendered 
at the registration parameters estimated by the minimax entropy algorithm. To 
see the goodness of the estimated parameters, contours were hand drawn on 
the portal image by an expert, matching closely to key features. These contours 
were then mapped onto the DRR, using the estimated parameters determined by 
the proposed algorithm. The contours match closely to the feature points in the 
DRR, at least showing the accuracy of the estimated transformation parameters 
in mapping this expert-traced estimate of bone boundaries. 

Estimated Parameters 
t~ t~ tz a fl 7 

(vox) (vox) (vox) (deg) (deg) (deg) 
I2.56 f 2.34 f 2.51 I-1.2410.73 

Fig. 3. (a) Portal image with contours. The reference contours shown are drawn, on 
the portal image, by an expert, matching anatomical features of interest, to study the 
registration result. (b) The contours are then mapped on to the DRR rendered using 
the parameters estimated by the proposed minimax entropy algorithm. 

Figure 4 (c) shows the initial results obtained for registration of simulated 
portal images. Each graph corresponds to the variation of one transformation 
parameter in the rendering of the simulated portal image. For the graph labeled 
X-Trans, for example, the 3D CT data set was translated along the X-axis by 
5 voxels and then a projection was rendered with varying noise. To register the 
simulated portal image to the 3D CT data set, the transformation parameters 
were reset to zeros. The results can be summarized as follows. The minimax 
entropy algorithm is quite robust against noise for in-plane translations along 
the x-axis and y-axis. The performance of the method deteriorated gracefully 
for rotations, both in-plane and out-of-plane, as the noise was increased. In 
the initial steps of the proposed algorithm, when most of the labels have equal 
probability of belonging to either class, the algorithm is increasing the mutual 
information between the entire images. Later in the iterations, as the portal 
image pixels get classified as belonging to one of the two classes, the algorithm 
is increasing the mutual information of each of the two classes separately. 

Overall, for the simulated portal images, where the true registration param- 
eters were known, the estimated parameters converged to the true parameters 
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after only a few iterations. The later iterations of the algorithm led to bet ter  
segmentation of the (simulated) portal image, which in turn helped registration 
to lock into a minimum. The proposed algorithm, as implemented, took about  
5 to 10 minutes on SGI Indigo 2 R10K machine. 

Fig. 4. Digitally rendered simulated portal images from the 3D CT data set in figure 1. 
The 3D CT data set was rotated by 5 ~ about the z-axis before taking the perspective 
projection. Varying amounts of i.i.d. Gaussian noise were added. The maximum pixel 
value of the simulated portal image is 296. (a) 2D rendered portal image, noise, std 
(a) = 10. (b) Std (a) = 30. (c) This figure shows the graph of estimated parameters 
against increasing noise added to the simulated portal image. 

5 D i s c u s s i o n  a n d  t h e  F u t u r e  w o r k  

In this paper we presented an information theoretic framework in which segmen- 
tat ion and registration are carried out together iteratively, with segmentation 
results helping in the registration and vice-versa. Most registration methods pro- 
posed in the literature carry out portal  image segmentation as a pre-processing 
step in the registration process, if at all. Our approach of simultaneously seg- 
menting and registering the images, using a unified framework, leads to a novel 
and robust algorithm. We need to demonstrate the accuracy of the algorithm in 
comparison to mutual information based algorithm using raw intensity informa- 
tion only. 

The mutual information match metric overcomes the assumption of a lin- 
ear relationship between the pixel intensities of the images to be registered, an 
underlying assumption in the correlation match metric. In mutual information 
based registration, the relationship between the pixel intensities is estimated 
from the given data  itself and thus can register images from different modali- 
ties. At an estimated set of transformation parameters, a joint density between 
the images to be registered can be estimated, from the given data. The mutual  
information metric assigns a number to each such estimated density, estimated 
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for different transformation parameters The transformation parameters corre- 
sponding to the density having the largest mutual information are chosen as the 
estimated parameters by the algorithm. The EM algorithm provides an iterative 
framework to estimate the parameters of a distribution, in the presence of miss- 
ing data. However, the EM algorithm requires that the parametric form of the 
distribution to be known. 

The proposed minimax entropy algorithm overcomes this restriction of the 
EM algorithm, by borrowing the idea from the mutual information method of 
estimating the joint distribution from the given data, and emphasizes the fact 
that the distribution on the segmentation labels is the maximum entropy dis- 
tribution, satisfying the given constraints. This fact allows us to invoke other 
constraints on the distribution systematically, which we used to impose an an- 
nealing schedule. In the proposed algorithm, if the joint densities are not known, 
then instead of assuming some simplified parametric form, we estimate the den- 
sities from the data given. Then we use the information theoretic framework to 
estimate the transformation parameters. 

Also, we note the relationship of our algorithm to the mutual information 
match metric which recently has been shown to be applied successfully to mult i -  
modality image registration. 

Our future research includes algorithm speed-up, validation of the accuracy 
and robustness of the algorithm, especially in comparison to the mutual infor- 
mation based registration and the ridge based algorithm proposed in [6]. Our 
experiments demonstrated that  the estimated registration was not as accurate 
for out of plane rotations and translations, especially as the noise was increased. 
Thus, we propose using two orthogonal views, anterior-posterior and lateral 
views, commonly taken in the treatment room, for more accurate registration 
results. We will then extend the algorithm to make use of portal images acquired 
from more that  two views which need not be orthogonal. 
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