
ORNL/CP-99933 

Invited paper at the EuroPVMMPI 98 Conference d; UK, mber 6,1998 

wow 2 4 OW8 

O S T I  
HARNESS: THE NEXT GENERATION BEYOND PVM* 

G. A. Geist 
Computer Science and Mathematics Division 

Oak Ridge National Laboratory 
P. 0. Box 2008, Bldg. 6012 
Oak Ridge, TN 3783 1-6367 

“This submitted manuscript has been authored by a 
contractor of the U. S. government under Contract No. 
DE-AC05-980R22464. Accordingly, the U. S. 
Government retains a nonexclusive, royalty-free license 
to publish or reproduce the published form of this 
contribution, or allow others to do so, for U. S. 
Government purposes.” 

*Research supported by the Applied Mathematical Sciences Research Program, Office of 
Energy Research, U. S. Department of Energy, under contract No. DE-AC05-960R22464 with 
Lockheed Martin Energy Research Corporation. 



DISCLAIMER 

This report was prepared as an account of work sponsored 
by an agency of the United States Government. Neither the 
United States Government nor any agency thereof, nor any 
of their employees, make any warranty, express or implied, 
or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference 
herein to  any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or 
any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Harness: The Next Generation Beyond PVM 

G. A. Geist * 

Oak Ridge National Laboratory, USA 

Abstract. Harness is the next generation heterogeneous distributed 
computing package being developed by the PVM team at Oak Ridge 
National Laboratory, University of Tennessee, and Emory University. 
This paper describes the changing trends in cluster computing and how 
Harness is being designed to address the future needs of PVM and MPI 
application developers. Harness (which will support both PVM and MPI) 
will allow users to dynamically customize, adapt, and extend a virtual 
machine’s features to more closely match the needs of their application 
and to optimize for the underlying computer resources. This paper will 
describe the architecture and core services of this new virtual machine 
paradigm, our progress on this project, and our experiences with early 
prototypes of Harness. 

1 Introduction 

Distributed computing has been popularized by the availability of powerful PCs 
and software to cluster them together. The growth of the Web is also raising the 
awareness of people to the concepts of distributed information and computing. 
While originally focused on problems in academia and scientific research, dis- 
tributed computing is now expanding into the fields of business, coIlaboration, 
commerce, medicine, entertainment and education. Yet the Capabilities of dis- 
tributed computing have not kept up with the demands of users and application 
developers. Although distributed computing frameworks such as PVM [Z] con- 
tinue to  be expanded and improved, the growing need in terms of functionality, 
paradigms, and performance quite simply increases faster than the pace of these 
improvements. 

Numerous factors contribute to this situation. One crucial aspect is the lag 
between development and deployment times for innovative concepts. Because 
systems and frameworks tend to  be constructed in monolithic fashion, technol- 
ogy and application requirements have often changed by the time a system’s 
infrastructure is developed and implemented. Further, incremental changes to 
subsystems often cannot be made without affecting other parts of the frame- 
work. Plug-ins offer one solution to this problem. Plug-ins are code modules 
that literally plug into a computing framework to  add capabilities that previ- 
ously did not exist. This concept has become popularized by Web browsers. For 

* This work was supported in part by the Applied Mathematical Sciences subprogram 
of the Office of Energy Research, U.S. Department of Energy, under Contract DE- 
AC05-960R22464 with Lockheed Martin Energy Research Corporation 



example, there are Netscape plug-ins for playing live audio files, displaying PDF 
files, VRML and movies. The central theme of Harness is to adapt this plug-in 
concept and extend it into the realm of parallel distributed computing. 

By developing a distributed computing framework that supports plug-ins, it 
will be possible to extend or modify the capabilities available to parallel appli- 
cations without requiring immediate changes in the standards, or endless iter- 
ations of ever-larger software packages. For example, a distributed virtual ma- 
chine could plug in modules for distributed shared memory programming support 
along with message passing support, allowing two legacy applications, each writ- 
ten in their own paradigm, to interoperate in the same virtual machine. Virtual 
machine plug-ins enable many capabilities, such as adapting to new advanced 
communication protocols or networks, programming models, resource manage- 
ment algorithms, encryption or compression methods, and auxiliary tools, with- 
out the need for extensive re-engineering of the computing framework. In ad- 
dition, Harness plug-ins will be dynamic in nature, or “hot-pluggable” . Certain 
features or functionality will plug in temporarily, only while needed by an ap- 
plication, and then unplug to free up system resources. Distributed application 
developers no longer will need to adjust their applications to fit the capabili- 
ties of the distributed computing environment. The environment will be able to 
dynamically adapt to  the needs of the application on-the-fly. 

In Harness we have broadened this concept of pluggability to  encompass the 
merging and splitting of multiple virtual machines that was pioneered in IceT [5 ] ,  
as well as the attachment of tools and applications [6]. Being able to temporarily 
merge two virtual machines allows collaborating groups at different sites to work 
together without feeling like they have to place their resources into some larger 
pool that anyone might use. 

Looking at the new capabilities of Harness from the software and applica- 
tion’s viewpoint, analysis tools will be able to plug into applications on-the-fly to 
collect information or steer computations. In addition, peer applications will be 
able to “dock” with each other to  exchange intermediate results or even active 
objects (eg. Java bytecode) thereby facilitating collaborative computing at the 
software level. 

f iom the hardware perspective, as more and more high-performance com- 
modity processors find their way into scientific computing, there is a need for 
distributed applications to interact between Window and UNIX systems. All of 
our Harness research is being done within a heterogeneous environment that can 
include a mixture of Unix and NT hosts; in fact, the plug-in methodology will 
permit greater flexibility and adaptability in this regard. 

The rest of this paper describes the work of the Harness team, which in- 
cludes researchers at Emory University, Oak Ridge National Laboratory, and 
the University of Tennessee. The work leverages heavely on other distributed 
computing projects the team is concurrently working on, particularly Snipe [l] 
and IceT [5 ] .  In the next section we describe the basic architecture, then fol- 
low with a description of the design of the Harness daemon. In section 4, we 
describe the core services that are provided by the Harness library upon which 



the Harness daemon is built. Finally, we present the latest results and future 
development plans. 

2 Harness Architecture 

The Harness architecture is built on the concept of a distributed set of daemons 
making up a single distributed virtual machine (DVM). The high level archi- 
tectural view is similar to the very successful PVM model where there is one 
daemon per IP address within a given DVM. Where Harness deviates sharply 
from PVM is in the composition of the daemon and the control structure. 

The Harness daemon is composed of a minimal kernel, which understands 
little more than how to plug-in other modules, and a required set of plug-in 
modules, which supply the basic virtual machine features. The required modules 
are: communication, process control, and resource management. The design also 
allows the user to extend the feature set of their DVM by plugging in additional 
modules written by the user community. 

Figure 1 shows how the plug-ins and daemons fit into the overall Harness 
architecture. 

host A I HI 
Distributed 

- - .  ---._____-.-- -. .- 
management 

Fig. 1. Distributed Virtual machine is composed of daemons running on each computer 
and each daemon is composed of 3 required modules (plus possibly others) 



2.1 Distributed Control 

One goal of Harness is to be much more adaptable and robust than PVM. One 
weakness in PVM is that it has a single point of failure. When PVM first starts 
up it selects one daemon to be the “master daemon” responsible for arbitrating 
conflicting requests and race conditions. All other hosts and daemons in PVM 
can come and go dynamically, but if contact with the master daemon ever fails 
the entire DVM gracefully shuts down. We have designed Harness without a 
single or even multiple point of failure short of all the Harness daemons failing 
at the same time. This flexibility is not just a nice new feature, but is necessary 
when you consider the dynamic plug-in environment with constantly changing 
available resources that Harness is designed to  work in. 

Two distributed control designs are being investigated for the Harness project. 
The first is based on multicast and the dynamic reconstruction of the DVM state 
from remaining daemons in the case of failure. This design is described in [7]. 
The second design is based on all daemons being peers with full knowledge of 
the DVM state. The second design is described in detail in [4]. 

Both designs meet the following requirements that we have specified for the 
Harness control structure. 

- Changes to the DVM state are seen in the same order by all members. 
- A11 members can inject change requests at the same time. 
- No daemon is more important than any other i.e. no single point of failure. 
- Members can be added or deleted fast. 
- Failure of host does not negate any partially committed changes, no rollback. 
- Parallel recovery from multi-host failure. 

3 Harness Daemon 

As seen in the above description, the Harness daemon is the fundamental struc- 
ture of the Harness virtual machine. The cooperating daemons provide the ser- 
vices needed to use a cluster of heterogeneous computers as a single distributed 
memory machine. 

At its most fundamental level the Harness daemon is an event driven pro- 
gram that receives and processes requests from user tasks or remote daemons. 
Processing a request may include sending requests to other Harness daemons or 
activating user defined plug-ins. Here is the outer loop of the Harness daemon. 

loop till shutdown 
recv request 
validate request 
carry out request 
reply t o  the requester 

endloop 

The first step after a request is received is to check that the requester is 
authorized to execute this service on the specified resource. Since PVM was a 



single user environment this was an unnecessary step, but since Harness allows 
multiple DVMs to merge, there can be multiple users sharing a DVM. Harness 
must provide some measure of authorization and protection in its heterogeneous 
distributed environment, just as an operating system supplies in a multiple user 
parallel computer. The act of registering with a DVM will return a certificate 
that will be used to specify the scope of permissions given to a user. 

There are three classes of requests that the daemon understands. The first 
class of request is to perform a local service. The daemon checks its table of 
available services which includes the core services such as “load a new plug- 
in”, required plug-in services such as spawn a task, and user plug-in services 
such as balance the load. If available, and the user is authorized, the requested 
service is executed. Otherwise an error message is returned to the requester. 
The second class of request is to handle distributed control updates. There are 
steady pulses of information constantly being exchanged between daemons so 
that changes to the state of the DVM are consistently made. Each daemon’s 
contribution to  the arbitration of state changes is passed around in the form of 
requests. For example, a request may come in that says, “daemon-X wants to 
add host-Y to the DVM.” The local daemon can pass it on as a way of saying, 
“OK” or the daemon may know that host-2 needs to be added to the DVM 
state first and reacts accordingly. (Exactly how it reacts depends on which of 
the two distributed control methods is being used.) The third class of request is 
to forward a request to a remote daemon. For example, a local task may send 
a request to the local daemon to spawn a new task on a remote host. The local 
daemon could forward the request to the daemon on this host rather than try 
to invoke a remote procedure call. 

4 Core Services 

A key realization is that the set of daemons can be thought of as just another 
parallel application, not unlike a user’s parallel application. The daemons need 
to  send information back and forth, they need to be able to coordinate, and to 
keep track of the state of the virtual machine. These are the same kinds of needs 
every parallel program has. Therefore the Harness approach is to design a library 
of functions required to build the daemons and to make this library available 
to application developers. This library is called the core services and can be 
divided into four areas: plug-in/run interface, data transfer, global storage, and 
user registration. 

4.1 Plug-in/Run Interface 

The basic concept behind Harness is that pluggability exists at every level. At  the 
lowest level, a Harness daemon or a user application can plug-in a new feature, 
library, or method. At the middle level, two parallel applications can plug-in 
to  one another and form a larger multiphase application. At the highest level, 



two virtual machines can merge (plug-in) to each other to share computational 
resources. 

Since Harness is object oriented in its design, the plug-in function can be 
generalized to accept a wide range of components from low level modules to 
entire DVM. For symmetry there is also an unplug function that reverses the 
plug-in operation for a given component. 

There are times when it is convenient to  load and run a plug-in in a single 
step. A common example is the spawning of a parallel application. There are 
other times when it is more efficient to  preload plug-ins and run them only when 
necessary. For this reason the core plug-in service presently allows three different 
instantiation options. The first option is “load only”. This is for plug-ins such as 
libraries that are not runable, for preloading runable processes, and for joining 
two already running components together. The second option is “load and run”. 
This provides a convenient means to add new hosts to the DVM by starting a 
remote daemon and also for spawning parallel applications. The third option is 
“load, run, and wait till completion”. This option provides the same model as 
Remote Procedure Call (WC)  in Unix and has the same utility. As users get 
more experience with Harness, other options may be added depending on the 
application needs. 

From a practical point of view it may make sense to  consider plugging in a 
single component in a single location separately from plugging in components 
across many (possibly heterogeneous) locations. In the latter case there are situa- 
tions, such as spawning a parallel application, where no coordination is required, 
and other situations, such as loading a new communication plug-in, where strict 
coordination is required. The latter case dso requires the specification of a set 
of locations as well as a vector of return codes to specify the success or failure of 
each of the components. For these reasons there are separate functions for these 
two cases. 

Here are the four functions being considered for the plug-in/run interface. 

object  = plugin( component, args,  options 1 
run( object,  args 1 
stop(  object ) 
unplug( component 1 

4.2 Global Storage 

The Harness virtual machine needs to store its state information in a robust, fault 
tolerant database that is accessible to any daemon in the DVM. User applications 
also need to have a robust information storage and retrieval. For Harness we 
propose to use the persistent message interface that was developed for the final 
version of PVM. 

In a typical message passing system, messages are transitive and the focus 
is on making their existence as brief as possible by decreasing latency and in- 
creasing bandwidth. But there are a growing number of situations in distributed 
applications in which programming would be much easier if there was a way to 



have persistent messages. This was the purpose of the Message Box feature in 
PVM 3.4 [3]. The Message Box is an internal tuple space in the virtual machine. 

The six functions that make up the Message Box in Harness are: 

index = putinfo( name, msgbuf , f lag  ) 
recvinfo( name, index, f l ag  ) 
delinfo( name, index, f l ag  ) 
searchbox( pattern, matching-names, info ) 
subscribe-f or-notif ication (1 
cancel-subscription0 

Tasks can use the Harness data transfer routines to create an arbitrary mes- 
sage, and then use putinfo0 to piace this message into the Message Box with 
an associated name. Copies of this message can be retrieved by any Harness task 
that knows the name. And if the name is unknown or changing dynamically, then 
searchmboxo can be used to find the list of names active in the Message Box. 
The flag parameter defines the properties of the stored message, such as, who is 
allowed to delete this message, does this name allow multiple instances of mes- 
sages, does a put to the same name overwrite the message? The flag also allows 
extension of this interface as users give us feedback on how they use the features 
of Message Box. 

The recvinfoo function generates a request to the local daemon to find 
the message associated with the specified name in the global storage and to send 
it to the reqesting task. The task receives and decodes the message using the 
Harness data transfer routines. 

Here are a few of the many uses for the Message Box feature. A visualization 
tool can be started that queries the message box for the existence and instruc- 
tions on how to attach to a large distributed simulation. A performance monitor 
can leave its findings in the Message Box for other tools to use. A multipart, 
multiphase application can use the Message Box as a means to keep track of the 
different parts of the application as they move to the best available resources. 

The capability to have persistent messages in a distributed computing envi- 
ronment opens up many new application possibilities, not only in high perfor- 
mance computing but also in collaborative technologies. 

4.3 Data Transfer 

Because the daemons need to be able to send and receive requests, the core 
services need to provide a means to transfer data between two components in 
a DVM. Experience with PVM has shown that message-passing is the most 
portable and heterogeneous of the possible paradigms, so this is what is provided 
in Harness as the basic data transfer mechanism. 

The core services provide the blocking and nonblocking send and receive 
routines that users have grown accustomed to in MPI [B] and PVM. The core 
services also provide the test, wait, and cancel operations required with the 
nonblocking sends and receives. 



The architecture and basic design of Harness have been completed, based on 
successful proof-of-concept experiments performed over the past year. A proto- 
type implementation of Harness written entirely in Java and based on the first 
of two distributed control schemes is now running [7]. Another prototype imple- 
mentation written in C++ and based on the second distributed control scheme 
should be running by the Fall of 1998. 

A publicly available version of Harness is planned for the Fall of 1999. 

Acknowledgements 

The ideas expressed in this paper are the product of the entire Harness develop- 
ment team with includes: Micah Beck, Jack Dongarra, Graham Fagg, AI Geist, 
Paul Gray, James Kohl, Mauro Migliardi, Keith Moore, Terry Moore, Philip 
Papadopoulos, Stephen Scott, and Vaidy Sunderam. It is a collaborative effort 
between Oak Ridge National Laboratory, Emory University, and the University 
of Tennessee. 

References 

1. G. Fagg, K. Moore, J. Dongarra, and A. Geist, Scalable Networked Information 
Processing Environment (SNIPE), In Proc. SC9’7, November 1997. 

2. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. 
PVM: Parallel Virtual Machine A User’s Guide and Tutorial for Networked Par- 
allel Computing. MIT Press, Cambridge, MA, 1994. 

3. A. Geist, J. Kohl, R. Manchek, and P. Papadopoulos. New features of PVM 3.4 
and beyond. In Dongarra, Gengler, Tourancheau, and Vigouroux, editors, Eu- 
roPVM’95, pages 1-10. Hermes Press, Paris, 1995. 

Symmetric Distributed Control in Network- 
based Parallel Computing Journal of Computer Communications, 1998. 
(http://www.epm.ornl.gov/harness/dc2 .ps). 

5. P. Gray and V. Sunderam. The IceT Project: An Environment for Cooperative 
Distributed Computing, 1997. (http://www.mathcs.emory.edu/-gray/IceT.ps). 

6. T. Ludwig, R. Wismuller, V. Sunderam, and A. Bode. Omis - on-line monitor- 
ing interface specification. Technical Report TUM-19609, Technische Universitat 
Miinchen, February 1996. 

7. M. Migliard, J. Dongarra, A. Geist, and V. Sunderam. Dynamic Reconfiguration 
and Virtual Machine Management in the Harness Metacomputing System, ISCOPE 
1998. (http://www.epm.ornl.gov/harness/om.ps). 

8. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Com- 
plete Reference. MIT Press, Cambridge, MA, 1996. 

4. A. Geist, and P. Papadopoulos. 

This article was processed using the I4m macro package with LLNCS style 

http://www.epm.ornl.gov/harness/dc2
http://www.mathcs.emory.edu/-gray/IceT.ps
http://www.epm.ornl.gov/harness/om.ps

