Similarity Measuresfor
Object-Oriented Case Representations

Ralph Bergmann and Armin Stahl

University of Kaiserdautern
Centre for Leaning Systems and Applicaions (LSA)
PO-Box 3049
D-67653Kaiserslautern, Germany
{ bergmann | stahl} @informatik.uni-kl.de

Abstract. Objed-oriented case representations require gproaches for
simil arity assessment that allow to compare two dfferently structured oljeds,
in particular, objeds belongng to dfferent objed classes. Currently, such
similarity measures are developed more or less in an ad-hoc fashion. It is
mostly unclea, how the structure of an oljed-oriented case model, e.g., the
classhierarchy, influences smilarity assessment. Intuitively, it is obvious that
the dass hierarchy contains knowledge @ou the similarity of the objeds.
However, how this knowledge relates to the knowledge that could be
represented in similarity measures is not obvious at al. This paper analyzes
severd situations in which classhierarchies are used in diff erent ways for case
modeling and roposes a systematic way of spedfying similarity measures for
comparing arbitrary objeds from the hierarchy. The proposed similarity
measures have a ¢ea semantics and are wmputationaly inexpensive to
compute & run-time.

1. Introduction

Several recenit CBR systems apply objed-oriented techniques for representing cases
(Manago, et a., 1994 Wess 95). Such representations are particularly suitable for
complex domains in which cases with diff erent structures occur. Cases are represented
as colledions of objeds, eah of which is described by a set of attribute-value pairs.
The structure of an objed is described by an objed class that defines the set of
attributes (also cdl ed slots) together with a type (set of posdble values or sub-objeds)
for ead attribute. Objed classs are aranged in aclasshierarchy, that is, usually an-
ary tree in which sub-classes inherit attributes as well as their definition from the
parent class(predecessor). Moreover, we distinguish between simple attributes, which
have a smple type like Integer or Symbol, and so-cdled relationd attributes.
Relational attributes hold complete objeds of some (arbitrary) class from the dass
hierarchy. They represent a direded binary relation, e.g., a part-of relation, between
the objea that defines the relational attribute and the objed to which it refers.

Relational attributes are used to represent complex case structures. The aility to
relate an objed to another objed of an arbitrary class(or an arbitrary sub-classfrom a
spedfied parent clasg enables the representation of cases with different structures in
an appropriate way.

Similarity measures for such objed-oriented representations are often defined by
the following general scheme (Wess 1995: The goal is to determine the simil arity
between two oljeds, i.e., one objed representing the cae (or a part of it) and one
objed representing the query (or a part of it). We cdl this $Smilarity objed similarity
(or globd similarity). The objed similarity is determined reaursively in a bottom up
fashion, i.e., for eatn simple dtribute, a local similarity measure determines the
similarity between the two attribute values, and for ead relational slot an objed
similarity measure reaursively compares the two related sub-objeds. Then the
simil arity values from the locd simil arity measures and the objed simil arity measures,
respedively, are aygregated (e.g., by aweighted sum) to the objed simil arity between
the objeds being compared.

Unfortunately, such objed simil arity measures are aurrently developed more or less
in an ad-hoc fashion. It is mostly unclea, how the structure of the objed-oriented case
model, e.g., the dass hierarchy, influences smilarity assesament. Intuitively, it is
obvious that the dasshierarchy contains knowledge éout the similarity of the objeds.
Objeds that are doser in the hierarchy should normally be more similar to ead other
than objeds which are more distant in the hierarchy. However, how this knowledge
relates to knowledge that could be represented in similarity measures that also
consider the locd similarity of the dtributes is not obvious at all. Consequently, there
is no clea view about how the similarity between two oljeds belonging to two
different objed clases $ould be determined. Therefore, many existing CBR systems
and applications restrict objed simil arity to the comparing objeds of the same objed
class only, not taking advantage of the high flexibility that objed-oriented
representations provide.

This paper provides a framework for objed similarities that alow to compare
objeds of different classes while cnsidering the knowledge ntained in the dass
hierarchy itself. We will show that knowledge &out similarity contained in class
hierarchies is quite similar to the knowledge mntained in taxonomies of symbals,
which has been analyzed in a previous paper (Bergmann, 199&). The next sedion
presents four related examples of how classhierarchies can be used and what kind of
objed similarities are gpropriate. Based on these examples a new framework for
determining objed simil arities is devel oped.

2. Example Use of Class Hierarchiesand Object Similarities

We now describe posshle uses of class hierarchies in different related application
examples in which personal computers are represented as part of the cae. The dass
hierarchy (seeFig. 1) contains a dassfor representinga PC as well as different classes
for representing components.

Technical Object
price: Red
PC Storage Device Processor
processor: Processor manufacturer: Symbol manufacturer: Symbol
hard-disk: Hard Disk capacity: Real speed: Real
floppy-disk: Floppy Disk accesstime: Real type: Symbol
optional storage: Storage Device
M agnetic Storage Device Optic Storage Device

buld-insize: {3,5; 5,25}

ead-speed: Int
type-of-magnetic-surface: Symbol oS e

type-of-laser: Symbal

Streamer || Floppy Disk ||Hard Disk| |CD—ROM | Writeable O. S. D.

write-speed: | nteger

| CD-Writer | |CD—RW|

Fig. 1. A part classhierarchy in an example domain

The PC class contains attributes like , processor”, , hard-disk”, and ,price* (inherited
from “Technicd Objed”) which are used to describe the properties of a PC in detail .
Because aPC consists of a set of components (part-of-relation) which have properties
themselves most attributes are relational (printed in italic font). Like for simple
attributes, it is necessary to asdgn arelational attribute a ¢ass for example to express
that the relational attribute ,hard-disk” can only have an instance of the objed class
Hard Disk. In the example the dassHard Disk has no sub-classes and consequently,
every objed that this attribute refers to has the same structure, i.e., the same set of
attributes. In contrast, the relational slot ,optional storage” does not have aunique
class because the objed-class Storage Device has sveral diread and indirea sub-
classs. Hence, the dtribute can relate to oljeds of different structures, but they still
have a @mmon super-class (e.g., Storage Device) and therefore share & least some
common attributes. In our example, one PC can have asecond hard-disk as optional
storage device, while another PC can have aCD-ROM described by a few different
attributes (e.g., type of laser) than a hard-disk.

Consider again the ,,optional storage" attribute. Now we describe four examples in
which this attribute is used dfferently. We first would like to focus on the knowledge
contained in the dasshierarchy and therefore don't take different values for simple
attributes into acourt.

Example la. Consider a CBR system for the sales suppart of Personal Computers. A
case represents an avail able PC from the stock. Consider a cae ¢ with a second hard-
disk as optional storage device and a cae ¢ with a CD-Writer. If we assume that a

customer enters a query to such a CBR system in which she/he spedfies that she/he
wants a CD-ROM, then ¢, is certainly closer than c¢;, becaise aCD-ROM and a CD-
Writer have obviously more in common than a hard-disk and a CD-ROM. In general,
we ould use a similarity measure that asseses dmilarity based on the distance
between the dass of the cae objed (of the respedive relationa attribute) and the
classof the query objed in the dasshierarchy.

Example 1b. Imagine the austomer states in the query a request for an optic storage
device i.e., in the query, the relational attribute refers to an instance of the dass
“Optic Storage Device”. Then any of the devices in the Optic Sorage Device sub-tree
are perfedly suited. Hence we eped the similarity value for the relational dot
between this query and case G (from Example 1a) to be eual to 1'. From this
consideration we can conclude that whenever the dassof the query objed is locaed
above the dassof the cae objed, the simil arity should be 1.

Example 2a. Consider now a trouble-shooting CBR system for PCs in which cases
encode diagnostic situations and faults that have occurred previously. The domain
expert describes a fault that can occur with any optic storage device Therefore, the
respedive cae mntains an instance of the dassOptic Sorage Devicein the relational
attribute ,,optional storage device'. Now, asauming a PC user has a problem and
she/he states that there is a CD-RW device in the PC, then the similarity for the
respedive relationa slot should be equal to 1 kecause the cae matches exadly w.r.t.
this attribute. From this consideration we can conclude that whenever the dassof the
case objed islocated above the dassof the query objed the simil arity should be 1.

Example 2b. For the same trouble-shocting example, imagine now a different query
in which the user does not exadly know what kind of storage deviceisinstalled in the
PC, but she/he knows that it is a writeable optic storage device Therefore, she/he
enters an instance of the dassWriteable Optic Sorage Device as attribute value in the
query. Again, the cae aout the Optic Sorage Device mentioned in Example 2a
matches exadly because, whatever storage device the user has, we known it is an
Optic Sorage. Hence, the situation described in the cae gplies. However, if we
consider a different case that describes a problem with a CD-RW device then this
case does not match exadly. Sincewe don’t know what writeable optic storage device
the user has (it can be aCD-Writer but it can also be aCD-RW) we exped a simil arity
value lessthan 1 to represent this kind of uncertainty. Therefore, we canot conclude
that whenever the dassof the query objed islocated above the dassof the cae objed
the similarity should be 1.

Although these four examples are based on the same dasshierarchy, it is obvious
that they have to be treaed dfferently for the similarity computation. In the query and
in the caes from example 1a, only instances of classes without subclasses are used.
The examples 1b to 2b make use of abstrad classes (classes with subclasss) of the

! We asume that simil arity measures compute values between Oand 1

hierarchy, but in ead example the semantics of the use these éstrad classs is
different, which must lead to different simil arity measures.

3. Computing Object Similarities

3.1 Basic Notions

We briefly introduce afew notions (seeFig. 2) that will be further used in the paper.
Let K be aninner node of the dasshierarchy, then Ly denotes the set of all | ed nodes
(classs) from the sub-tree starting at K. Further, K; < K, denotes that K; is a
succesr node (sub-clasg of K,. Moreover, <K3,K,> stands for the most spedfic
common objed classof Kz and K, i.e., <K3,Kz> = K3 and <K3,Kz> = K4 and it does
not exist anode K’'< <K3,K,> such that K’ > K3 and K’ = K, holds.

e o

Fig. 2. lllustration o basic notions

3.2 Basic Consider ations about Object Similarities

In general, the similarity computation between two oljeds can be divided into two
steps: the aomputation of an intra-class $milarity SIM;q4 and the computation of an
inter-class $milarity S M;er-

Intra-Class Similarity. The cmmon properties of the two oljeds can be used to the
intra-class smilarity. For thisit is necessary to take the most spedfic common class
of the two ojeds and to compute the similarity based on the &tributes of this class
only. By considering only the dtributes of the most spedfic common class the objed
simil arity computation can be done a usual, since the objeds being compared are
from the same dass That is, locd similarities or objea similarities are computed for
all attributes and the resulting values are aggregated to the intra-class smilarity, e.g.,
by aweighted sum. Formally written:

SIMinra(0,€) = P(simy (A A, CA),...,SiMy (G.A,,CA,)),

where @ isthe aygregation function, g.A and c.A; denote the value of the dtribute A;
in the query and case objed, respedively, and sim,; isthe locd or objed similarity of

the atribute A;.

Inter-Class Similarity. The intra-class $milarity alone would not be an adequate
objea similarity for the two oljeds. For example, in the domain shown in Fig. 1 two
instances of Hard Disk and CD-ROM can have an intra-class smilarity of 1, provided
that they have the same values in the dtributes which they inherit from their common
superclass , Storage Device'. But it is obvious that there is a significant difference
between a hard disk and a CD-ROM. Hence the similarity should definitely be less
than 1. It is important to note that the difference between two oljeds is not
represented by their shared attributes but by the structure of the dass hierarchy.
Therefore, it is necessary to use this gructure to compute an inter-class smilarity for
the two oljeds. This inter-class $milarity represents the highest possble simil arity of
two oljeds, independent of their attribute values, but dependent on the positions of
their objed classsin the hierarchy. Formally, the inter-class smilarity S M (Q,C) is
defined over the classes of the objects from the query and case being compared.

The final objea similarity ssim(q,c) between a query objed g and a cae objed ¢
can then be omputed, by the product of the inter- and the intra-class $mil arity, i.e.,

sim(q,C) = SIMinya (0,C) [BIMineer (Clasgq), clasg(c)) ,

where dasqq) and clasqc) denote the objed class of the objed g and c,
respedively.

Next, we analyze how the inter-class smilarity should be determined, which is
quite similar to the similarity computation between two symbols arranged in a
taxonomy (Bergmann, 199&).

3.3 Different Semantics of Nodes

In a dasshierarchy aswell asin ataxonomy of symbals, we must distinguish between
led nodes and inner nodes. In ataxonomy led nodes represent concrete objedsof the
red world. Inner nodes, however, describe classes of red world ojeds. An inner
node K represents a dasswith certain properties that al of the mncrete objeds from
the led nodes Ly have in common. Unlike dasses that occur in the objed-oriented
paradigm, the dasses that are represented by the inner nodes of a taxonomy are not
described intentionally by a set of properties, but extensionally through the set of
concrete objeds Lk that belongto the dass Therefore, an inner node K stands for the
set Lk of red world oljeds.

If we look at the dasshierarchy shown in Fig. 1, we can notice adifferencein the
semantics of its nodes compared to the semantics of taxonomy nodes. While aled
node of a taxonomy represents a cncrete objed of the red world, a led node of a
classhierarchy is naturaly a dassand therefore represents a set of objeds. As shown
above, inner nodes of a taxonomy describe dasses of red world oheds, but if we
look at the inner nodes of classhierarchies, we can see that these nodes represent
abstrad classes. Because of this, such a node does not represent a set of red world
objeds, but a set of abstract objeds. The instances which belong exclusively to the

class , Storage Device' or ,Optic Storage Device' for example ae obviously not
objeds of the red world. However, abstrad objeds are sets of red world oljeds. An
instance of ,,Optic Storage Device', for example, can be used as abbreviation for the
set of al instances of the dasss ,CD-ROM*, ,,CD-Writer*, and ,,CD-RW* that have
the same dtribute-values in the common attributes as the respedive ,Optic Storage
Device' instance, e.g., the same manufadurer, the same cgadty, the same accss
time, and the same spedd.

Thereisalso adifferencein the use of the two dfferent structures. A taxonomy tree
consists of the symbals that are diredly used as values for the dtributes. On the other
hand, the dasses of a dasshierarchy are not used as values for the relational dots
themselves, but the instances of the dasses. If we take this fad into acourt, we will
see that now there is no dfference in the semantics of the rresponding values,
becaise the taxonomy symbols must be cmpared with the instances and not with the
classs of the dasshierarchy. An instance of a dasswithout subclasses (a led node of
the hierarchy) represents a concrete objed of the red world, and as we have seen
before an instance of an abstrad class(inner node) can be treaed as a set of red world
objeds. This smantics is equivalent to the semantics of the taxonomy nodes.
Therefore, it is posdgble to apply the similarity measures used to compute simil ariti es
between taxonomy symbols for computing of the inter-class $milarity between
objeds.

3.4 Inter-Class Similarity Between Concrete Objects

A classhierarchy encodes ©me knowledge aout the inter-class $mil arity of the red-
world oljeds, i.e., the instances of the led nodes. The degper we descend in the dass
hierarchy, the more feaures the instances of the dasses will have in common. We can
therefore define the inter-class $milarity as a measure of how many “feaures’? the
compared oljeds have in common. The more “feaures’ are shared, the higher is the
inter-class $milarity. For example, the inter-class $mil arity between a CD-Writer and
a CD-RW is higher than the inter-class $milarity between a CD-Writer and a CD-
ROM.

This consideration leads to the following general constraint for defining the inter-
class $milarity for the instances of the led nodes of a dasshierarchy:

SIMinter(KvKl) s SIMinter(KaKz) IF <K1 K1> > <K!K2>

Because the dass hierarchy only represents the constraint shown above but does
not define numeric values for the similarity between two led node objeds (that are
used for the computation of an objed similarity), it is necessary to add additi onal
knowledge to the hierarchy. For this purpose it is possble to annotate every inner
node K; with a similarity value SO[0..1], such that the following condition holds: if
K1>K, then S<S,. The semantics of the simil arity value is as follows:

The value S represents a lower bound for the inter-class $mil arity of two arbitrary

2 Here, feaure does not necessarily mean attribute in the cae representations.

instances of the dasses from the set L;, or formally written:

OX,Y O Ly; SMiper(X,Y) 2 §

With regard to this emantics one may define the inter-class $milarity between two
objeds as foll ows:

SIIVlinter(Kl’KZ) = %“1‘}(2) otherwise

3.5 Semanticsand Inter-Class Similarity of Abstract Objects

If we now recdl again the examples that we have presented in sedion 2, it is obvious
that the “optional storage” attribute must be treaed dfferently in the different
examples, althoughthey all use the same dasshierarchy. From that it becomes clea
that some alditional knowledge which we have not yet discussed plays a role during
simil arity assesament. However, this knowledge is not contained in the dasshierarchy
itself.

The knowledge that we ae looking for is the knowledge aout the semantics of the
instances of inner nodes, i.e., the semantics of the éstrad objeds, which can be
treaed as sts of red-world-objeds (seesedion 3.3). In our example, the question is:
what does it mean when the cae or query contains the statement:

“optional storage: <an Optic Storage Deviceinstance >"?

In fad, there ae different interpretations of this gatement that will be further
discussed.

Any value in the query. The user spedfies an abstrad objed k in the query. This
means that she/he is looking for a cae that contains a red-world-objed that matches
with the fedures of the spedfied abstrad objed, i.e., a cae that contains an objed
that belongsto a dassof Lg. Thiswas the situation in example 1b.

Any valuein case. The cae mntains an abstrad objed k, which describes a situation
in which the cae is valid for all objeds that are aspeddlization of k. Thisleads to a
kind of generalized case. This occurred in example 2a.

Uncertainty. This stuation differs sgnificantly from the previous ones. Here, the use
of an abstrad objed k means that we do not know the mncrete objed for this
relational dot, but we know that it is a spedalization of k. This stuation occurred in
example 2b.

Depending on the gpropriate semantics we can now define an inter-class $mil arity
measure M (Q,C) which computes a value for the inter-class $milarity between
two oljeds Q and C where eab can be dther aled node (concrete objed), an inner
node (abstrad objed) with the “any value" interpretation or an inner node (abstrac

objead) with the “uncertainty” interpretation. This leads to nine passble cmbinations
shown in Table 1. Seven of the nine mmbinations in the table ae marked with a
roman number that is further used to reference the formulas for computing the
similarity. These ae the ones that occur most likely. However, the following
considerations can easily be extended also to the two missng combinations.

Table 1. Combinations of different semantics for objedsin query and case

Query\ Case L eaf Node Any Value Uncertainty
concr ete object abstract object abstract object
L eaf Node | 1] \%
concr ete object
Any Value Il v
abstract object
Uncertainty VI VI
abstract object

I: Only the similarity between concrete objeds must be computed as described in
sedion 3.4.

I1: The query contains a cncrete objed and the c&e ntains an abstrad objed
(inner node) representing a set of concrete objeds ead of which isa mrred objed for
the cae. Therefore, the use of this abstrad objed in the atribute is a shortcut for the
use of several cases, one for ead concrete objed belonging to the abstradt objed.
Sincewe ae looking for the most similar case in the cae base, the objed simil arity,
and therefore dso the inter-class $mil arity, between the query and our case @ntaining
the abstradt objed is equal to the highest similarity between the query and one of the
concrete objeds. Hence
o =] if Q<C
SIMinter(QvC) - maX{SIMinter(Q1C) |C 0 LC} - %S@,C) otherwise
holds. This definition ensures that the similarity is the same & the similarity that
arises when ead of the concrete objeds would have been stored in the cae base. This
measure is appropriate for example 2a.

[11: Here, the spedficdion of this abstrad objed can be viewed as a shortcut for
posing several queries to the system, one for ead of the mncrete objeds from the set
that the abstrad objed represents. Since we ae ajain interested in the most similar
case, we should again seled the most similar concrete objed from the set. Hence:

A if C<Q
SIIVlinter (ch) = maX{SIMinter(leC) |Q‘D LQ} - %S@C) otherwise

holds. This measure is appropriate for example 1b.

IV: This is a combination of Il and Ill. We ae looking for the highest possble
simil arity between two concrete objeds from the two sets represented by the estrad
objeds sncebath, the query and the cae, represent aternatives that are suited equally
well. Hence,

A if C<QorQ<C
SIMinter(Q,C) = maX{SIMinter(lecl) |Q|D LQ’CI[| LC} = %(Q,C) otherwise

holds.

V: The cae mntains an abstrad objed which represents a set of concrete objeds
from which only one value is adually correa for the cae, but we don’t know which
one. Therefore, our similarity measure has to refled this ladk of information. There
are three possble gproades. we can asess the similarity in a pessmistic or
optimistic fashion, or we can follow an averaging approach. We only demonstrate the
pesimistic goproad; see (Bergmann, 1998) for more details on the other
approaches.

Pessimistic approach: We asss the similarity between the known objea (in the
guery) and the partially unkrnown objed (in the cae) by computing the lower bound
for the similarity as follows: SIM,e; (Q,C) = MIN{SIM;,(Q,C") |IC' O L} = S(Q,c> .

V1: The uncertain information is contained in the query; the information in the caeis
certain. This caseis quite similar to the previous case V. For the pessmistic goproach
holds: SIMinter(Q!C) = min{SIMinter(erC) |Q'D LQ} = S(ch)

VIIl: The uncertain information is contained in the query and in the cae. The
simil arity is computed as foll ows for the pessmistic gpproach:

SIMjner (Q,C) = Min{SIM;e, (Q",C) [C'D L, QU L} = S(Qp)

In al of these caes, the inter-class $milarity can be cmputed very easily by
determining the paosition of the dassof the query objed and the cae objed in the
class hierarchy and by looking yp the similarity value a&ociated with the most
spedfic common super class

4. Status of Implementation and Related Work

The described ohjed similarities are redized as part of the recant version of the

commercial CBR tod CBR-Works from TECINNO GmbH. The gproach was
applied for the HOMER applicaion (HOtline Mit ERfahrung hotline suppart for
troubleshooting Workstations and CAD software & Daimler Benz, see Goker et d.,
1998 for details) developed as part of the INRECA-II projed. The gproac to the
congtruction of similarity measures will also enter the INRECA-II methoddogy for
buil ding CBR appli cations (Bergmann & Althoff, 1998, Bergmann, et al. 19981.

Currently, there is no other work that proposes smilarity measures for objed-
oriented case representations that make use of the dasshierarchy, relational attributes,
and flexible locd similarity measures for simple dtributes. However, similarity
measures for different kinds of structured representations are discussed throughout the
CBR and instance-based leaning literature during recent yeas.

To some etend, objed-oriented representations can be mpared to
representations in first-order logic where a cae is a mnjunction of atomic formulas.
Each atomic formula P(id,ay,... &) stands for a singe objed. The agument id of the
formula denotes an objed identification and the remaining arguments aj,...a,
represent the dtributes. Relational attributes can be represented by using the objed
identifications as attribute values. Emde & Wettscheredk (1997 present a relational
instance-based leaning approach that is based on the computation of similarity
between cases represented in first-order logic. However, there gproach does not
consider class hierarchies or flexible locd similarity measures for simple dtributes.
However, they can handle caes in which one relationa attribute points to several
objeds. In objed-oriented representations like CASUEL, this representational feaure
is cdled a multi-value dlot. Similarity measures for such attributes have been
discussd in an ealier paper (Bergmann & Eisenedker, 1995, but have shown to be
computationally too expensive in most applications. Therefore, we suggest to avoid
these kinds of representations, if posshble.

Plaza(1999 propases fedure terms for representing structured cases and proposes
a similarity computation based on antiunification. This approach allows to consider
some kinds of badground knowledge during similarity computation but cannot ded
with classhierarchies and locd similarity measures for simple dtributes.

The framework by Osborne & Bridge (1996 is based on lattices of values
(somehow similar to a dass hierarchy) and applies a logic-oriented approac for
defining similarities. However, their work does not cover objed-oriented
representations, e.g., relationa attributes and inheritance of attributes are not
considered.

Thereis also some resemblanceto graph representations as, for example, discussed
by Bunke & Mesaner (1994 and Sanders at a. (1997). However, objed-oriented
representations as discussed here ae cmparable to labeled graphs in which the
matching problem, which is NP complete in the general case, does not occur.

Acknowledgment. Funding for this work has been provided by the Commisson of
the European Union (INRECA-II: Information and Knowledge Reengineeing for
Reasoning from Cases; Esprit contrad no. 22196 to which the aithors are gredly
indebted. The partners of INRECA-II are: AcknoSoft (prime mntrador, France),

Daimler Benz (Germany), TECINNO (Germany), Irish Multimedia Systems (Ireland),
and the University of Kaiserdautern (Germany). The aithors would like to thank all
members of the INRECA-II team for valuable comments on objed similarities.
Thanks also to the aonymous reviewers who significantly helped to improve the

References

Bergmann, R. & Eisenedker, U. (1995. Fallbasiertes Schlief3en zur Unterstiitzung der
Wiederverwendung objektorientierter Software: Eine Fallstudie. Proceeadings der
3. Deutschen Expertensystemtagung XPS-95, pp. 152169, Infix-Verlag.

Bergmann, R. & Althoff, K.-D. (19983). Methoddogy for building CBR applications.
Chapter 12 o Lenz, Bartsch-Spérl, Burkhard, Wess(Eds). Case-Based Reasoning
Techndogy. LNAI 140Q Springer.

Bergmann, R., Breen, S., Fayal, E., Goker, M., Manago, M., Schumadher, J., Schmitt,
S, Stahl, A., Wess S. & Wilke, W. (1998h. Colleding experience on the
systematic development of CBR applicaions using the INRECA-II Methoddogy
Thisvolume.

Bergmann, R. (199&). On the use of taxonomies for representing case feaures and
locd similarity measures. In Gierl & Lenz (Eds.) 6™ German Workshop onCBR.
Bunke, H. & Messner, B. (1994). Similarity measures for structured representations.
In Wess Althoff & Richter (Eds.) Topics in Case-Based Reasoning, pp. 106118

LNAI 837, Springer.

Goker, M., Roth-Berghofer, T. Bergmann, R., Pantleon, T., Traphoner, R., Wess S.,
& Wilke, W. (1998. The development of HOMER: A case-based CAD/CAM
help-desk suppart toal. Thisvolume.

Manago, M. Bergmann, R. et al. (1994. CASUEL: A common case representation
language. Deliverable D1 of the INRECA Esprit Projed.

Osborne H. & Bridge, D. (1996. A case base similarity framework. In Smith &
Faltings (Eds.) Advances in Case-Based Reasoning, pp. 309325 LNAI 1168.
Springer.

Plaza E. (1995. Cases as terms. A fedure term approach to the structured
representation of cases. In Veloso & Aamodt (Eds) Case-Based Reasoning
Research andDevdopment, pp. 265276, LNAI 101Q Springer.

Sanders, K., Kettler, B., & Hendler, J. (1997. The cae for graph-structured
representations. In Leske & Plaza(Eds) Case-Based Reasoning Research and
Devdopment, LNAI 1266 Springer.

Wess S. (1995. Fallbasiertes Problemldsen in wissensbasierten Systemen zur
Entscheidungs-unterstitzung und Diagnatik: Grundagen, Systeme und
Anwendungen. Dissertation, Universitdt Kaiserslautern, Infix-Verlag.

