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Abstrac t .  This paper 1 proposes a method for fully automatic segmen- 
tation of brain tissues and MR bias field correction using a digital brain 
atlas. We have extended the EM segmentation algorithm, including an 
explicit parametric model of the bias field. The algorithm interleaves 
classification with parameter estimation, yielding better results at every 
iteration. The method can handle multi-channel data and slice-per-slice 
constant offsets, and is fully automatic due to the use of a digital brain 
atlas. 

1 I n t r o d u c t i o n  

Accurate segmentation of magnetic resonance (MR) images of the brain is of in- 
creasing interest in the study of many brain disorders such as schizophrenia and 
epilepsia. For instance, it is important  to precisely quantify the total  amounts of 
grey matter,  white mat ter  and cerebro-spinal fluid, as well as to measure abnor- 
malities of brain structures. In multiple sclerosis, accurate segmentation of white 
mat ter  lesions is necessary for drug treatment assessment. Since such studies typ- 
ically involve vast amounts of data, manual segmentation is too time consuming. 
Furthermore, such manual segmentations show large inter- and intra-observer 
variability. Therefore, there is an increasing need for automated segmentation 
tools. 

A major problem when segmenting MR images is the corruption with a 
smooth inhomogeneity bias field. Although not always visible for a human ob- 
server, such a bias field can cause serious misclassifications when intensity-based 
segmentation techniques are used. 

Early methods for estimating and correcting bias fields used phantoms [1]. 
However, this approach assumes that  the bias field is patient independent, which 
it is not. Homomorphic filtering [2] assumes that  the frequency spectrum of the 
bias field and the image structures are well separated. This assumption, however, 
fails in the case of MR images. Other approaches use an intermediate classifica- 
tion or require that  the user manually selects some reference points [3] [4]. 

1 This paper is a short version of a technical report KUL/ESAT/PSI/9806 which can 
be obtained from the first author (Koen.VanLeemput@uz.kuleuven.ac.be) 
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Wells et al. [5] introduced the idea that estimation of the bias field is helped 
by classification and vice versa. This leads to an iterative method, interleav- 
ing classification with bias correction. In the Expectation-Maximization (EM) 
algorithm [6], which interleaves classification with class-conditional parameter 
estimation, Wells et al. substituted the step for estimating the class parameters 
by a bias estimation step. This requires that the user manually selects repre- 
sentative points for each of the classes considered. But such user interaction is 
time consuming, yields subjective and unreproducible segmentation results, and 
should thus be avoided if possible. 

This paper describes a new method, based on the same idea of interleaving 
classification with bias correction. Rather than substituting the class-conditional 
parameter estimation step, as Wells et al. do, we propose an extension of the EM 
algorithm by including a bias field parameter estimation step. Furthermore, we 
use a digital brain atlas in the form of a priori probability maps for the location 
of the tissue classes. This method yields fully automatic classifications of brain 
tissues and MR bias field correction. 

2 M e t h o d  

2.1 The  Expec ta t ion -Max imiza t ion  (EM) a lgor i thm 

The EM algorithm [6] applied to segmentation interleaves a statistical classifi- 
cation of image voxels into K classes with estimation of the class-conditional 
distribution parameters. If each class is modeled by a normal distribution, then 
the probability that class j has generated the voxel value yi at position i is 
P(Y~I Fi=j, Oj) = G~j (y l -  #j) with Fj C {j} the tissue class at position i and 
Oj = {#j, aj} the distribution parameters for class j. Defining 0 = {0~} as the 
model parameters, the overall probability for Yi is 

P(Yi 10) = ~-~P(Yi l Fi=j, Oj)p(Fi=j) 
J 

The Maximum Likelihood estimates for the parameters #j and aj can be found 
by maximization of the likelihood I-LP(Yi I 0), equivalent to minimization of 
~ i  -log(p(y~ I 0)). The expression for #j is given by the condition that 

0 ( ~ - l o g ( ~ - ~ p ( y i l F i : j ,  O j ) p ( F i : j ) ) ) : O  

Differentiating and using Bayes' rule 

p(y~ I/'~=j, Oj)p(Fi=j) (1) 
p(F~=j l y~,O ) = 2 j p ( y i  l Fi=j, Oj)p(F~=j) 

yields 

~ i  Yi p(Fi=j I Yi, O) (2) 
#J = ~ i  p(Fi=j I Yi, O) 
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The same approach can be followed to find the expression for aj: 

2 ~ i  p(F~=j I Yi, 8)(yi - #j)2 
~ i  p(Fi=j I Y~, 6) 

(3) 

Note that equation 1 performs a classification, whereas equation 2 and 3 are 
parameter estimates. Together they form a set of coupled equations, which can be 
solved by alternately iterating between classification and parameter estimation. 

2.2 Extens ion  of  the EM algorithm 

In order to estimate the bias field, we propose to make an extension of the 
EM algorithm. As in the original algorithm, each class j is modeled by a normal 
distribution, but now we also add a parametric model for the field inhomogeneity: 
the bias is modeled by a polynomial ~ k  CkCk(x). Field inhomogeneities are 
known to be multiplicative; we first compute the logarithmic transformation on 
the intensities so that  the bias becomes additive. Our model is then 

and 

k 

p(y, l e, c) = ~ p ( y ,  f F~=j, ej, C)p(F~=j) 
J 

with C = {Ck} the bias field parameters. In order to find the bias field, the 
parameters #j ,  aj and Ck maximizing the likelihood I-LP(Y~ [ 8, C) must be 
searched. The Ck then allow calculating the estimated bias field. 

Following the same approach as for equations 2 and 3, the expressions for 
the distribution parameters #j and aj are 

~ i  p(Fi=j I Y,, O, C) (4) 

and 

a~ -- ~IP(Fi=J  l Yi, 6, C)(yi - #j - ~ k  CkCk(xi)) 2 
E,  p(r,=j J ~, e, c) (5) 

Equations 4 and 5 are no surprise, as they are in fact the same equations which 
arise in the original EM algorithm (equations 2 and 3). The only difference is 
that  the data is corrected for a bias field before the distribution parameters are 
calculated. 

Setting the partial derivate for Ck to zero yields 

I 1 1'x ' 1 = ( A T W A ) - I A T W r  with A = 1 r r (6) 
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and with weights W and residue r 

Yl - ~jp(/~_~lm,O,C)/<~ 
Wmn : ~ }-~"j p(rm=j;~r,,O,C), if m ----- n r = ~ j  p(r2-~ly2,o,c),j/~ 

[ 0 otherwise Y2 - ~ j  p(r2-~lv2,o,c)/~ 

Equation 6 is a weighted least-squares fit. From the intermediate classification 
and Gaussian distribution estimates, a prediction of the signal without bias 
is constructed and subtracted from the original data. A weight is assigned to 
each voxel of the resulting residue image, inversely proportional to a weighted 
variance. The bias is then the weighted least-squares fit to that  residue. In the 
special case in which each voxel is exclusively assigned to one single class, the 
predicted signal contains the mean of the class each voxel belongs to. The weights 
are then inversely proportional to the variance of that  class. 

Iterating between equations 1, 4, 5 and 6 interleaves classification (step 1), 
distribution parameter  estimation (step 2) and bias estimation (step 3). This 
has to be compared to the original EM algorithm, where only steps 1 and 2 were 
used. Wells et al. [5], on the contrary, only use steps 1 and 3. 

2.3 F u r t h e r  extensions  

We have further extended the algorithm to handle multi-channel data  input. 
Furthermore, we have included a model for the background noise as well as for 
slice-per-slice constant offsets. We just summarize the results here; more details 
can be found in [7]. 

Multi-channel data The algorithm is easily extended to multi-channel data  by 
substituting the Gaussian distributions by multivariate normals with mean tt 
and covariance matr ix ~ .  

Background noise Since the background signal only contains noise and is not 
affected by the bias field, we have included an explicit model for the background 
noise. Pixels assigned to the background automatically get a zero weight for the 
bias estimation. 

Slice-per-slice constant offsets In addition to a smoothly varying field inhomo- 
geneity, 2D multi-slice sequence MR images, which are acquired in an interleaved 
way, are typically corrupted with additional slice-per-slice intensity offsets. We 
model these variations by assigning a 2D polynomial to each slice separately. 

2.4 Digital  brain atlas 

In order to make the algorithm more robust and fully-automatic, a priori infor- 
mation is used in the form of an atlas. This atlas [8] contains a priori probability 
maps for white matter,  grey matter  and csf, as shown in figure 1. 



1226 

Fig. 1. The atlas consists of a priori probability maps for white matter, grey matter 
and csf, and a T1 template needed for registration of the subject to the space of the 
atlas 

As a preprocessing step, we normalize the study images to the space of the at- 
las using the affine multi-modality registration technique described in [9]. At ini- 
tialization, the atlas is used to sample the image for calculating the tissue-specific 
distribution parameters #j and aj.  This approach frees us from interactively in- 
dicating representative pixels for each class. During subsequent iterations, the 
atlas is further used to spatially constrain the classification by using the spatially 
varying priors for p(Fi=j) in equation 1. Thus, the voxels are not only classified 
based on their intensity, but also based on their spatial position. This makes the 
algorithm more robust, especially when the images are corrupted with a heavy 
bias field. 

3 R e s u l t s  

We have implemented the algorithm as a modification of the SPM96 [10] seg- 
mentation tool, which originally used the EM algorithm without bias correction. 
We have performed experiments on various artificial and real MR data sets. In 
all the tests, a fourth order polynomial model for the bias was used. We here 
only shortly present some examples on real MR images of the head. A more 
detailed description can be found in [7], as well as some quantitative results on 
simulated MR data. 

Single-channel data In figure 2, the classification of a high-resolution Tl-weighted 
MR image is shown obtained with the EM algorithm without bias correction and 
with our extended EM algorithm using a 3D polynomial. For visualization pur- 
poses, we have made a hard segmentation from the probability maps by assigning 
each pixel exclusively to the class where it most probably belongs to. Because 
of a relatively strong bias field reducing the intensities in the slices at the top of 
the head, white matter  is wrongly classified as the darker grey matter  in those 
slices when the EM algorithm without bias correction is used. Our extended EM 
algorithm succeeds in compensating for this and provides better segmentations. 

Multi-channel data The segmentation on a two-channel (PD and T2-weighted) 
MR image of the head is shown in figure 3. Although the effect of the bias field 
is hardly visible, it has a big impact on the resulting segmentation when the 
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EM algorithm without bias correction is used. With the extended algorithm, the 
segmentation is clearly improved. 

MS lesion segmentation It is possible to assign multiple classes to the same a 
priori probability map. As an example, consider the problem of segmenting MS 
lesions. Since by far most of these lesions are located inside white matter,  we have 
used the a priori white mat ter  probability map for both the white mat ter  and 
MS lesion class. The result for three-channel data  of an MS patient, including 
T1, T2 and PD-weighted images, is shown in figure 4. 

Slice-per-slice constant offsets As an example of bias correction for images with 
slice-per-slice constant offsets, we have processed the image shown in figure 5. 
The slice-per-slice offsets can clearly be seen as an interleaved bright-dark inten- 
sity pat tern in a cross-section orthogonal to the slices. The estimated bias is also 
shown; it can be seen that  the algorithm has found the slice-per-slice offsets. 

4 D i s c u s s i o n  

The algorithm that  is proposed is based on Maximum-Likelihood parameter  
estimation using the EM algorithm. The method interleaves classification with 
parameter estimation, increasing likelihood at each iteration step. 

The bias is estimated as a weighted least-squares fit, with the weights in- 
versely proportional to the variance of the class each pixel belongs to. Since 
white mat ter  and, in a lesser extend, grey mat ter  have a narrow histogram, 
voxels belonging to the brain automatically get a large weight compared to non- 
brain tissues. We use a polynomial model for the bias field, which is a well-suited 
way for estimating bias fields in regions where the bias cannot be confidently 
estimated, i.e. regions with a low weight. The bias field is estimated from brain 
tissues and extrapolated to such regions. 

At every iteration, the normal distribution parameters #j and aj for each 
class are updated. In combination with the atlas which provides a good ini- 
tialization, this allows the algorithm to run fully automatic,  avoiding manual 
selection of pixels representative for each of the classes considered. This yields 
objective and reproducible results. Furthermore, tissues surrounding the brain 
are hard to train for manually since they consist of a combination of different 
tissues types. Since our algorithm re-estimates the class distributions at each 
iteration, non-brain tissues automatically get a large variance and thus a low 
weight for the bias estimation. 

We use an atlas which provides a priori information about  the expected 
location of white matter ,  grey mat ter  and csf. This information is used for ini- 
tialization, avoiding user interaction which can give unreproducible results. Fur- 
thermore, the atlas makes the algorithm significantly more robust, since voxels 
are forced to be classified correctly even if the intensities largely differ due to a 
heavy bias field. 
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5 Summary  and conclusions 

In this paper, we have proposed a method for fully automatic segmentation 
of brain tissues and MR bias field correction using a digital brain atlas. We 
have extended the EM segmentation algorithm, including an explicit parametric 
model of the bias field. Results were presented on MR data  with important  
field inhomogeneities and slice-per-slice offsets. The algorithm is fully automatic, 
avoids tedious and time-consuming user interaction and yields objective and 
reproducible results. 
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Fig. 2 .3D rendering of grey matter and white matter segmentations of a Tl-weighted 
MR image of the head. From left to right: grey matter and white matter segmentation 
obtained with the EM algorithm without bias correction; grey matter and white matter 
segmentation obtained with the extended EM algorithm 

Fig.  3. Segmentation of multi-channel data. From left to right: PD and T2-weighted 
images, segmentation with the EM algorithm without bias correction and with the 
extended EM algorithm. 

Fig.  4. MS lesion segmentation. From left to right: T1, T2, PD-weighted image, auto- 
matic lesion segmentation, manuM segmentation 

Fig.  5. An example of slice-per-slice offsets. From left to right: original data, estimated 
bias, white matter classification with the EM algorithm without bias correction and 
with the extended EM algorithm 


