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Abst rac t .  This paper addresses the problem of segmenting bone from 
Computed Tomography (CT) data. In clinical practice, identification of 
bone is done by thresholding, a method which is simple and fast. Un- 
fortunately, thresholding alone has significant limitations. In particular, 
segmentation of thin bone structures and of joint spaces is problem- 
atic. This problem is particularly severe for thin bones such as in the 
skull (the paranasal sinus and around the orbit). Another area where 
current techniques often fail is automatic, reliable and robust identifica- 
tion of individual bones, which requires precise separation of the joint 
spaces. This paper presents a novel solution to these problems based on 
three-dimensional filtering techniques. Improvement of the segmentation 
results in more accurate 3D models for the purpose of surgical planning 
and intraoperative navigation. 

1 I n t r o d u c t i o n  

Three-dimensional renderings of bone that  are based on thresholding are cur- 
rently available on most state-of-the-art CT consoles. Unfortunately, using only 
thresholding to segment the CT data  leads to suboptimal and unsatisfying re- 
sults in the vast majori ty of the cases. It is seldom possible to automatically 
separate the different bones adjacent to a given joint (e.g. femur and pelvis) or 
different fracture fragments. Problems also exist in areas with very thin bone, 
such as the paranasal sinuses and around the orbits. So far bone and joint disor- 
ders are primarily visualized by plain radiographs or cross sectional CT and MR 
images. Neither of them are intuitive tools for displaying the patient's anatomy, 
especially if the spatial relationships of different structures are more complex. 3D 
visualization can be very helpful for example in cases of pelvic, hip and shoulder 
disorders. Also pathoanatomic findings in areas with small joints (such as the 
wrist, hindfoot and spine) are much easier to understand when displayed in 3D. 

The adaptive filtering algorithm presented in [1] has been implemented for the 
specific needs of CT segmentation. The major change presented here is adding 
the ability to create filters on grids which have different spatial resolutions in 
different directions to cope with the large out-of-plane/in-plane voxel ratio. Ad- 
ditionally, filters that  have a well tuned frequency characteristic in all directions 
of the data  is important  as many of the structures of interest have a size close 
to the signal spacing. 
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In this paper an adaptive filtering algorithm is designed to emphasize struc- 
tures of interest in CT data to make segmentation of bone easier. This is an 
extension of our work presented in [2] where information of locally planar struc- 
tures were used in an adaptive thresholding algorithm. 

Most image enhancement algorithms presented in the literature have design 
criteria based on characteristics of the perceived quality, such as that the human 
eye is more sensitive to noise in dark regions and less sensitive to noise in bright 
and structured ones. Since our goal is not to improve the human visual percep- 
tion of the data but to perform filtering to improve segmentation, our constraints 
are slightly different. This paper is based on an adaptive filtering algorithm pro- 
posed by Knutsson, Wilson and Granlund [3, 4, 1]. The reason for choosing this 
particular image enhancement algorithm is that extra edge sharpening can be 
obtained while smoothing along structures in a very controlled way. Algorithms 
that are based on anisotropic diffusion information [5, 6] or level set theory (so 
called "geometric diffusion") [7, 8] also perform smoothing along structures which 
to some extent sharpen edges. However, how best to incorporate a stable and 
controllable sharpening into schemes based on anisotropic diffusion is an open 
question. Some sharpening can be obtained by running the diffusion equation 
"backwards", but causes instability and may give unpredictable results. In the 
literature several methods have been reported to obtain more robust and ac- 
curate bone segmentation based on for example region growing and deformable 
contours. In principle, any of these methods can be used in conjunction with the 
method proposed in this paper. 

2 A l g o r i t h m i c  d e s c r i p t i o n  

The approach we have taken is to filter the CT data using adaptive filters for 
the purpose of enhancing the local image structure. The organization of this 
section is that we begin with presenting a list of the main steps involved in the 
segmentation scheme. A detailed description of each of the items in the list then 
follows. 

1. Design filters for the data grid which is not equally spaced in all directions. 
2. Resample the data in the slice direction to obtain dense enough sampling to 

describe a classification result as a binary label map. 
3. Estimate local image structure and represent it by tensors, and use the local 

structure tensors to locally control the adaptation of the filters. 
4. Segment the adaptively filtered result. 

Step 1: Filter design on non-cubic grids 

In CT data, the voxels are in general non-cubic, i.e. the distance between the 
samples are not the same in all direction. The in-plane resolution in CT image 
volumes is often more than a factor of 5-10 higher than the through-plane res- 
olution, e.g. 0.5 x 0.5 x 3 mm 3. Data sampled like this has a frequency content 
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that varies with the direction of the data. In order to get invariance of a filter 
response, i.e. to get the same sensitivity of structures independent of the orien- 
tation of the structure, the frequency characteristic of the filters used must be 
altered to compensate for the differences in the data. Spatially designed kernels 
can be compressed in the slice direction before being sampled. However, when 
designing filters in the frequency domain there is, in most cases, no closed spa- 
tial form of the filter available. This is particularly true when other additional 
constraints, such as locality of the filters, are introduced during the optimization 
procedure when creating the filters: This means that there is not a spatial filter 
function that can be resampled, and any compensation of the non-isotropic sam- 
pling grid must first be applied in the frequency domain. The relation of a filter, 
f(x),  and linearly transformed version, g(x) = f(Ax),  in the Fourier domain is 

1 
G ( u ) -  idetAi.F(lATl-lu) (1) 

A scaling of the spatial grid along the coordinate axes can be written, 

A =  b 
0 

(2) 

where a, b and c are the scaling factors. According to Equation 1, this implies 
the following relation of the two Fourier transforms F and G. 

(3) 

Step 2: Resampling 

The output from segmenting gray-level data is in general a label map, with label 
values of low order. In the case of a two class problem as in this paper; bone 
and no bone, this label map is binary. From an information preserving point 
of view, the description of a sampled gray-level signal with samples of lower 
dimensionality, requires a higher sample density. For example, describing an 8-bit 
signal with binary values would require 8 times the samples to be able to describe 
the same amount of information. For images, where the signal spectrum is highly 
biased towards low spatial frequencies, the actual required sample density is 
lower. However, in CT data, where the size of the structures of interest are 
comparable to the voxel dimensions (in the slice direction) a higher sampling 
rate is preferable. 

In the CT data used in this paper the voxel dimensions are 0.82 x 0.82 x 
3 mm s. We found it necessary to resample the data by a factor of two in the slice 
direction to adequately be able to describe the segmentation result, i.e. double 
the number of slices. This was done by upsampling by factor of two in the slice 
direction followed by smoothing with a 3 x 3 x 3 Gaussian filter kernel, which 
gives the new voxel dimensions 0.82 • 0.82 • 1.5 mm s. Note that the voxels still 
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are non cubic. A reason for not expanding the original data  more than necessary 
is that  interpolation to higher resolution is a difficult problem in itself [9, 10]. 

CT data  used for the experiments in this paper has voxel dimensions (a, b, c) = 
(0.82, 0.82, 3), and after resampling (a ~, b t, c ~) = (0.82, 0.82, 1.5). The ratio be- 

C I tween the in-plane and the out-of-plane distance is then, r = ~ = 1.83 

S tep  3: Tensor  controlled adaptive f i l te r ing  

The adaptive filtering scheme consists of two main parts: 1) filtering the data 
with a filter set consisting of six directed quadrature filters producing a descrip- 
tion of local structure, and 2) filtering the data  with a basis filter set consisting 
of one low-pass filter and six directed high-pass filters. The final filter result is 
a combination of the basis filter outputs controlled by the information of the 
local structure. The affine frequency model discussed in the previous section is 
applied to all the filters involved. 

A tensor T, describing local structure, can be obtained by a linear summation 
of lognormal quadrature filter output magnitudes, I qki, weighted by predefined 
tensors Mk associated with each filter [11]. For the CT data presented in this 
paper we have experimentally found that  a lognormal filter with centre frequency, 
P0 = 7r/4, and relative bandwidth, B = 2, was appropriate for structures in- 
plane, which gives the out-of-plane filter center frequency r~,  ((r = 1.83), from 
above). For details see [11]. It is desirable that  the model describing the local 
neigbourhood varies slower than the signal it is describing. To ensure a slowly 
varying adaptive filter and to reduce the impact of noise the estimated tensor 
field, T, is relaxed by applying a 7 • 7 • 5 Gaussian filter. The output from this 
relaxation is denoted Tr.  

The filter set used in the adaptive scheme consists of a low-pass filter and 
six directed high-pass filters. This basis set can construct filters of a variety 
of shapes; filters that  can smooth along lines, along planes, high-pass filtering 
across lines or across planes. The basic idea is to compose a filter that  fits the 
local structure of the data, 

F -- Flp + h(lIWrll) ~ ( M k ,  C)Fhkp (4) 
k 

where Tr  T = ~ and C is the tensor Tr  normalized with the corresponding 
largest eigenvalue, C = T ~  ~-.  C defines the angular behaviour of the adaptive 
filter. The function, h(ilTrti) in Equation 4, controls how much over-all high pass 
information is allowed through the adaptive filter F.  In noisy regions without 
well defined structures the norm of the tensor liTtle will generally be small 
compared to areas with well defined structures such as edges. A desired behaviour 
of the adaptive filter is that  when no structures are present, lowpass filtering 
should be performed in all direction in order to smooth out the noise (isotropic 
lowpass filtering). Therefore, the function h is designed to be zero for small 
arguments. The consequence of this will be that  the highpass term in Equation 
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4 is cancelled in regions not having well defined structures and that  lowpass 
filtering is performed instead. The function used is not critical as long as it can 
be tuned to the described behaviour. The following function was used 

I'r"l~ (5) 
h(IT~l)  = i~,.1~+, ~ + ,r~ 

with a = 1, fl = 2, and a = 0.05. 

Step 4: Segmentation 

This step has been implemented in a very straight forward way. However, despite 
its simplicity, it was shown to work satisfactorily. The procedure is as follows. 

First the adaptively filtered data  was thresholded. An example of this step 
is shown in Figure 2, where the lower left image shows the adaptively filters 
result, and the lower middle image shows the result of thresholding. Then the 
thresholded data  was labelled into connected components. Isolated islands of 
voxels inside larger structures were merged into the largest one. The result of 
this can be seen in the lower right image in Figure 2. 

3 R e s u l t s  

Figure 1 displays the results of thresholding a CT data  set of a hip joint before 
and after adaptive filtering. Although the filter was applied in 3D, a single slice 
is displayed and compared to thresholding at different signal intensity levels. 
The size of the 6 filters used for the local structure estimation was 9 • 9 x 7, and 
15 x 15 • 9 for the 7 basis filters used in adaptive filtering scheme (1 lowpass 
and 6 directed highpass filters). 

The top left image shows the CT scan. This slice shows the hip joint. The 
top middle image shows the segmentation using a high enough threshold to 
separate the joint space. Unfortunately important  parts of the bone are missing, 
e.g. the hole in the femoral head (false negatives). The top left image shows 
segmentation using a low enough threshold to capture most of the important  
bone. Unfortunately, the result is very noisy and now the femur and the pelvis 
are connected (false positives). These are the same reasons that  make it difficult 
to capture thin bone structures. Thin bright structures disappear [2] and dark 
thin structures get filled and this artificially connects different bones (Figure 
1 top right). A threshold that  separates the joint space inevitably introduces 
severe artifacts and removes large parts of real bone (false negatives). 

The bot tom left image shows the result of 3D adaptive filtering of the CT 
data. The lower right image shows segmentation of the filtered data. The same 
threshold as in the top right image was used. Note the reduction of the noise level 
and that  the joint space is free from falsely segmented bone structures. Note also 
that  the boundaries of the segmented structures have not moved. This is because 
smoothing of the data  has been performed along the structures and not across 
them, at the same time extra sharpening is obtained across the structures. 
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Fig. 1. Adaptive filtering of CT data through the hip joint Top: Original gray-scale 
image (left). The middle image shows the segmentation using a threshold high enough 
to separate the joint space. The rightmost image shows segmentation using a threshold 
low enough that is captures all of the important bone. Bot tom: The left image shows 
a gray-scale image as the result after 3D adaptive filtering of the CT data. The lower 
right image shows segmentation of the filtered data. The same threshold as in the top 
right image was used. 

Figure 2 shows adaptive filtering of a second data set. This data set is dis- 
played differently than in Figure 1. The images presented are slices from the 
volume orthogonal to the slice direction of the data acquisition. The top left 
image clearly shows that the voxels dimension are non-cubic. The ratio of the 
vertical and horizontal resolution is 3/0.82 = 3.7. The top middle image shows 
the effect of thresholding the original data. It is impossible to find a threshold 
that separates the femur and the pelvis without removing most of the data. The 
top right image shows the result of manual segmentation by an orthopaedic sur- 
geon. The lower left image shows the result after resampling the original data 
by a factor of two in the slice acquisition direction followed by adaptive filtering. 
The result of thresholding this data is shown by the lower middle image. The 
two bone parts are now separated and well defined. A connected component la- 
beling and filling of interior regions gives the final segmentation result presented 
in lower right image. 

In Figure 3 the manually segmented femur and the automatically segmented 
femur are visualized side by side using surface models. The voxel overlap between 
the two data sets is 98%. In the voxel overlap calculation, the automatically 
obtained segmentation result was subsampled by a factor of two in the slice 
direction in order to get the same resolution as the manually segmented data. 
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Fig. 2. Top: An image from the original CT volume of a hip joint perpendicular to 
the slice direction (the pelvis is seen in the top part of the images and the femur in the 
lower part). The middle image shows the result from thresholding the original CT data. 
The right image shows the result from careful manual segmentation by an orthopaedic 
surgeon. Bot tom:  Automatic segmentation using resampling and adaptive filtering to 
enhance local structure (left image), thresholding of the filtered result (middle), final 
segmentation by connected component labeling (right). 

4 Summary and future work 

A three-dimensional adaptive filtering scheme has been implemented for the 
particular needs of enhancing CT data  to improve bone segmentation. It was 
shown how the frequency characteristic of the filters can be designed to fit the 
data  geometry and compensate for the non-isotropic voxel dimensions normally 
present in CT data. This also gives well tuned frequency characteristics in all 
directions of the volume, which is of importance since many of the structures 
of interest have a size close to the signal spacing. By using adaptive filtering, 
structures of interest can be emphasized and thus more easily segmented. We 
have shown that  the presented method can automatically segment and separate 
bones that  are close spatially, such as femur and pelvis in the hip joint. For the 
few cases we have segmented so far, we have obtained around 98% agreement in 
terms of voxel overlap between automatic and manual segmentation of the data. 
Future work will be focused on extending our implementation of the linear model 
in Equation 1, i.e. not only perform scaling of the Fourier domain along the axes 
when designing filters to get the desired frequency behaviour, but  to incorporate 
shift and shear as well. By introducing subvoxel shifts by modulation in the 
frequency domain, a resampling to a new grid can be done inside the adaptive 
filtering scheme. 
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Fig. 3. Left: Manually segmented femur. Right: Fully automatic segmented femur 
using adaptive filtering to enhance local structure followed by thresholding and con- 
nected component labeling. The voxel overlap between the manually segmented and 
the automatic segmentation result is 98 %. 
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