
The Traveling Salesrep Problem,

Edge Assembly Crossover, and 2-opt

J. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra,
D. Whitley, A. Howe

Computer Science Department, Colorado State University, Fort Collins, CO 80523

fwatsonj, rossc, eisele, bins, denton, guerra, whitley, howeg@cs.colostate.edu

Abstract. Optimal results for the Traveling Salesrep Problem have

been reported on problems with up to 3038 cities using a GA with Edge

Assembly Crossover (EAX). This paper �rst attempts to independently

replicate these results on Padberg's 532 city problem. We then evaluate

the performance contribution of the various algorithm components. The

incorporation of 2-opt into the EAX GA is also explored. Finally, com-

parative results are presented for a population-based form of 2-opt that

uses partial restarts.

1 Introduction

Nagata and Kobayashi [7] report optimal solutions on Traveling Salesrep Prob-
lems (TSPs) ranging in size from 101 to 3038 cities. They also report modest
computation times on a 200MHz Pentium, ranging from approximately 13 min-
utes for the well known Padberg 532 city problem [8], to 2.5 hours for a 3038 city
problem. These results are an important break-through for two reasons. First,
they represent a dramatic improvement over previous evolutionary-based opti-
mization methods for the Traveling Salesrep Problem; other researchers have
reported good results for the Padberg 532 city problem, but rarely optimal solu-
tions on problems of this size and larger. Second, these results are close enough
to the state-of-the-art that evolutionary-based optimization methods could have
a very real potential to provide the basis for new state-of-the-art approaches to
the Traveling Salesrep Problem.

Although not explored in this paper, Freisleben and Merz [3] also report
impressive performance on problems of similar complexity. Their algorithm, Ge-
netic Local Search (GLS), exploits the `big-valley' structure of TSP �tness land-
scapes documented in [1]. To exploit this structure, crossover in GLS is imple-
mented using a computationally intensive search algorithm. Furthermore, GLS
maintains an extremely small (� 40) population of individuals. In constrast, the
EAX GA uses relatively weak search operators and a large population to obtain
similar performance results.

This paper explores three questions. Two of these questions relate directly
to the work of Nagata and Kobayashi. First, can the results be independently
replicated from their description of the algorithm? We can answer this question
in the a�rmative; our implementation replicates the original results to within,



on average, 0:054% of the optimal tour cost; we document our implementation of
their algorithm in Section 2 to enable resolution of the remaining discrepancies.
Given this success, we then ask the question `What components of the Nagata
and Kobayashi algorithm are critical to performance?' We cannot de�nitively
answer this question, but we provide some partial answers by testing the e�ects
of removing or replacing various components of their algorithm and measuring
the resulting performance impact.

The third question relates to the use of 2-opt. For the past ten years, re-
searchers have reported near-optimal results on Padberg's 532 city problem us-
ing evolutionary algorithms [2] [5] [6]. Yet all of these approaches have used 2-opt
as a local search algorithm within the genetic algorithm. Given this observation,
we ask: `To what degree does the success of these algorithms depend on the use
of 2-opt and to what degree do the \evolution-based" features in the various
algorithms contribute to producing good results?'

A distinguishing characteristic of the Nagata and Kobayashi algorithm is that
it does not use 2-opt. Their recombination operator, Edge Assembly Crossover

(EAX), uses the edges from the two parents to construct disjoint subtours. Then,
using a construction analogous to a minimal spanning tree, the subtours are
connected in a greedy fashion to produce the child tour. Thus, the EAX operator
is not \blind;" local information is exploited in determining which edges to use
to connect subtours. Thus, there would seem to be no reason not to also use
2-opt in conjunction with the algorithm.

Another important trait of the EAX operator is that it will introduce new
edges into the child when connecting subtours. Edges not in the parents, or
perhaps not even in the population, are introduced into o�spring. We are now
convinced that a good operator for the TSP must be able to introduce new edges
into the o�spring. This is contrary to the tenets put forward by Radcli�e [9] [10]
and contrary to the goals behind the construction of operators such as Edge-3
[12] [5] which attempt to inherit as many edges from parents as possible.

The argument as to why good new edges must be introduced during recom-
bination (or by mutation, or local search) is simple. Mathias and Whitley [5]
point out that the complete graph of all possible edges for a symmetric TSP
has (N2 � N)=2 edges, where N is the number of cities. Each tour samples
N of these edges, so a population must be of size at least (N-1)/2 in order to
sample each edge exactly once. Assume population size is proportional to the
number of the cities (as in the Nagata and Kobayashi algorithm and the algo-
rithms presented here). Then each edge occurs twice in expectation in an initial
random population. Selection can therefore quickly eliminate edges from the
population. Good edges can also be lost if they occur in poor tours. Thus it is
important for operators to intelligently introduce new good edges. Unlike other
crossover operators, EAX makes the introduction of new edges an integral part
of recombination{which may contribute to its e�ectiveness.

The next section describes our implementation of the Nagata and Kobayashi
algorithm. Section three describes our comparative experiments. Our study fo-
cuses exclusively on Padberg's symmetric 532 city problem for several reasons.



First, it has been widely studied and is notoriously di�cult to solve to optimal-
ity. Seocnd, Nagata and Kobayashi also found this problem to be harder than
any of the larger problems they investigated. Finally, Section four discusses the
role of 2-opt in hybrid evolutionary algorithms.

2 Nagata and Kobayashi's Algorithm

Once two parents have been selected for crossover, the EAX operator merges
these two individuals into a single graph denoted by R. The two parents are
denoted by A and B, respectively. Each edge in R is annotated with the parent
to which it belongs. R may contain two instances of the same edge, if both
parents contain the edge. R is next divided into a set of disjoint subtours.

2.1 Edge Assembly Crossover (EAX): AB-Cycles

Let vi represent a vertex from R and let (vi; vj); i 6= j; represent an edge. Suppose
(vi; vj) represents an edge randomly chosen from parent A. (Note that A and
B are just randomly assigned labels; the choice of A is arbitrary.) Choose one
vertex (either vi or vj) as the origin. If vi is the origin, then choose an edge which
leads from the second vertex, vj , to any other vertex in R. However, this edge
must come from parent B. If more than one such edge exists, a random selection
is made. The algorithm continues to traverse R, at each step alternately picking
edges from parent A and parent B.

After each edge is traversed, the algorithm checks to see if adding this new
edge to the set of previously selected edges will result in what Nagata and
Kobayashi term an AB-cycle. An AB-cycle is a even-length sub-cycle of R with
edges that alternately come from A and B. An AB-cycle may repeat cities,
but not edges. While there can be two edges between a pair of cities, they are
uniquely identi�ed as an A or B edge, and thus distinct.

Once an AB-cycle has been found it is stored and the edges making up that
cycle are removed from R. The algorithm repeats this procedure until R contains
no more edges, having been completely decomposed into a set of AB-cycles.

The �rst several edges used in the construction of the AB-cycle may not
appear in the �nal AB-cycle. This occurs when the �nal edge connects back
onto the subgraph at some city x other than the origin city, and the induced
subcycle is an AB-cycle. In this case the `extraneous' edges are left in the R

graph, to eventually be used in forming another cycle. In this situation Nagata
and Kobayashi choose an edge incident with x from R to begin construction of
the next AB-cycle. As we can �nd no reason to prefer this method over random
selection, our algorithm always selects the starting location of a new AB-cycle
at random from R.

When R is undirected, as is the case for the symmetric TSP, the set of AB-
cycles is not uniquely determined by the algorithm. Furthermore, a number of
\ine�ective" AB-cycles may be formed by the algorithm. Such cycles consist
solely of two edges between the same pair of cities. Any ine�ective AB-cycles are
removed from consideration by the remaining phases of the algorithm.



2.2 Edge Assembly Crossover (EAX): E-set to O�spring

After construction of the set of AB-cycles, a subset of AB-cycles is chosen to be
used in the generation of an intermediate child. This subset is called an E-set.
Two methods for selecting AB-cycles for inclusion into the E-set are de�ned
by Nagata and Kobayashi. The �rst, denoted by EAX(rand), simply selects
each AB-cycle for inclusion into the E-set with a probability of 0.5. The sec-
ond method, denoted by EAX(heuristic), makes use of a heuristic metric to
determine the inclusion of an AB-cycle into the E-set. The metric balances the
need for maintaining population diversity against the need to reduce overall tour
cost. We implemented the heuristic metric as described in [7]. As described in
the next subsection, the EAX GA uses these two methods in di�erent contexts.

Construction of an intermediate child, C, begins with a copy of parent A.
Then each edge of each subtour in the E-set is examined, with the following
actions taken on C. If the edge from the E-set is a member of parent A, the edge
is deleted from C. If the edge is a member of parent B, the edge is added to C.
The result is a set of disjoint subtours which comprise the intermediate child.

The last stage of the EAX operator involves transformation of the interme-
diate child into a single legal tour. The subtours are merged into a single tour
using a greedy construction procedure. The smallest tour, in terms of number of
edges, is selected from the set of subtours. A pair of edges, one from the small-
est subtour and one from another distinct subtour, is then selected such that
merging of the two subtours at those edges minimizes the change in overall tour
cost. Let (vq ; vq+1) be an edge in one subtour, and (v0

r; v
0

r+1) be an edge in the
other. The location of the verticies is arbitrary and addition on the indices for
edges in v and v0 is mod(jvj) and mod(jv0j): A greedy algorithm for connecting
subtours uses the following metrics:

Cut(q; r) = ($(vq ; vq+1) + $(v0

r; v
0

r+1))

Link(q; r) =MIN (($(vq ; v
0

r) + $(vq+1; v
0

r+1)); ($(vq ; v
0

r+1) + $(vq+1; v
0

r)))

where $(vi; vj) is the cost of edge (vi; vj). Then we seek:

MIN [Link(q; r)� Cut(q; r)] 8r; q

This process of merging subtours is repeated until a single tour remains.
Nagata and Kobayashi use a heuristic method to reduce the number of edge
pairs considered. We use an exhaustive enumerative of all edge pairs, since the
procedure did not contribute signi�cantly to the overall runtime.

2.3 The EAX Genetic Algorithm

Nagata and Kobayashi introduce a variation on a traditional generational GA
which employs a form of elitist tournament selection. Two parents are ran-
domly selected, without replacement, from the population and recombined using



crossover. The two parents and the resulting child are then compared, and the
individual with the best �tness is passed to the next generation. This proce-
dure is repeated to produce all N members of the next generation. Nagata and
Kobayahsi claim that the EAX GA is better able to maintain population diver-
sity by giving a large number of parents the ability to pass children into the next
generaton.

Finally, the EAX GA de�nes recombination as an iterative procedure. First, a
child is produced using the EAX(heuristic) E-set construction method. Should
this fail to produce a child with better �tness than both parents, the EAX(rand)
E-set construction method is used to produce more children until either such an
improved child is found or 100 children are produced. We refer to this method
as iterative child generation, or ICG.

3 Empirical Results

In this section, we investigate the performance contribution of the various com-
ponents of the Nagata and Kobayahsi algorithm. For convenience we will refer
to their GA as the EAX GA, while EAX operator will refer to the actual recom-
bination operator.

We �rst compared the EAX GA with GENITOR 1 [11], with both using the
EAX operator. GENITOR is a steady-state GA, with a child always replacing
the worst member of the population. Linear ranked selection was employed, with
a bias of 1.25.

Next, we focused on the use of \o�spring improving" operators such as ICG
and 2-opt. ICG, in conjunction with the ability of the EAX operator to produce
a variety of children (depending on the composition of the E-set), increases the
probability of creating a child with higher �tness than either parent. Local search
mechanisms such as 2-opt [5] also increase this probability. One of the issues we
explore is the use of 2-opt in place of ICG.

Lastly, the performance of another crossover operator, Edge-3 [5], is explored
in the context of both the 2-opt and ICG search operators.

As noted, the test problem is Padberg's 532 city problem. TSPLIB 2 reports
27686 as the optimal tour cost for this instance. A population size of 500 was used
in both the EAX and GENITOR GA's; the sizing is identical to that reported in
[7]. A GA population was considered converged when the best individual �tness
equaled the average individual �tness; all runs were allowed to fully converge.
The code was implemented in C on a SUN Ultrasparc-30. We used the UNIX
rand48 family of random number generators.

Each experimental trial consisted of 30 runs of a particular combination of
GA, crossover operator, and search operator. The �nal tour cost and number
of evaluations required for convergence was recorded for each run. For purposes
of comparison with GENITOR results, the number of evaluations required by

1 GENITOR can be found at http://www.cs.colostate.edu/ genitor
2 TSPLIB: www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html



ALG X-over Search Mean Percent Best Percent Worst Percent Std.

Operator Op Abv. Opt. Abv. Opt. Abv. Opt. Dev.

EAX EAX None 27840 0.56 27713 0.09 28010 1.17 86.91

EAX EAX ICG 27709 0.08 27693 0.03 27739 0.19 9.32

EAX EAX 2-opt 27742 0.20 27708 0.08 27838 0.55 29.12

GEN EAX None 28379 2.50 28065 1.37 28720 3.73 181.75

GEN EAX ICG 27830 0.52 27739 0.19 28004 1.15 77.40

GEN EAX 2-opt 27861 0.63 27759 0.26 28002 1.14 70.80

GEN EDGE-3 NONE 74049 167.46 69890 152.44 78966 185.22 2615.70

GEN EDGE-3 2-OPT 27878 0.70 27781 0.34 27999 1.13 54.00

Table 1. Final tour costs.

ALG X-over Search Mean Best Worst Std.

Operator Op Dev.

EAX EAX None 72367 60500 85500 5755

EAX EAX ICG 51433 45500 56000 2605.5

EAX EAX 2-opt 36317 31000 43500 2978.3

GEN EAX None 19883 15737 22664 1812.3

GEN EAX ICG 14680 12359 16734 1145.7

GEN EAX 2-opt 10525 7981 12251 1088.6

GEN Edge-3 None 288187.10 242744 333388 20151.41

GEN Edge-3 2-opt 145369.83 109216 243464 23955.66

Table 2. Number of evaluations required for convergence.

the EAX GA is taken as the product of the population size and number of
generations required for convergence.

Tables 1 and 2 summarize the results from all experimental trials. Table
1 reports tour costs; Table 2 reports the number of evaluations required for
convergence. The number of evaluations represents the number of times a single
pair of parents was used to produce a child. This number does not include any
additional tour evaluations required by the search operators. The �rst three
columns of each table represent the algorithm components used in a given trial.
The remaining columns report summary statistics for the various trials.

3.1 In
uence of Genetic Algorithm on Performance

A substitution experiment was used to determine the relative contribution of
the EAX GA and GENITOR to search performance. We performed two one-
tailed T-tests (GA as the independent variable, �nal tour cost and number of
evaluations as the dependent variables) on the data from all experimental trials
using the EAX crossover operator. The T-test with tour cost as the dependent
variable indicated a signi�cant di�erence (t(178) = 3:42; p < 0:01), with the EAX
GA outperforming GENITOR. Similarly, the T-test with number of evaluations



as the dependent variable indicated a signi�cant di�erence (t(178) = 12:12; p <
0:01), with GENITOR converging faster on average than the EAX GA.

The reduction in tour cost obtained by the EAX GA comes at the expense
of roughly tripling the number of tour evaluations in comparison to GENITOR.
However, the reduction is signi�cant, and enables the EAX GA to �nd solutions
within a fraction of the optimal tour cost. Furthermore, as shown in Table 1,
the EAX GA also o�ers the bene�t of lower variance in �nal tour cost than that
provided by GENITOR.

3.2 In
uence of Iterative Child Generation on Performance

As described in Section 2, ICG enables the EAX operator to generate multiple
potential o�spring from the same set of parents, increasing the probability of
�nding an improved child. In constrast, previous work on the TSP [4] [2] [5] [6]
has focused on using variants of 2-opt to increase the �tness of a child produced
by some crossover operator. In either case, the goal is equivalent: to �nd o�spring
similar to or superior to the parents in �tness. Thus, we analyze which method
has the higher payo�. Finally, we also evaluated the performance of the EAX
operator without ICG or 2-opt.

For completeness, we evaluated the performance of the EAX operator both
with and without ICG. We performed two one-tailed T-tests (selection of ICG
as the independent variable, �nal tour cost and number of evaluations as the
dependent variables) on the data from experimental trials using both GA's.

Both T-tests indicated signi�cant di�erences in both tour cost (t(118) =
3:42; p < 0:01) and number of evaluations (t(118) = 2:51; p < 0:01), with ICG
substantially decreasing �nal tour costs. ICG has the additional apparent bene�t
of decreasing the number of evaluations required for convergence, a side-e�ect of
improving the probability of �nding a child better than both parents. However,
this bene�t is actually detrimental to run-time; the number of evaluations does
not count the considerable number of tour evaluations consumed in the search
for a better child.

To determine whether various o�spring improvement operators (none, 2-opt,
or ICG) led to di�erent performance, we ran a pair of two-way ANOVA's (GA
and search operator as the independent variables, �nal tour cost and number of
evaluations as the dependent variables) on data from experimental trials using
the EAX operator and both GA's.

The ANOVA's with tour cost as the dependent variable indicated signi�cant
main e�ects in both the GA (F (1) = 346:5; p < 0:01) and the search operator
(F (2) = 241:3; p < 0:01). Similarly, a signi�cant interaction e�ect between the
GA and search operator was detected (F (2) = 100:4; p < 0:01). The ANOVA's
with number of evaluations as the dependent variable provided nearly identical
results, with main and interaction e�ects detected at p < 0:01.

A �nal two-tailed T-test used tour cost as the dependent variable and the
choice of either the ICG or 2-opt as the independent variable indicated no sig-
ni�cant di�erence (t(118) = 0:93; p < 0:0325) in mean tour cost. Given roughly
equal mean tour costs, 2-opt o�ers signi�cant advantages over the ICG search



operator. First, each additional tour evaluation performed by 2-opt can be done
in constant time, in contrast to the full linear-time evaluation required by ICG.
Second, inspection of Table 1 indicates 2-opt converges nearly twice as fast as
ICG (veri�ed by a one-tailed t-test, p < 0:01).

3.3 In
uence of ICG and 2-opt on Edge-3 recombination

The previous section focused on the impact of various search operators on per-
formance. Both the 2-opt and ICG substantially enhanced the performance of
the `plain' EAX operator. However, the complexity of the EAX operator is high
in comparison to other operators such as Edge-3 [5] and MPX [6]. In this sec-
tion, we examine the performance impact of the 2-opt and ICG on the Edge-3
crossover operator. In addition, the performance is compared with that obtained
using the EAX operator.

We performed a simple experiment to measure the performance of the hy-
bridization of the Edge-3 crossover and ICG search operators. Under Edge-3,
children inherit a high (95-99%) fraction of tour edges directly from their parents.
The remaining edges are chosen at random such that a legal tour is constructed.
The hybridization of Edge-3 and ICG was implemented simply by iterating the
Edge-3 operator on identical parents until either 100 iterations were performed
or a child better than both parents was found.

The Edge-3/ICG hybridization was used in conjunction with the GENITOR
GA. Thirty runs were performed, resulting in an average tour cost of 46818.49,
which is substantially worse than any of the results obtained using the EAX
operator. In spite of the poor relative performance, the ICG search operator
substantially improved the performance obtained by the Edge-3 operator when
used in isolation; as shown in Table 1, the mean tour cost obtained using Edge-3
in isolation was 74049.67.

Finally, we compared the performance of the GENITOR/Edge-3/2-opt hy-
brid with that of the EAX/EAX/2-opt hybrid using two one-tailed T-tests. Both
T-tests indicated signi�cant di�erences in both tour cost (t(29) = 3:02; p <

0:01) and number of evaluations (t(29) = 33:16; p < 0:01). In both cases, the
EAX/EAX/2-opt hybrid outperformed the GENITOR/Edge-3/2-opt hybrid.

It should be noted that the di�erence in mean tour cost between the two
variants is only 136; the statistical signi�cance stems primarily from the low
variance in tour cost obtained with 2-opt. In spite of a signi�cant increase in
evaluations, the 2-opt operator was able to reduce di�erences in tour costs be-
tween the EAX and Edge-3 operators to nearly identical levels. This `perfor-
mance leveling' prompted us to investigate the performance of 2-opt when used
in relative isolation.

4 The Impact of 2-opt

As shown in the previous section, 2-opt is extremely e�ective at improving the
performance of the EAX and GENITOR GA's for the TSP. This lead us to ask



ALG X-over Search Mean Percent Best Percent Worst Percent Std.

Operator Op Abv. Opt. Abv. Opt. Abv. Opt. Dev.

EAX EAX ICG 27709 0.08 27693 0.03 27739 0.19 9.32

EAX EAX 2-opt 27742 0.20 27708 0.08 27838 0.55 29.12

GEN EDGE-3 2-opt 27878 0.70 27781 0.34 27999 1.13 54.00

2-opt N.A. N.A. 27985 1.08 27841 0.55 28211 1.89 90.11

Table 3. A comparison of the best algorithms with 2-opt using partial

restarts.

the question `What if 2-opt were the only operator?' Of course, 2-opt must be
applied to distinct starting tours to produce di�erent results. So to create di�er-
ent starting points, we used an idea which has connections to both evolutionary
algorithms and local search.

A small population of solutions is used (30 in this case). 2-opt is applied to
each solution in the population until all of the solutions are locally optimal. The
best solution in the population is then used to re-seed the entire population.

Starting at a random city, the best solution is broken into segments composed
of two adjacent edges. These fragments are then randomly reconnected. The
entire population is regenerated in this way and then 2-opt is applied to all of
the new solutions. The idea is that this both provides a type of partial restart to
local search, and also preserves good \building blocks" from the previous best
solution.

There are many variations on this idea that could be explored: the best two
or three solutions could be used to reseed the population and the best solutions
could be broken into fragments that preserve segments composed of three or four
edges. However, we wished to keep this search strategy simple.

Table 3 presents results for the 2-opt with partial restarts algorithm. The
other results in the table are those previously reported in this paper for the
EAX GA using ICG and 2-opt, as well as the GENITOR/Edge-3/2-opt hybrid
algorithm. A pair of one-tailed T-tests indicate that there is a signi�cant di�er-
ence in �nal tour costs between the 2-opt with partial restarts algorithm and
both the original Nagata and Kobayahsi algorithm ((t(58) = 3:57; p < 0:01)) and
the EAX GA/EAX operator/2-opt hybrid algorithm ((t(58) = 2:93; p < 0:01)).
In spite of the poor relative performance, it is surprising how well a simple
algorithm based on 2-opt works in this domain.

5 Conclusions

We replicated the results of Nagata and Kobayahsi with only a very slight error
margin. We document our interpretation of their algorithm description in an
e�ort to resolve the remaining discrepancies. More importantly, we provide re-
sults that raise important issues concerning what components of their algorithm
are critical to performance. Our results suggest that 2-opt might be used as an



e�ective replacement for ICG. Since the EAX operator uses local information
anyway, there is no reason not to use 2-opt to improve the resulting child.

The e�ectiveness of the selection mechanism in the EAX GA in comparison
to the selection mechanism in GENITOR was also surprising. Allowing an im-
proved o�spring to replace one of the parents instead of the worst member of the
population may have two important e�ects. It clearly results in lower selective
pressure; but it is also likely that when children replace parents the children still
retain some of the \genetic material" of the parents. Thus, this selection scheme
may result in the population maintaining diversity for a longer period of time.
This point of view is supported by the data which shows that the EAX GA
converges much slower than GENITOR.

6 Acknowledgements

This e�ort was sponsored by the Air Force O�ce of Scienti�c Research, Air Force
Materiel Command, USAF, under grant number F49620-97-1-0271. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

References

1. K. Boese. Cost versus distance in the traveling salesman problem. Technical re-

port, Computer Science Department, Univeristy of California, Los Angeles, 1995.

2. Larry Eshelman. The CHC Adaptive Search Algorithm. How to Have Safe Search

When Engaging in Nontraditional Genetic Recombination. In G. Rawlins, editor,

FOGA -1, pages 265{283. Morgan Kaufmann, 1991.

3. Bernd Freisleben and Peter Merz. New genetic local search operators for the

traveling salesman problem. In H.M. Voigt, W. Ebeling, Ingo Rechenberg, and

H.P. Schwefel, editors, Parallel Problem Solving from Nature, 4, pages 890{899.

Springer/Verlag, 1996.

4. Martina Gorges-Schleuter. ASPARAGOS An Asynchronous Parallel Genetic Op-

timization Strategy. In J.D. Scha�er, editor, Proc. of the 3rd Int'l. Conf. on GAs,

pages 422{433. Morgan Kaufmann, 1989.

5. Keith E. Mathias and L. Darrell Whitley. Genetic Operators, the Fitness Land-

scape and the Traveling Salesman Problem. In R. M�anner and B. Manderick,

editors, Parallel Problem Solving from Nature, 2, pages 219{228. Elsevier Science

Publishers, 1992.

6. H. M�uhlenbein. Evolution in Time and Space: The Parallel Genetic Algorithm. In

G. Rawlins, editor, FOGA -1, pages 316{337. Morgan Kaufmann, 1991.

7. Yuichi Nagata and Shigenobu Kobayashi. Edge assembly crossover: A high-power

genetic algorithm for the traveling salesman problem. In T. B�ack, editor, Proc. of

the 7th Int'l. Conf. on GAs, pages 450{457. Morgan Kaufmann, 1997.

8. W. Padberg and G. Rinaldi. Optimization of a 532 City Symmetric TSP. Opti-

mization Research Letters, 6(1):1{7, 1987.

9. Nicholas J. Radcli�e. The algebra of genetic algorithms. Annals of Maths and

Arti�cial Intelligence, 10:339{384, 1994.



10. N.J. Radcli�e and P.D. Surry. Fitness variance of formae and performance pre-

dictions. In D. Whitley and M. Vose, editors, FOGA - 3, pages 51{72. Morgan

Kaufmann, 1995.

11. Darrell Whitley and Joan Kauth. GENITOR: A Di�erent Genetic Algorithm.

In Proceedings of the 1988 Rocky Mountain Conference on Arti�cial Intelligence,

1988.

12. Darrell Whitley, Timothy Starkweather, and D'ann Fuquay. Scheduling Problems

and Traveling Salesmen: The Genetic Edge Recombination Operator. In J. D.

Scha�er, editor, Proc. of the 3rd Int'l. Conf. on GAs. Morgan Kaufmann, 1989.

This article was processed using the LATEX macro package with LLNCS style


