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Abstract. In this paper we introduce the concept of knowledge gran-
ularity and study its in
uence on an agent's action selection process.
Action selection is critical to an agent performing a task in a dynamic,
unpredictable environment. Knowledge representation is central to the
agent's action selection process. It is important to study what kind of
knowledge the agent should represent and the preferred methods of rep-
resentation. One interesting research issue in this area is the knowledge
granularity problem: to what detail should an agent represent a certain
kind of knowledge. In other words, how much memory should an agent
allocate to represent a certain kind of knowledge. Here, we �rst study
knowledge granularity and its in
uence on action selection in the con-
text of an object search agent - a robot that searches for a target within
an environment. Then we propose a guideline for selecting reasonable
knowledge granularity for an agent in general.

1 Introduction

An agent is a computational system that inhabits dynamic, unpredictable envi-
ronments. It has sensors to gather data about the environment and can interpret
this data to re
ect events in the environment. Furthermore, it can execute motor
commands that produce e�ects in the environment. One important property of
the agent is its awareness | it has knowledge about itself and the world. This
knowledge can be used to guide its action selection process when exhibiting goal-
directed behaviors. Here we address the following question: \How much detail
should the agent include in its knowledge representation so that it can e�ciently
achieve its goal?"

There are two extremes regarding granularity of knowledge representation.
At one end of the spectrum is the purely reactive scheme [3] which requires
little or even no knowledge representation. At the other end of the spectrum
is the purely planning scheme which requires the agent to maintain as much
detailed knowledge as possible. Experience suggests that neither purely reactive
nor purely planning systems are capable of producing the range of behaviors
required by intelligent agents in a dynamic, unpredictable environment. For ex-
ample, Tyrrell [10] has noted the di�culty of applying , without modi�cation,
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the model of Brooks [3] to the problem of modeling action selection in animates
whose behavior is supposed to mirror that of real animals. On the other hand,
although it is theoretically possible to compute the optimal action selection pol-
icy for an agent that has a �xed set of goals and that lives in a deterministic
or probabilistic environment [10], it is impossible to do so in most practical
situations for the following reasons: (A) resource limitations (time limit, compu-
tation complexity [13], memory limit); (B) incomplete and incorrect information
(knowledge di�erence [14], sensor noise, etc); (C) dynamic, non-deterministic en-
vironment. Thus, many researchers argue to use hybrid architectures [11] [5] [8]
[7], a combination of classical and alternative approaches, to build agent systems.
One example is the layered architecture [5][8]. In such an architecture, an agent's
control subsystems are arranged into a hierarchy, with higher layers dealing with
information at increasing levels of abstraction. Thus, the very lowest layer might
map raw sensor data directly onto e�ector outputs, while the uppermost layer
deals with long-term goals.

This paper o�ers an alternative point of view of the spectrum of knowledge
abstraction based on the granularity of knowledge representation. The goal is
to �nd the proper balance in representing an agent's knowledge such that the
representation is detailed enough for the agent to select reasonable actions, and
at the same time it is coarse enough that it does not exhaust the agent's resources
when selecting those reasonable actions. Thus, the following important issues
arise. The �rst is how to de�ne the granularity of the agent's representation of
a certain kind of knowledge. The second is how this granularity of knowledge
representation in
uences the agent's action selection process. The third is how
to �nd the granularity of representation such that the action selection process
achieves a satisfactory performance.

In this paper, we try to answer the above questions in the context of an au-
tonomous object search agent. Object search is the task of searching for a given
object in a given environment by a robotic agent equipped with a pan, tilt, and
zoom camera. It is clear that exhaustive, brute-force blind search will su�ce
for its solution; however, the goal of the agent is to design e�cient strategies
for search, because exhaustive search is computationally and mechanically pro-
hibitive for non-trivial situations. The action selection task for the agent refers
to the task of selecting the sensing parameters (the camera's position, viewing
direction and viewing angle size) so as to bring the target into the �eld of view
of the sensor and to make the target in the image easily detectable by the given
recognition algorithm. Sensor planning for object search is very important if a
robot is to interact intelligently and e�ectively with its environment. In [12] [13]
Ye and Tsotsos systematically study the task of object search and give an ex-
plicit algorithm to control the state parameters of the camera by considering
both the search agent's knowledge about the target distribution and the ability
of the recognition algorithm.

In this paper, We �rst brie
y describe the object search agent and its action
selection strategy. Then we study the issue of knowledge granularity with respect
to object search agent and present experimental results. Finally, we provide a



guideline for an agent in general to adapt its knowledge granularity according
to environmental and task-speci�c demands.

2 The Object Search Agent

2.1 Formulation

We need to formulate the agent's sensor planning task in a way that incorporates
the available knowledge of the agent and the detection ability of the recognition
algorithm.

The search region 
 can be in any form, such as a room with many tables,
etc. In practice, 
 is tessellated into a series of elements ci, 
 =

Sn
i=1 ci and

ci
T
cj = 0 for i 6= j. In the rest of the paper, it is assumed that the search

region is an o�ce-like environment and it is tessellated into little cubes of the
same size.

An operation f = f (xc; yc; zc; p; t; w; h; a) is an action of the search agent
within the region 
. Here (xc; yc; zc) is the position of the camera center (the
origin of the camera viewing axis); (p; t) is the direction of the camera viewing
axis (p is the amount of pan 0 � p < 2�, t is the amount of tilt 0 � t < �);
(w; h) are the width and height of the solid viewing angle of the camera; and a

is the recognition algorithm used to detect the target.

(a) (b) (c)

Fig. 1. An example hardware of a search agent and a search environment. (a) The
search agent - a mobile platform equipped with a camera; (b) The pan, tilt, and zoom
camera on the platform; (c) An example search region.

The agent's knowledge about the possible target position can be speci�ed by
a probability distribution function p, so that p(ci; �f) gives the agent's knowledge
about the probability that the center of the target is within cube ci before an
action f (where �f is the time just before f is applied). Note, we use p(co; �f ) to
represent the probability that the target is outside the search region at time �f .

The detection function on 
 is a function b, such that b(ci; f ) gives the
conditional probability of detecting the target given that the center of the target
is located within ci and the operation is f . For any operation, if the projection
of the center of the cube ci is outside the image, we assume b(ci; f ) = 0. If the
cube is occluded or it is too far from the camera or too near to the camera, we



also have b(ci; f ) = 0. It is obvious that the probability of detecting the target
by applying action f is given by

P (f ) =
nX
i=1

p(ci; �f )b(ci; f ) : (1)

The reason that the term �f is introduced in the calculation of P (f ) is that
the probability distribution needs to be updated whenever an action fails. Here
we use Bayes' formula. Let �i be the event that the center of the target is in
cube ci, and �o be the event that the center of the target is outside the search
region. Let � be the event that after applying a recognition action, the recognizer
successfully detects the target. Then P (:� j �i) = 1�b(ci; f ). It is obvious that
the updated probability distribution value after an action f failed should be
P (�i j :�), thus we have p(ci; �f+) = P (�i j :�). Where �f+ is the time after
f is applied. Since the above events �1; : : : ; �n; �o are mutually complementary
and exclusive, from Bayes formula we get the following probability updating
rule:

p(ci; �f+) �
p(ci; �f )(1� b(ci; f ))Pn;o

j=1p(cj ; �f)(1 � b(cj; f ))
: (2)

where i = 1; : : : ; n; o.
The cost t(f ) gives the total time needed to perform the operation f .
Let O
 be the set of all the possible operations that can be applied. The

e�ort allocation F = ff1; : : : ; fkg gives the ordered set of operations applied in
the search, where fi 2 O
. It is clear that the probability of detecting the target
by this allocation is:

P [F] = P (f1) + [1� P (f1)]P (f2) + � � �+ f
k�1Y
i=1

[1� P (fi)]gP (fk) : (3)

The total cost for applying this allocation is:

T [F] =
kX
i=1

t(fi) : (4)

Suppose K is the total time that can be allowed in applying selected actions
during the search process, then the task of sensor planning for object search
can be de�ned as �nding an allocation F � O
, which satis�es T [F] � K and
maximizes P [F].

Since this task is NP-Complete [13], we consider a simpler problem: decide
only which is the very next action to execute. Our objective then is to select as
the next action the one that maximizes the term

E(f ) =
P (f )

t(f )
: (5)

We have proved that in some situations, the one step look ahead strategy may
lead to an optimal answer.



2.2 Selecting Camera Parameters

The agent needs to select the camera's viewing angle size and viewing direction
for the next action f such that E(f ) is maximized. Normally, the space of avail-
able candidate actions is huge, and it is impossible to take this huge space of
candidate actions into consideration. According to the image formation process
and geometric relations, we have developed a method that can tessellate this
huge space of candidate actions into a small number of actions that must be
tried.

A brief description of the sensor planning strategy is as follows (please refer
to [12] for detail). For a given recognition algorithm, there are many possible
viewing angle sizes. However, the whole search region can be examined with
high probability of detection using only a small number of them. For a given
angle size, the probability of successfully recognizing the target is high only
when the target is within a certain range of distance. This range is called the
e�ective range for the given angle size. Our purpose here is to select those angles
whose e�ective ranges will cover the entire depth D of the search region, and at
the same time there will be no overlap of their e�ective ranges. Suppose that
the biggest viewing angle for the camera is w0 � h0, and its e�ective range is
[N0; F0]. Then the necessary angle sizes hwi; hii (where 1 � i � n0) and the
corresponding e�ective ranges [Ni; Fi] (where 1 � i � n0) are:

wi = 2arctan[(N0

F0
)itan(w0

2 )];

hi = 2arctan[(N0

F0
)itan(h02 )];

Ni = F0(
F0
N0

)i�1; Fi = F0(
F0
N0

)i; n0 = b
ln( D

F0
)

ln(
F0

N0
)
� 1c

: (6)

For each angle size derived above, there are an in�nite number of viewing
directions that can be considered. We have designed an algorithm that can gen-
erate only directions such that their union can cover the whole viewing sphere
with minimum overlap [12].

Only the actions with the viewing angle sizes and the corresponding direc-
tions obtained by the above method are taken as the candidate actions. So, the
huge space of possible sensing actions is decomposed into a �nite set of actions
that must be tried. Finally, E(f ) can be used to select among them for the best
viewing angle size and direction. After the selected action is applied, if the target
is not detected, the probability distribution will be updated and a new action
will be selected again. If the current position does not seem to �nd the target,
the agent will select a new position and begin to search for the target at the new
position.

3 Knowledge Granularity for Search Agent

3.1 General Discussion

As we have illustrated above, the object search agent uses its knowledge about
the target position to guide its action selection process. This knowledge is en-
coded as a discrete probability density that is updated whenever a sensing action



occurs. To do this, the search environment is tessellated into a number of small
cubes, and each cube c is associated with a probability p(c). To perfectly encode
the agent's knowledge, the size of the cube should be in�nitely small - resulting
in a continuous encoding of the knowledge. But this will not work in general
because an in�nite amount of memory is needed. In order to make the system
work, we are forced to represent the knowledge discretely - to use cubes with
�nite size. This gives rise to an interesting question: how we should determine
the granularity of the representation (the size of the cube) such that the best
e�ects or reasonable e�ects can be generated.

To make the discussion easier, we denote an object search agent a as a =
hs;kE ;kp;G; I; tselect, tapply , M , T , U i. Where s is the state parameters of the
agent. kE is the agent's knowledge about the geometric con�guration of the en-
vironment. kp is the agent's knowledge about the target position and is encoded
as probabilities associated with tessellated cubes. G is the granularity function,
which gives a measurement of the granularity of a certain knowledge representa-
tion scheme. I is the inference engine, which selects actions and updates agent's
knowledge. By applying I to kE and kp, an action is generated. The term tapply
is the cost function for applying actions: tapply(f ) gives the time needed to apply
an action f and is determined by the time needed to take a picture and run the
recognition algorithms. The term tselect is the cost function for selecting actions.
M is the agent's memory limit. The memory used to store all the knowledge and
inference algorithms should not exceed this limit. T is the time limit. The total
time spent by the agent in selecting actions and executing actions should be
within T . U is the utility function, which measures how well the agent performs
during its search process within T .

The granularity function G can be de�ned as the total memory used by the
agent to represent a certain kind of knowledge divided by the memory used by
the agent to represent a basic element of the corresponding knowledge. For exam-
ple, G(kp) gives the granularity measurement of the knowledge representation
scheme kp. Suppose the length of the search environment is L units (the side
length of a cube is one unit), the width of the search environment is W units,
and the height of the search environment is H unit. Then the total environment
contains LWH cubes. The probability p(c) associated with each cube c is a ba-
sic element in the representation scheme kp. Suppose m[p(c)] gives the memory
of the agent used to represent p(c). Then the total memory for the agent to

represent kp is LWHm[p(c)]. Thus, G(kp) =
LWHm[p(c)]

m[p(c)]
= LWH.

Here we study the in
uence ofG(kp) on the performance of the search agent.
This performance can be measured by the utility and time limit pair hU; T i.
Where U = P [F] is calculated by Formula (3). The actions in F are selected
according to Section 2. For a �ner granularity G(kp), more time will be spent
on action selection, leaving less time for action execution. The selected actions
are generally with better quality because the calculation ofE(F) is more accurate
in most situations. For a coarser granularity G(kp), less time will be spent on
action selection, leaving more time for action execution. The selected actions are
generally of lower quality because calculation of E(F) is less accurate in most



situations. In the following sections, we will present experiments to illustrate the
in
uence of knowledge granularity on the agent's performance.

3.2 Experiments

A 2D simulation object search system is implemented to test the in
uence of
the knowledge granularity on the performance of the action selection process.
The system is implemented in C on IBM RISC System/6000.

The search environment is a 2D square as shown in Figure 2(a). If we tes-
sellate the 2D square into 1000� 1000 small square cells, then the relevant data
for the system is as follows. The 2D camera has two e�ective angle sizes. The
width of the �rst angle size is 40o. Its e�ective range is [50; 150]. Its detection
function is: b(c; f ) = D(l)(1 � 1

6
�
41), where � < 20:5o is the angle between the

agent's viewing direction and the line connecting the agent center and the cell
center, D(l) is as shown in Figure 2(c), and l is the distance from the cell center
to the agent center. According to formulas in Section 2, the width of the second
e�ective angle size is 14o, and its e�ective range is [150; 450]. The initial target
distribution is as follows. The outside probability is 0:05. For any cell c within
region A (bounded by 30 � x � 75 and 30 � y � 75), p(c) = 0:000004. For
any cell c within region C (bounded by 600 � x � 900 and 600 � y � 900),
p(c) = 0:000005. For any other cell c, p(c) = 0:000001. The agent is at position
[10; 10] in the beginning. We assume that there is only one recognition algorithm,
thus the time needed to execute any actions are same.
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Fig. 2. (a) The 2D environment. The agent is at the lower left corner of the region.
An obstacle is present within the region. (b) The 2D environment when it is tessellated
into a square of size 1000� 1000. (c) The value of D(l).

In the �rst group of experiments, the agent only selects actions at position
[10; 10]. In the second group of experiments, the agent �rst select 7 actions at
position [10; 10], then it moves to position [700; 400] to begin the new search.
The following sections list the experimental results.

Knowledge Granularity and Action Selection Time To select the next
action f , the agent need to calculate P (f ) (Equation (1)) for any candidate
actions (Section 2). It is obvious that the knowledge granularity G(kp) has a
great in
uence on the action selection time tselect(f ). The higher the value of the



knowledge granularity, the longer the time needed to select an action. We have
performed a series of experiments to test the in
uence. The results are listed in
the following table.

G(kp) [30� 30] [40� 40] 50� 50] [60� 60] [70� 70] [80� 80]
tselect 15 30 41 91 121 157

G(kp) [90� 90] [100� 100] [200� 200] [300� 300] [400� 400] [500� 500]
tselect 217 289 1083 2443 4380 7467

Table 1

Note that tselect(f ) (measured in seconds) is obtained by taking the di�erence
in times obtained from the command \system(\date")" executed before the sys-
tem enters the action selection module and after the system �nishes the action
select module. The average value for di�erent actions with the same granularity
is taken as the value of tselect for the corresponding granularity. The accuracy
is within one second.

The Error Associated with Knowledge Granularity Clearly the approxi-
mations involved in discretization will cause errors in calculating various values.
In general, the higher the value of the knowledge granularity, the less the error
caused by discretization. The error associated with knowledge granularity may
in
uence the quality of the selected actions, and thus in
uence the performance
of the agent.

Figures 3(d)(e)(f)(g) show how the granularity in
uences the error in calcu-
lating P (f ). We notice that in general the higher the knowledge granularity, the
less the error of the calculated P (f ). For example, for G(kp) = 40�40, the error
for the �rst action is 0:037115, while for G(kp) = 500 � 500, the error for the
�rst action is 0:002356. Figures (h)(i)(j)(k) show the real probability of detect-
ing the target P [F] with e�ort allocation F for di�erent degrees of knowledge
granularity. We can see that the higher the value ofG(kp), the faster the system
reaches its detecting limits.

Knowledge Granularity and Agent Performance In this section, we an-
alyze the in
uence of knowledge granularity on the overall performance of the
agent. Figure 3(h)(i)(j)(k) show that the higher the knowledge granularity, the
better the quality of the selected actions. However, to achieve the expected ben-
e�ts, we need to execute the action in addition to select them. Thus, both the
action selection time and the action execution time are important.

For a higher knowledge granularity, although the selected actions might have
good quality, the time needed to get these actions is also longer. If the time
needed to execute an action is very long, then it is worth spending more time
to select good actions. However, if the time needed to execute an action is very
short, it may not be bene�cial to spend a lot of time in action selections, because
this amount of time can be used to execute all the possible actions. Thus, purely
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Fig. 3. (a) The calculated probability P (f) associated with knowledge granularity
G(k

p
) = 30 � 30 for the selected action f , and the real detection probability for f .

(b) The di�erence between the real and calculated probabilities for G(kp) = 30 � 30.
(c) The calculated and the real probability of detecting the target for the selected e�ort
allocation F for G(k

p
) = 30� 30. (d), (e), (f), (g) The di�erence between the real and

calculated probability of detecting the target for di�erent knowledge granularity. (h),
(i), (j), (k) The real probability of detecting the target for the given e�ort allocation at
position [10; 10].

reactive strategy (no planning) only wins when the action execution time is
short. When the action execution time is very long, we are forced to spend
more time (use a higher knowledge granularity) in order to select good quality
actions. Figure 4 illustrates how the performance of the agent is a�ected when
assuming tapply equals 1 second, 100 seconds, 1000 seconds, 10000 seconds, and
100000 seconds, respectively. The performance is represented by the probability
of detecting the target for the selected e�ort allocation F verses the cost in
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Fig. 4. The in
uence of tapply and G(kp) on the performance of the agent: (a)
tapply = 1 seconds; (b) tapply = 100 seconds; (c) tapply = 1000 seconds; (d)
tapply = 10000 seconds; (e) tapply = 100000 seconds.

selecting and executing the e�ort allocation F. We can see from Figure 4(a) that
for tapply = 1, the performance ofG(kp) = 40�40 is better than the performance
ofG(kp) = 100�100 andG(kp) = 500�500. As the cost in tapply increases, the
situation changes gradually. When tapply = 10000, G(kp) = 100� 100 becomes
the best knowledge granularity. When tapply = 100000, G(kp) = 500 � 500
becomes the best granularity.

When the Agent is Allowed to Move We also performed experiments for
di�erent inference engines I and similar results are obtained. Figure 5 lists the
experimental results when the agent is allowed to move. The agent �rst selects
7 actions at position [10; 10], then it moves to [700; 400] to continue the search
process. >From Figure 5, we can observe the same phenomena as we observed in
the previous sections.

4 Selecting Knowledge Granularity

The experiments in the above section show that the level of knowledge granu-
larity has a big impact on the quality and speed of the agent's behavior. It is
thus important for an agent to adapt its knowledge granularity based on envi-
ronmental and task-speci�c demands.

In general, if we represent an agent as a = hs;k1; � � � ;km;G; I; tselect; tapply;

M; T; U i, where k1, � � �, and km are the representation schemes for the di�erent
kinds of knowledge maintained by the agent, and the other symbols are similar
to those in Section 3.1, then we can de�ne the knowledge granularity G(ki) for
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Fig. 5. Experiments performed for another inference engine for G(kp) = 40� 40 and
G(k

p
) = 500 � 500. (a) Error in calculating P (f); (b) Di�erent e�ects with respect

to P [F]; (c) Performance when tapply = 1; (d) Performance when tapply = 1000; (e)
Performance when tapply = 100000.

ki as the total amount of memory needed to represent the corresponding knowl-
edge by scheme ki divided by the memory needed to represent a basic element
of the corresponding knowledge. In this section, we address the following inter-
esting question: how can we select the knowledge granularity G(k) for a given
representation scheme k such that the best agent performance or a relatively
good agent performance can be achieved?

4.1 Best Granularity

In some situations, we are able to select the best knowledge granularity in the
sense that it maximizes the performance of the agent. Here is an example. Sup-
pose we have an agent whose task is to collect food from a region of length
L within a time limit T . The agent can use di�erent representation lengths
� = fl1; : : : ; lqg to represent the region. (suppose

L
li
is integer, where 1 � i � q).

If the agent selects l 2 fl1; : : : ; lqg as its representation scheme k for the cor-
responding knowledge, then the corresponding knowledge granularity for this
scheme will be G(k) = L

l
. The total region is thus divided into L

l
units. The



The total amount of food that is collected is B(l) = 1
l
. When the agent �nishes

its food collection process at the selected unit, the status of another unit will
become \ready". The agent will search for this new unit and collect food again
from this new unit. This process will continue until the total time T is used up.
If the total time T is exhausted when the agent is locating a unit or when the
agent is collecting food within a unit, then the amount of collected food from
the corresponding unit will be zero. It is obvious that the number of units that
can be processed by the agent within T is T

ts(l)+te(l)
, and the number of units

available is L
l
.

The performance P of the agent is measured by the total amount of food
collected by the agent and is given by the following formula:

P =

(
L
l
B(l) if T

ts(l)+te(l)
� L

l

b T
ts(l)+te(l)

cB(l) if T
ts(l)+te(l)

< L
l

: (7)

This is actually

P =

8<
:

L
l2

if l �
q

L
T�CL

b Tl
Cl2+1

c1
l
if l >

q
L

T�CL

: (8)

The problem is to �nd a l in � = fl1; : : : ; lqg such that P is maximized. The
set � can be divided into two parts �A = fl1; : : : ; ljg and �B = flj+1; : : : ; lqg,

such that all the elements in �A are less than
q

L
T�CL

, and all the elements in

�B are greater than or equal to
q

L
T�CL

. It is obvious that for elements l 2 �A,

the smallest one has the best performance because L
l2

is a decreasing function.

For elements l 2 �B, we can calculate the value of b Tl
Cl2+1c

1
l
to identify the best

element. Then we compare the smallest element in �A and the best element in
�B to identify the one that maximizes the performance of the system.

The above example shows that in some situations, an agent is able to iden-
tify an optimum knowledge granularity based on the task requirement (here T )
and the environmental characteristics (here L). The basic method is to try to
represent the performance of the agent as a function of the agent's knowledge
granularity, and then to �nd the granularity that maximizes the performance.

In general, it is very di�cult or even impossible to �nd a best knowledge gran-
ularity for an agent, because the performance of the agent might be in
uenced by
many other factors in addition to the knowledge granularity. For example, there
does not exist a best knowledge granularity for the object search agent, because
its performance is also in
uenced by the initial target distribution. A granularity
that is best for one distribution might not be the best for another distribution.
Thus, in general, we need to relax our requirements. Instead of �nding the best
granularity, we search for a reasonable one such that a relatively good perfor-
mance can be achieved. Because of the variations of di�erent agent systems, it is
impossible to provide a detailed procedure to select the acceptable granularity
that can be applied to all the agent systems. However, we can provide a general
guideline for the selection of the knowledge granularity.



4.2 Selecting Reasonable Granularity in Complex Agent

Environment

In an agent environment where the relationships among the task constraints, the
environments, and the knowledge granularity are very complex, the \demand-
environment-granularity" (DEG) Hash Table can be used to select a reasonable
granularity. The DEGHash Table is a Hash Table such that the \key" is the com-
bination of di�erent factors and the \value" is the granularity that is appropriate
for the corresponding factors. When an agent is informed of task requirements,
it �rst transforms the task requirements and the environmental factors into a
key. Then it retrieves the granularity from the DEG Hash Table based on the
key. This granularity will be used by the agent to represent the corresponding
knowledge.

For a complex agent environment, it might have more than one task con-
straints T1, : : :, TnT . Each Ti forms one component in the \key" of the DEG
Hash Table. It can be divided into several groups Ti;1, : : :, Ti;k based on certain
criteria. For example, the task constraint for an object search agent is the total
time available for the search. This time constraint can be divided into groups
like \from 1 second to 30 seconds", \from 30 seconds to 100 seconds", etc..

In addition to the task constraints, we should also consider the in
uences of
the environmental factors when selecting the granularity. Suppose E1, : : :, EnE

are the environment factors that need to be considered. Like above, each Ei can
be divided into several groups Ti;1, : : :, Ti;k based on a certain criteria.

The DEG Hash Table is then looks like following:

T1 : : : TnT E1 : : : EnE G

t1 : : : tnT e1 : : : enE g
...

...
...

...
...

...
...

Table 2

Where each row in the table, except the �rst one, gives a \key" (t1; : : : ; tnT ,
e1; : : : ; enE ) and the corresponding granularity value g. Here, ti is a category
(group) for the task constraint factor Ti and ei is a category (group) for the en-
vironmental factor Ei. Term g is the knowledge granularity value corresponding
to the \key" and should be obtained by conducting various simulation experi-
ments or theoretical analysis before the agent performs any task. When an agent
is informed of a task, it �rst determines the key based on the current situations,
and then uses this \key" to locate the knowledge granularity.

5 Conclusion

This paper o�ers an alternative point of view of the spectrum of knowledge
abstraction based on the granularity of knowledge representation. It addresses



the issue of knowledge granularity and its in
uence on the action selection process
of an agent. The concept of knowledge granularity is de�ned and its in
uence
on the performance of an object search agent is tested. The message derived
from the experimental results is that knowledge granularity has a big impact
on the performance of an agent. Thus, an appropriate knowledge granularity
should be selected by an agent in order to guarantee a satisfactory result. Finally,
we provide a general guideline on how an agent should adapt its knowledge
granularity according to environmental and task-speci�c demands.
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