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Abst rac t .  A new method to segment MR volumes has been developed. 
The method matches elastically a 3D deformable prior model, describing 
the structures of interest, to the MR volume of a patient. The deforma- 
tion is done using a deformation grid. Oriented distance maps are utilized 
to guide the deformation process. Two alternative restrictions are used 
to preserve the geometrical prior knowledge of the model. The method is 
applied to extract the body, the lungs and the heart. The segmentation is 
needed to build individualized boundary element models for bioelectro- 
magnetic inverse problem. The method is fast, automatic and accurate. 
Good results have been achieved for four MR volumes tested so far. 

1 I n t r o d u c t i o n  

Multichannel magneto- and electrocardiographic (MCG and ECG) recordings 
have been proved useful in non-invasive localization of bioelectromagnetic sources 
such as cardiac excitation sources [1]. In the bioelectromagnetic forward and in- 
verse problems, the anatomy of the patient has to be modeled as a volume 
conductor. Usually the modeling is done using magnetic resonance (MR) images 
of the patient [2]. However, the segmentation of the structures of interest re- 
mains in practice the most time consuming part  in the modeling process, thus 
drastically limiting the use of the individualized models. 

In medical imaging field, accurate delineation of anatomic structures from 
image data  sequences is still an open problem. In practice, manual extraction of 
the objects of interest is often considered as the most reliable technique. How- 
ever, such methods remain time consuming and are affected by intra- and inter- 
observer variability. Various computer methods have been recently proposed for 
segmentation of medical images [3, 4]. They can be divided into region-based and 
boundary based approaches [5]. In region based methods, some features based 
on the intensity of the images are used to merge voxels. One of the limitations of 
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these approaches is the difficulty to automatically choose seed points. To over- 
come the problem, higher control can be used with graph theory approaches and 
prior knowledge of the image content [6, 7]. The boundary based methods [8, 
9] rely on an intensity gradient detection. Unfortunately, they are sensitive to 
impulsive noise, which cause spurious and partial edge maps. Deformable meth- 
ods [9, 10] allow to group partial edges with a chosen parametrization [11]. Their 
main drawback is the lack of control on the resulting shape [12]. This is especially 
true when the images contain several nested structures of interest [13]. To deal 
with the problem, we propose an automatic segmentation technique, based on 
the deformable pyramidal model [14] that highly relies on the prior geometrical 
knowledge [15, 16] of the anatomic structures to be segmented. The theory of 
the method is represented more detailed in a recent doctorate thesis [17]. 

2 M e t h o d s  

The aim of this work is to extract the body surface, lungs and heart from the MR- 
images as automatically and fast as possible starting from a 3D prior geometrical 
deformable model. The model used is a triangulation representing the surfaces 
of the structures of interest (Fig. 1). 

Fig. 1. The prior geometrical model used in the 3D deformation process. It has been 
built from MR-images of a female patient. 

2.1 The  energy  function 

1. Isotropic distance maps. The model is elastically deformed in 3D to match 
to edges in MR images. The edges can be extracted from MR-images using a 
classical edge detection algorithm [18]. In practice, thresholding separates body 
surface and lungs from MR-images well enough and the edges can be easily found 
from the binarized volume. 
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Once the edges have been extracted from the volume, the energy function 
is defined by calculating a distance map f = f ( x , y , z )  for the edges (Fig. 2) 
[19]. Each voxel in the distance map gives the shortest chamfer distance to the 
nearest edge in the 3D MR volume. This leads to so called isotropic distance 
map. The mismatch energy Edata between the edges in the MR volume and the 
triangulated prior model is calculated as follows: 

1 N~d 
Edata = ~ E f(Xnd,t, Ynd,l, ZndJ), (1) 

l=l 

where Wad is the total number of nodes in the model and Xnd,l,Ynd,l, Znd,l are 
the coordinates of the node l. 

Fig. 2. Calculation of the distance map: a) the edges and b) the corresponding distance 
map. 

2. Oriented distance maps. The prior knowledge about the objects to be 
segmented can be utilized in the creation of the distance maps; so called oriented 
distance maps are defined. The idea is that the boundaries of given orientation 
in the model have to match with similarly oriented edges extracted from the 
MR-data. In other words, if the surface normal of the model is locally oriented 
towards the positive y-axis, this part of the surface is allowed to deform only 
towards the edges in MR data with the same normal directions. To accomplish 
this, oriented edges are searched from the MR data (Fig. 3). In the middle of 
Fig. 3, all edges found from a MR-slice are represented. The arrows on the 
surrounding subimages give the average normal direction of the edges, nmr,i 
on each subimage. The normals of the edges within a subimage differ less than 
90 ~ from the vector nmr,i. The number of different orientations is 8 in 2D (9 
neighborhood) and 26 in 3D (27 neighborhood). The normal directions of the 
edges are estimated from the thresholded MR volume as follows: 1) Calculate the 
center of mass for each edge point using 27 voxel neighborhood. 2) The normal 
of the voxel is the vector from the center of mass to the edge point. 

Actually all 26 oriented distance maps are not calculated on the highest 
resolution level for two reasons: 1) The size of the distance maps would be tens 
of megabytes. 2) The execution time would be about 2-3 minutes longer. The 
problem is solved by calculating only 6 oriented distance maps. The vectors 
nmr,i are along x-, y- and z-axis. Since the angle between nmr,i and the normal 
of each edge point in an oriented distance map is less than 90 ~ Eq. 3 gives a 
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good distance map for any nnd,l. If the angle is 90 degrees, in practice, 6 distance 
maps can be used instead of 26 in each resolution level. 

Fig. 3. Oriented edges. The middle image shows all edges extracted from one MR slice. 
The edges oriented to 8 directions are presented in the surrounding subimages. 

The oriented distance maps are created by calculating distance maps sepa- 
rately for these 26 volumes including the oriented edges. The energy of the model 
can be calculated as follows 

1 Nnd 
Eea~o = g~e ~ Yi(~n~,~, Yne,t, z~d,t), (2) 

l----1 

where 

f i , i E { 1 , . . , 2 6 } : n m r , i ' n n d , l > _ n m T , k ' n , ~ d , z , V k E { 1 , . . , 2 6 } .  (3) 

Here, the vector nmr,i is the mean orientation of the edges in the distance 
map f i ,  the vector nnd,l is the normal of the surface of the model at the node l 
and - is for dot product. The matching process is now performed in two steps. 

2.2 C o a r s e  m a t c h i n g  

The model is coarsely registrated with the MR volume. Surface registration 
metfiods, such as [21], can be used to registrate the model with the edges ex- 
tracted from the MR volume. If the rotation component is small, the bounding 
box, set around the model, can be scaled in such a way that  it coincides with 
the bounding box set around the thresholded volume. 
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2.3 Detailed matching 

The final registration step is done by placing the model inside a 3D deformation 
grid G (Fig. 4). When a grid point is moved, the model is deformed correspond- 
ingly. The benefit in using a deformation grid is, that  the topology of the model 
can be easily preserved during the deformation process. The grid points are not 
moved more than half the distance between two neighboring grid points. The 
Bernstein polynomials or trilinear interpolation can be used to calculate the new 
positions for the nodes of the model [22]. In this paper trilinear interpolation is 
used. The grid divides space into box shaped subvolumes and each node of the 
triangulated model belongs to one of these boxes. The new position of a node in 
the model can be calculated as follows 

n+l  m + l  I+l 

pod = + E E (4) 
k=n j = m  i----l 

where P*d is the original position of the node represented in the vector form, the 
summing is through the grid points, which define the box around the node, vc~jk 
is the displacement vector of the grid point Gijk from its original position and 
a v ~  is a weighting factor. The factor is calculated using trilinear interpolation. 

All grid points Gijk a r e  sequentially moved towards a new position, which 
minimizes the energy of the model. This energy is computed from the distance 
map as defined in Eq. 2. within a 3 x 3 x 3 or 5 x 5 x 5 voxel neighborhood. 
Each grid point Gijk is moved within the neighborhood and displacement is 
done sequentially for every point in the grid G. The process is i terated until the 
energy does not decrease anymore. 

Fig. 4. The 5x3x5 deformation grid G and the model placed inside. 

The deformation can be started for example by a 3 • 3 • 3 grid, so providing 
a global match between the model and the MR volume. When the minimum is 
found for a given grid size, the number of grid points can be increased to 5 • 5 • 5, 
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7 • 7 • 7 etc. Initial positions of the points in the new grid are regularly placed 
and not interpolated from the earlier, deformed grid. 

To ensure a theoretical convergence towards the global minimum, methods 
such as simulated annealing should be used [20]. Since these methods are very 
time consuming, we chose the pyramid approach [21]. It does not guarantee the 
global minimum but works better than the method using local gradient alone. 

In the case where the extraction of the edges from MR data does not suc- 
ceed, some false edges may appear or some true edges may remain undetected. If 
the minimum of energy is defined using only gradient information, the deforma- 
tion can lead to unacceptable results. In that  case restrictions for deformation 
strength should be set. Reissman [17] proposed to limit the displacements of the 
grid points (LGD=Limit  Grid Displacements) and proposed the deformation 
component of the energy to be calculated as follows, 

NG 1 llp ,, - pS , , l l ,  (5) gm~ ~ -~G / = 1  

where NG is the number of grid points, pv,l is the deformed position of the grid 
point l and P*c,l its original position. 

Another way to preserve the prior knowledge of the model during deformation 
is to directly control the changes in the shape of the model. If the directions of 
the surface normals are used (LCN = Limit Change of Normals), the deformation 
energy Emodel can be calculated as follows 

gt  
1 E ( 1 .  0 _ ntr,I" n;r,t), (6) gm~ ~ ~ t r  l=l 

where Nt~ is the total number of triangles in the model, nt~,t and nt*~, I are the 
deformed and the original directions of the normal of the triangle l, respectively, 
and .  is the dot product. Since ntr,,.n;~,l = cos(,~(nt~,t, n;r,l)), the large changes 
in the normal direction penalize more deeply to the energy than small changes. 

Using deformation component in the energy, the total energy is defined by 

Etot~l = Ed~t~ + 7Emode~, (7) 

where V is a user defined parameter to control the balance between the data 
feature and the deformation components. 

3 R e s u l t s  

The method was tested to segment the thorax, lungs and heart of four patients 
from their MR volumes using an IBM RS6000 workstation. In each case the 
algorithm produced a good result, with few interactive corrections of small mag- 
nitude. Next, the results for one thorax MR are represented. The size of the MR 
volume is 128x128x100. Fig. 5 shows the result of prior model deformation, when 
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Fig. 5. Segmentation result with V = 0.0, with the LGD-method ('7 = 0.01) and with 
the LCN-method ('7 -- 5.0) 

7 = 0.0, when the LGD-method was used with 7 = 0.01 and when the LCN- 
method was applied with 7 = 5. The results are not very sensitive to v-values 
in the LGD- and LCN-methods: increase by factor 10 produces fairly similar 
results. The numbers of grid points on each pyramid level are represented in 
Table la. The iteration with each grid size was stopped, when the change in the 
energy was less than user defined parameter c = 0.02. The computing time to 
segment MR images and the energies at convergence related to the Fig. 5 are 
represented in Table lb. The star '*' indicates that  the oriented distance maps 
are not used at the highest resolution level, other parameters being equal. Edata 
corresponds to the average distance (in mm) between the nodes of the model 
and the edges in the MR volume. Since the voxel size at the highest resolution 
is 3.52 mm, the average distance of the nodes from edges is 0.17 voxel. 

4 D i s c u s s i o n  

A. General discussion. The segmentation error with the automatic method is 
low: about 877o of the nodes of the model are located on the edges of the MR 
data and the average error is about 0.17 voxel for the case presented in the 

Level Resolution 
2 32x32x25 
1 64x64x50 
0 128x128x100 

I Method Time Edata Emodel Etotal 
Grid Model 7 = 0.0 156 0.56 0.00 0.56 

3x3x3, 5x5x5 983 LGD 155 0.58 0.11 0.69 
5x5x5, 5x5x5 2713 LCN 211 0 . 6 1  0.10 0.71 
7x7x7, 9x9x9 9811 "y = 0.0" 94 0 . 6 1  0.00 0.61 

l l x l l x l l  LGD* 95 0.59 0.11 0.80 
LCN* 150 0.62 0.11 0.73 

Table 1. a) The sizes of the grid and the number of nodes in the model at the different 
pyramid levels, b) Computing time (seconds) and matching energy for each method. 
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results section. This error can be still reduced by increasing the size of the defor- 
mation grid. It is remarkable that,  when only the Edata component is minimized 
(7 = 0.0), the energy value is higher than in the case of the LGD-method.  This 
means the algorithm does not find the global minimum. However, in most cases 
the results are 'good' local minima. The segmentation results are also visually 
accurate, which is even more important  than the absolute value of the error. The 
absolute value should not be emphasized too much, since the error can be low, 
although the model has deformed to wrong edges. 

The model may also include edges, which can not be found from the data. For 
example, for the thorax three areas exist: 1) The model used in our M C G / E C G  
studies does not include arms (Fig. 1). 2) The edges of the heart  can not be easily 
found in regions where the heart is not in contact with the lungs. If these areas 
are deformed to some edges in the MR volume data, the result is wrong, although 
the Etotat can be minimum. 3) The quality of the MR images is poor nearby the 
shoulders, and the edges extracted from the volume does not describe well the 
real anatomy. In these cases, it is almost compulsory to u s e  Emode I component, 
which preserves the geometrical prior knowledge. 

The balance between the Edata and Emodel components can be set locally 
to improve the handling of the mismatch problem of the model and real data. 
This can be accomplished, for example, by attaching a weight tnd,l to each node 
of the model and multiplying the Ed~t~ term of the corresponding node by this 
weight. 

In this paper two different methods to define Emodd were described: the LGD- 
and the LCN-methods. The biggest benefit of the LGD-method is its speed. The 
quality of the results did not differ a lot for the cases we tested. However, the 
LCN-method preserves better  the geometrical prior knowledge. 

B. Implementation. Several factors affect to the execution time. If the ori- 
ented distance maps are used, the running time is higher (Table 1) but the 
robustness of the program is better.  However, the results are fairly similar to 
the results with the oriented distance maps. The optimization time is directly 
dependent on the number of the nodes in the model. However, the number of the 
nodes can not be reduced too much. Otherwise, the probability tha t  the model 
attaches to noise increases considerably. The average distance between the nodes 
was about two voxels at each resolution level. The size of the deformation grid 
does not affect much the execution time. If the size is higher, the number of 
the nodes connected to each grid point is correspondingly lower. Each grid size 
affects the run time cumulatively. For example, if a 11 • 11 x l l -gr id  had not 
been used in Table 1, the time would have been 10 s lower. The average error of 
the deformation would have been 0.81 mm, not 0.56 mm. 

In summary, a new method to segment MR volumes has been developed. 
Since the method is fast and the results have been good for all tested data, it 
can be regarded useful in practice. 
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