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Abstract. An alternative to Darwinian-like arti�cial evolution is o�ered

by Population-Based Incremental Learning (PBIL): this algorithm mem-

orizes the best past individuals and uses this memory as a distribution,

to generate the next population from scratch.

This paper extends PBIL from boolean to continuous search spaces. A

Gaussian model is used for the distribution of the population. The center

of this model is constructed as in boolean PBIL. Several ways of de�ning

and adjusting the variance of the model are investigated.

The approach is validated on several large-sized problems.

1 Introduction

Evolutionary algorithms (EAs) [13, 6, 5] are mostly used to �nd the optima of

some �tness function F de�ned on a search space 
.

F : 
 ! IR

From a machine learning (ML) perspective [9], evolution is similar to learning

by query: Learning by query starts with a void hypothesis and gradually re�nes

the current hypothesis through asking questions to some oracle.

In ML, the sought hypothesis is the description of the target concept; the

system generates examples and asks the oracle (the expert) whether these ex-

amples belong to the target concept. In EA, the sought "hypothesis" is the

distribution of the optima of F ; the system generates individuals and asks the

oracle (a routine or the user) what their �tness is. In all cases, the system alter-

natively generates questions (examples or individuals) depending on its current

hypothesis, and re�nes this hypothesis depending on the oracle's answers.

One core di�erence between ML and evolution is that ML, in the arti�cial

intelligence vein, manipulates high-level, or intensional description of the hy-

pothesis sought. Conversely, evolution deals with a low-level, or extensional de-

scription of the sought distribution: the distribution of the optima is represented

by a collection of individuals (the current population).

The Population Based Incremental Learning (PBIL) approach bridges the

gap between ML and EAs: it explicitly constructs an intensional description
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of the optima of F , expressed as a distribution on 
 [2, 3]. This distribution is

alternatively used to generate the current population, and updated from the best

individuals of the current population. The advantage of the approach is that, as

claimed throughout arti�cial intelligence [12], the higher level the information,

the more explicit and simple the information processing can be. And indeed,

PBIL involves much less parameters than even the canonical GAs [6].

PBIL was designed for binary search spaces. It actually constructs a dis-

tribution on 
 = f0; 1g

N

represented as an element of [0; 1]

N

. The basics of

this scheme are �rst brie
y recalled in order for this paper to be self contained

(section 2). Our goal here is to extend this scheme to a continuous search space


 � IR

N

. Continuous PBIL, noted PBIL

C

, evolves a Gaussian distribution on


 noted N (X; �). The center X of the distribution is evolved much like in the

binary case; evolving the standard deviation � of this distribution is more criti-

cal, and several heuristics to this aim are proposed (section 3). PBIL

C

is �nally

validated and compared to evolution strategies on several large-sized problems

(section 4). The paper ends with some perspectives for further research.

2 Binary PBIL

2.1 Principle

Std. Evolution

�

t

�! �

t+1

# #

h
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PBIL

�
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�
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t

�! h
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Figure 1. Comparing the generation steps in standard evolution and PBIL

Let � denote a population of individuals in 
 = f0; 1g

N

. An element h of

H = [0; 1]

N

can be associated to � , by de�ning h

i

as the fraction of individuals

in � having their i-th bit set to 1. Conversely, an element h in H de�nes a

distribution over 
: one draws an element X = (X

1

; : : : ; X

N

) in 
 by setting

X

i

to 1 with probability h

i

.

PBIL relies on the following premises [2]: a) if evolution succeeds, the popu-

lation � converges toward a single

1

optimum of F ; b) the more converged the

population � , the better it is represented by h. Assuming these, PBIL discards

all information in the population not contained in h: The population is simply

considered as a manifestation of h. The attention is thus shifted from evolving

� by means of mutation and recombination, to evolving h (Fig. 1). To this aim,

PBIL uses the information contained in the current population �

t

: h is evolved,

1

This claim obviously makes no room for diversity preserving mechanisms [8].
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or rather updated, by relaxation from the best individual X

max

in �

t

:

h

t+1

= (1� �) : h

t

+ � : X

max

; � in ]0; 1[

Distribution h

t

can be viewed as the memory of the best individuals generated

by evolution. Relaxation factor � corresponds to the fading of the memory: the

higher �, the faster h

t

moves toward the current local optimum.

In contrast to standard evolution, PBIL explicitly explores the space H of

distributions on 
. And, as noted already, this higher level representation allows

for a simpler information processing: besides the population size, PBIL involves

a single key parameter, �, to be compared to the various parameters controlling

mutation and recombination. Further, the exploration is deterministic, in the

sense that h

t

is deterministically updated from the current population

2

.

2.2 Discussion

Let us reformulate PBIL as a learning-by-query algorithm, by de�ning a partial

generality order on the set of distributions H. The generality of a distribution

h is clearly related to the diversity of the population generated from h, and

the diversity of the population with regard to bit i is inversely proportional to

jh

i

� :5j. Accordingly, a distribution h is more speci�c than h

0

, if, for each bit i,

either 0 � h

i

� h

0

i

� :5, or :5 � h

0

i

� h

i

� 1.

PBIL initializes h to the most general distribution h

0

= (:5 : : : ; :5), and

gradually specializes it along generations. LetX

h

denote the (boolean) individual

most similar to h

t

; then, h

t

is specialized on all bits i such that X

h

i

= X

max

i

.

The complete convergence of the scheme is avoided as h

t

i

never reaches 0 or 1;

in theory, PBIL can generate any individual at any time.

In practice, PBIL can su�er from premature convergence. This happens when

h

t

gets too speci�c

3

, and no new good individual is discovered. PBIL o�ers two

heuristics to resist premature convergence [2]:

� Using the average of the two best individuals in �

t

, rather than the single

best one. This way, h

t

is generalized on all bits discriminating these individuals.

� Perturbing h

t

with a Gaussian noise: with a given probability (5%), a Gaussian

variable with a low standard deviation is added to h

t

i

. This way, the center of

the distribution is durably perturbed, which helps escaping from local minima.

A more fundamental limitation of PBIL comes from the distribution space,

which implicitly assumes the linear separability of the problem (genes are con-

sidered independent). This distribution space appears too poor to �t complex

�tness landscapes, such as the Long Path problem [7]. Previous experiments

show that distributions used in PBIL have di�culties to overlap the narrow

path [14]. Recent extensions to PBIL have considered richer distribution spaces

[4].

2

This raises the question of whether PBIL still pertains to the �eld of "Parallel prob-

lem solving from nature": is "nature" allowed to explicitly manipulate distributions?

Still, a de�nition of "nature" is clearly beyond the scope of the paper.

3

Parameter � partly controls the speci�city of h

t

, and plays the same role as selection

in GAs: the diversity decreases, everything else being equal, as � goes to 1.
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3 Continuous PBIL

This section �rst brie
y discusses a previous attempt to extend PBIL to contin-

uous search spaces, then details the proposed method and outlines PBIL

C

.

3.1 Continuous PBIL with dichotomic distributions

To the best of our knowledge, the only extension of PBIL to continuous search

spaces has been proposed in [15]. This algorithm explores the search space much

like the delta-coding approach [17]. The domain of each gene is divided into two

intervals ("low" and "high" values); the current distribution h (h in [0; 1]

N

) is

used to determine which interval an individual belongs to:

X

i

2 [a; b] Probability(X

i

>

a+ b

2

) = h

i

X

i

is then drawn with uniform probability in the selected interval.

� At each generation, h is updated like in the boolean case, by memorizing

whether the best individual takes low or high values for each gene:

h

t+1

i

= (1� �) : h

t

i

+ � : (X

max

i

>

a+ b

2

)

�When h

i

gets speci�c enough (h

i

< :1 or h

i

> :9), the population gets concen-

trated in a single interval (resp. [a;

a+b

2

] or [

a+b

2

; b]). The search is then focused:

the domain of the gene is set to the interval considered and h

i

is reinitialized to :5.

In this scheme, evolution gradually focuses on the region most often contain-

ing the best individuals. One limitation is that a region which has been discarded

at some point is hardly explored ever after, and this violates the ergodicity re-

quirement. Furthermore, the search might be insu�ciently focused, given the

poor (uniform) distribution used within the selected interval.

3.2 Continuous PBIL with Gaussian distributions

Our approach rather explores Gaussian distributions N (X; �) on the search

space 
, given as products of Gaussian distributions N (X

i

; �

i

) on each gene

domain. With no loss of generality, 
 is set to [0; 1]

N

in the following.

Like PBIL, PBIL

C

starts with a rather general distribution; then it alterna-

tively uses this distribution to draw the population, and uses the population to

update the distribution. The center of the distribution X

t

is initialized to the

center of the search space (:5; : : : ; :5). At each generation, X

t

is updated from

a linear combination of the two best and the worst individuals in the current

population, inspired from PBIL and Di�erential Evolution [16]:

X

t+1

= (1� �) : X

t

+ � : (X

best; 1

+X

best; 2

�X

worst

)

The diversity of the population, controlling the convergence of evolution, depends

on the variance � = (�

1

; : : : �

N

) of the distribution. Several heuristics have been

4



investigated to adjust parameters �

i

.

A� The simplest possibility is to use a constant value. The trade-o� between

exploration and exploitation is thus settled once for all: the search cannot become

too speci�c and it cannot be speeded up either.

B� A second possibility is to make evolution itself adjust �. PBIL

C

here proceeds

exactly as a self-adaptive (1; �)-evolution strategy (ES)

4

where � stands for the

size of the population, except that the parent is replaced by the center X

t

of the

distribution.

C� A third possibility is to adjust � depending on the diversity of the current

best o�spring; �

t

is then set to the variance of the K best current o�spring:

�

i

=

s

P

K

j=1

(X

j

i

�

�

X

i

)

2

K

where

�

X denotes the average of the best K o�spring X

1

; : : : X

K

.

D� Last, � can be learned in the same way as X itself, by memorizing the

diversity of the K best o�spring:

�

t+1

i

= (1� �)�

t

i

+ �

s

P

K

j=1

(X

j

i

�

�

X

i

)

2

K

3.3 Discussion

At �rst sight, PBIL

C

is quite similar to a (1; �)-ES, the � o�spring being gener-

ated from the single parent (X

t

; �

t

). The di�erence is twofold.

� In (1; �)-ES, the parent is simply replaced by the best o�spring, whereas PBIL

C

updates X

t

by relaxation. Let any o�spring X

k

be written X

t

+ Z

k

, with Z

k

being a random vector drawn according to N (0; �

t

). Then it comes:

X

t+1

= (1��)X

t

+�(X

best;1

+X

best;2

�X

worst

) = X

t

+�(Z

best;1

+Z

best;2

�Z

worst

)

The evolution of X

t

can be viewed as a particular case of weighted recombi-

nation as studied by Rudolph [11]; a theoretical analysis shows that weighted

recombination with optimal weights should be preferred to the simple replace-

ment of the parents. Interestingly, the heuristic recombination used in PBIL

C

is

intermediate between two particular cases with good theoretical properties (for

F(X) =

P

X

2

i

): the half sum of the two best o�spring, and the di�erence of the

best and the worst o�spring.

PBIL

C

uses �xed, hence non-optimal, weights; but note that � intervenes as an

additional scaling factor, controlling the variance of X

t

.

� Independently, the variance of X

t

is also controlled from �

t

. PBIL

C

uses global

4

In self-adaptive ES, besides the X

i

an individual X carries the variance �

i

of the

mutation to be applied on the X

i

[13, 1]: Mutation �rst evolves the �

i

, then uses the

new �

i

to perturb the X

i

. Evolution thus hopefully adjusts the �

i

"for free", at the

individual level.
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mechanisms (options A, B and D) to adjust �

t

, by opposition to the local ad-

justment of � achieved by self-adaptive mutation. Actually, the adjustment of �

(option D) much resembles the 1/5th rule used to globally adjust � in early evo-

lution strategies [10]. The di�erence is that the 1/5th rule criterion compares the

o�spring to the parents, and considers whether a su�cient fraction of o�spring

is more �t than the parents. In opposition, PBIL

C

only examines the diversity

of the best �t o�spring: it does not need to restrict the exploration, even if the

o�spring are less �t than the parent, because the center of the explored region

moves more slowly than in standard ES.

To sum up, PBIL

C

controls the exploration-exploitation tradeo� in a way

rather di�erent from that of (1; �)-ES. First of all, the single parent does not

jump directly to a desirable location (the best o�spring, or some weighted com-

bination of the remarkable o�spring), but rather makes a very small step toward

this desirable location (e.g. � is set to 10

�2

in the experiments). Variance � is

adjusted in a similarly cautious way.

It appears that ES takes instant decisions, on the basis of the instant informa-

tion. On the opposite, PBIL

C

maintains a long-term memory, slowly updated

from the instant information, and bases its cautious decisions on this long-term

memory.

4 Validation

This section describes the goal of the experiments and the problems considered.

We then report and discuss the results obtained.

4.1 Experiment Goals and Problems

Our goal is to study the respective advantages of evolving extensional vs in-

tensional information about the �tness landscape. Practically, PBIL

C

, evolving

an intensional information represented as a distribution, is compared to self-

adaptive evolution strategy, evolving an extensional information represented as

usual as a population.

Notation De�nition Domain 


F

1

100

10

�5

+

P

i

jy

i

j

with

y

1

= x

1

y

i

= x

i

+ y

i�1

,i � 2

[�3; 3]

100

F

2

100

10

�5

+

P

i

jy

i

j

with

y

1

= x

1

y

i

= x

i

+ siny

i�1

, i � 2

[�3; 3]

100

F

3

100

10

�5

+

P

i

jy

i

j

with y

i

= :024 � (i+ 1)� x

i

[�3; 3]

100

F

6

P

i

(x

2

i

�Acos(2� x

i

)) + 100A [�5; 5]

100

F

7

P

i

�x

i

sin

p

x

i

[�30; 30]

100

F

8

P

i

x

2

i

�

Q

i

cos(

x

i

p

i+1

) [�100; 100]

100

Table 1: Fitness functions considered, i = 1 : : : 100

6



We deliberately consider large-sized search spaces (N = 100) for the following

reason. In low or middle-sized spaces, populations or distributions might convey

similarly accurate information about the �tness landscape. This is not true in

large-sized spaces: any reasonable number of point s can only convey a very

poor information about IR

100

. Experimenting PBIL

C

in IR

100

will show how

intensional evolution stands the curse of dimensionality.

Functions and search spaces considered are displayed in Table 1. Functions

F

1

to F

3

have been used to evaluated binary PBIL [2]. Besides the size of the

search space, F

1

and F

2

su�er from an additional di�culty, epistasis (the genes

are linked via the y

i

). Functions F

6

to F

8

have been extensively studied in the

literature, for lower-sized search spaces (N � 30).

4.2 Experimental setting

We used two reference algorithms: boolean PBIL working on a discretization

of the continuous problem (each continuous variable is coded through 9 binary

variables), using either a binary or a Gray coding; and a (10 + 50)-ES with self

adaptive mutation [1]. In the PBIL case, the size � of the population is set to

50 and the relaxation factor � is set to :01.

PBIL

C

involves the same setting as PBIL (� = 50 and � = :01). Four options

regarding the variance � of the distributions have been considered (section 3.2):

A� Constant variance.

B� Self-adapted variance: PBIL

C

here behaves like a self-adaptive (1; �)-ES,

except that the parent is replaced by X

t

.

C� Instant variance: �

i

is set to the variance of the best K o�spring in the

population. Several values of K were considered: �=2; �=3; �=5.

D� Relaxed variance: �

i

is the variance of the best K o�spring relaxed over the

past generations; the relaxation factor is again set to � = :01.

4.3 Results

Algorithm � F1 F2 F3

(10+50)-ES 2.91 �0.45 7.56 �1.52 399.07 �6.97

PBIL + binary coding 2.12 4.40 16.43

PBIL + Gray coding 2.62 5.61 366.77

A: �

i

= :02 3.56 �0.36 5.87 �0.42 15.02 �.76

A: �

i

= :05 3.95 �0.37 8.08 �0.52 28.32 �1.46

B: � self-adapt. 2.41 �0.22 4.49 �0.50 3.04 �.34

PBIL

C

C: K = �=2 2.89 �0.36 3.52 �0.41 5.25 �.59

D: K = �=2 4.65 �0.49 10.45 �0.96 685 �43

D: K = �=3 4.40 �0.41 11.18 �1.36 2623 �204

D: K = �=5 4.76 �0.78 10.99 �1 4803 �4986

Table 2: Best Fitness (averaged on 20 runs) for 200,000 evaluations

Best results indicated in bold Exact optimum of F

1

; F

2

and F

3

= 10

7

7



Table 2 displays the results obtained on functions F

1

; F

2

and F

3

. Results

obtained by boolean PBIL are taken from [2]; additional results not reported

here, show that boolean PBIL signi�cantly outperforms several variants of GAs

and Hill-Climbers on these functions. Note that all algorithms end rather far

from the actual optimum (10

7

). Still, PBIL

C

signi�cantly outperforms standard

ES on these problems | provided that the variance � of the distribution is

adequately set. Note also that PBIL

C

outperforms PBIL itself, working on a

binary or Gray discretization of these continuous problems. This might be due

either to the loss of information entailed by discretization, or because PBIL, as

already mentioned, explores a too restricted distribution space.

The worst results of PBIL

C

are obtained when � is self-adapted or set to

the diversity of the current best o�spring (options B and C); they are due to a

fast decreasing of �. And, in retrospect, a vicious circle occurs when � tightly

depends on the diversity of the o�spring: the less diverse the o�spring, the smaller

�, hence the less diverse the o�spring...

Setting � to a constant value (option A; the particular values were chosen

after 10,000 evaluations preliminary runs) leads to satisfactory results, even out-

performing those of standard ES. Further experiments will show whether this

is rather due to the superiority of weighted recombination (replacing a parent

by a combination of o�spring) over replacement | or to the "long-term mem-

ory" e�ect, as the parent slowly moves toward the weighted combination of the

o�spring instead of jumping there.

The best option appears to learn the variance � in the same way as the

center of the distribution X

t

(option D). Further, the fraction K of the o�spring

considered to update � apparently is not a critical parameter

5

.

Algorithm � F6 F7 F8

(10+50)-ES 174 �29 -192.75 �18.18 489 �115

PBIL

C

B: � self-adapt. 44.02 �6.44 -44.73 �32 71.62 �14

PBIL

C

D: K = �=2 45.19 �4.03 -158.47 �40.87 11 10

�6

�10

�6

PBIL

C

D: K = �=3 44.67 �5.21 -167 �34 10

�6

�10

�7

PBIL

C

D: K = �=5 44.43 �4.52 -169 �27 10

�7

�10

�8

Table 3: Best Fitness (averaged on 20 runs) for 200,000 evaluations

Best results indicated in bold Exact optimum of F

6

and F

8

= 0

These trends are con�rmed by preliminary experiments on F

6

; F

7

and F

8

(Table

3): PBIL

C

signi�cantly outperforms self-adaptive ES on two out of the three

problems, the best option for adjusting � being the relaxation from a small

fraction of the best o�spring.

5

This holds for all problems except F

3

, which is the problem with most diversity in

the �tness of the o�spring. This might be an indication for choosing K adaptively:

e.g. retain the o�spring whose �tness is greater than a given function of the average

�tness and deviation of the �tness in the current population.
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5 Conclusion

The main originality of PBIL is to reformulate evolution into new, higher-level,

terms: rather than specifying all operations needed to transform a population

into another population (selection, recombination, mutation, replacement), one

only speci�es how to evolve or update a distribution given the additional in-

formation supplied by the current population. At this level, many core traits

of evolution (e.g. diversity, speed of changes) are explicit and can be directly

controlled.

Overall, evolution shifts from the stochastic exploration of the search space 
,

to learning a distribution on 
 by reinforcement from the current population.

This paper extends PBIL from boolean to continuous search spaces, by learn-

ing Gaussian distributions N (X; �). The resulting PBIL

C

algorithm can be

thought of as a (1; �)-ES, with the following di�erences. ES takes instant de-

cisions, on the basis of the instant information. PBIL

C

maintains a long-term

memory, takes its decisions on the basis of this long-term memory, and slowly

updates the memory from the instant information. Practically, the parent of

a (1; �)-ES jumps toward the best o�spring; in opposition, the center of the

distribution in PBIL

C

cautiously moves toward a weighted combination of the

o�spring.

Similarly, self-adaptive ES locally adjusts the variance of mutation by means

of instant decisions; in opposition, PBIL

C

cautiously updates the variance from

the global diversity of the best o�spring.

One argument for learning distributions is that it expectedly scales up more

easily than evolving populations: a reasonable size population gives little infor-

mation on large-sized search space. Experimental results on large-sized problems

show that PBIL

C

actually outperforms standard ES on �ve out of six problems

(with one or two orders of magnitude) and also outperforms the original PBIL

working on a discretized version of the continuous problems considered.

Nevertheless, given the size of the search space, PBIL

C

ends rather far from

the optimum on four out of six problems. Further experiments will consider other

problems, and study how PBIL

C

behaves in the last stages of exploitation. An-

other perspective of research is to evolve several distributions rather than a

single one. This would relax the main limitation of the PBIL scheme, that is,

the fact that it can only discover a single optimum. Indeed, learning simultane-

ously several distributions is very comparable to evolving several species. The

advantage is that comparing an individual to a few distributions might be less

expensive and again more transparent, than clustering the population, adjusting

the selection or the �tness function to ensure the co-evolution of species.
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