
E D P E P P $ * : A Toolset for the Des ign and
Performance Evaluation of Parallel Appl icat ions

T. Delaitre, M.J. Zemerly, P. Vekariya, G.R. Justo, J. Bourgeois,
F. Schinkmann, F. Spies, $. Randoux, and S.C. Winter

Centre for Parallel Computing,
Cavendish School of Computer Science,

University of Westminster
115 New Cavendish Street, London WIM 8JS

Emaih edpepps-all�9 ac.uk
Web: http ://www. cpc. wmin. ac. uk/~edpepps

Abs t rac t . This paper describes a performance-oriented environment for
the design of portable parallel software. The environment consists of a
graphical design tool based on the PVM communication library for build-
ing parallel algorithms, a state-of-the-art simulation engine, a CPU char-
acteriser and a visualisation tool for animation of program execution and
visualisation of platform and network performance measures and statis-
tics. The toolset is used to model a virtual machine composed of a cluster
of workstations interconnected by a local area network. The simulation
model used is modular and its components are interchangeable which
allows easy re-configuration of the platform. Both communication and
CPU models are validated.

1 I n t r o d u c t i o n

A major obstacle to the widespread adoption of parallel comput ing in industry
is the difficulty in program development due mainly to lack of parallel program-
ming design tools. In particular, there is a need for performance-oriented tools,
and especially for clusters of heterogeneous workstations, to allow the software
designer to choose between design alternatives such as different parallelisation
strategies or paradigms. A portable message-passing environment such as Paral-
lel Virtual Machine (PVM) [12] permits a heterogeneous collection of networked
computers to be viewed by an application as a single d is t r ibuted-memory parallel
machine. The issue of portabil i ty can be of great importance to p rogrammers but
opt imali ty of performance is not guaranteed following a port to another pla t form
with different characteristics. In essence, the application might be re-engineered
for every platform [26]. Traditionally, parallel program development methods
start with parallelising and porting a sequential code on the target machine and

* The EDPEPPS (Environment for the Design and Performance Evaluation of
Portable Parallel Software) project is funded by an EPSRC PSTPA Grant No.:
GR/K40468 and also by EC Contract Nos.: CIPA-C193-0251 and CP-93-5383.

114

running it to measure and analyse its performance. Re-designing the parallelisa-
tion strategy is required when the reached performance is not satisfactory. This
is a time-consuming process and usually entails long hours of debugging before
reaching an acceptable performance from the parallel program. Rapid prototyp-
ing is a useful approach to the design of (high-performance) parallel software in
that complete algorithms, outline designs, or even rough schemes can be eval-
uated at a relatively early stage in the program development life-cycle, with
respect to possible platform configurations, and mapping strategies. Modifying
the platform configurations and mappings will permit the prototype design to
be refined, and this process may continue in an evolutionary fashion throughout
the life-cycle before any parallel coding takes place.

The EDPEPPS toolset described here is based on a rapid prototyping phi-
losophy and comprises four main tools:

- A graphical design tool (PVMGraph) for designing of parallel applications.
- A simulation utility (SES/Workbench [24]) based on discrete-event simula-

tion.
- A CPU performance prediction tool (Chronos) which characterises compu-

tational blocks within the C/PVM code based on basic operations in C.
- A visualisation tool (PVMVis) for animation of program execution using

traces generated by the simulator and visualisation of platform and network
performance measures and statistics.

Other tools used in the environment for integration purposes are:

- A trace instrumentation utility (Tape/PVM) [19].
- A translator (SimPVM) [7] from C/PVM code to queueing network graphical

representation.
- A modified version of the SAGE++ toolkit [3] for restructuring C source

code. In the original version the C files were passed through the C-
preprocessor (cpp) and then processed by the SAGE++ parser (pC++2dep),
which creates a parse tree containing nodes for the individual statements and
expressions in the code (stored in .dep files). The modification is needed be-
cause pC++2dep does not understand preprocessor directives such as ~de-
fine and ~include. Therefore, rules for these directives were added to the
grammar of pC++2dep and new node types for them were introduced in the
parse tree.

- A translator from existing C/PVM parallel applications into PVMGraph
graphical representation (C2Graph) based on the modified SAGE++ toolkit.
This is provided in order to Mlow already written parallel applications to
experiment with the toolset.

The advantage of the EDPEPPS toolset is that the cyclic process of design-
simulate-visualise is executed within the same environment. Also the EDPEPPS
toolset allows generation of code for both simulation and real execution to run
on the target platform if required. The toolset is also modular and extensible to
allow modifications and change of platforms and design as and when required.

115

This paper describes the various tools within the ED P EP P S environment and
presents a case study for illustration and validation of the models used. In the
next section we describe several modelling tools with similar aims to E D P E P P S
and we highlight the differences between them. In section 3 we describe the
different tools in the EDPEPPS toolset. In section 4 we present results obtained
from the case study. Finally, in section 5 we present conclusions and future work.

2 P a r a l l e l S y s t e m P e r f o r m a n c e M o d e l l i n g T o o l s

The current trend in parallel software modelling tools is to support all the soft-
ware performance engineering activities in an integrated environment [22]. A
typical toolset should be based on at least three main tools: a graphical design
tool, a simulation facility and a visualisation tool [22]. The graphical design tool
and the visualisation tool should coexist within the same environment to allow
information about the program behaviour to be related to its design. Many ex-
isting toolsets consist of only a subset of these tools but visualisation is usually
a separate tool. In addition, the modelling of the operating system is usually not
addressed.

The HAMLET toolset [23] supports the development of reM-time applications
based on transputers and PowerPCs. HAMLET consists of a design entry system
(DES), a specification simulator (HASTE), a debugger and monitor (INQUEST),
and a trace analysis tool (TATOO). However, the tools are not tightly integrated
as in the case of EDPEPPS but are applied separately on the output of each
other. Also no animation tool is provided.

HENCE (Heterogeneous Network Computing Environment) [1] is an X-
window based software environment designed to assist scientists in developing
parallel programs that run on a network of computers. HENCE provides the pro-
grammer with a high level of abstraction for specifying parallelism as opposed
to real parallel code in EDPEPPS. HENCE is composed of integrated graph-
ical tools for creating, compiling, executing, and analysing HENCE programs.
HENCE relies on the PVM system for process initialisation and communication.
HENCE displays an event-ordered animation of application execution.

The ALPSTONE project [17] comprises performance-oriented tools to guide
a parallel programmer. The process starts with an abstract, BACS (Basel Al-
gorithm Classification Scheme), description [5]. This is in the form of a macro-
scopic abstraction of program properties, such as process topology and execution
structure, data partitioning and distribution descriptions, and interaction spec-
ifications. From this description, it is possible to generate a t ime model of the
algorithm which allows performance estimation and prediction of the algorithm
runtime on a particular system with different data and system sizes. If the pre-
diction promises good performance implementation and verification can start.
This can be helped with a skeleton definition language (ALWAN or PEMPI-
Programming Environment for MPI), which can derive a time model in terms
of the BACS abstraction, and a portability platform (TIANA), which translates
the program to C with code for a virtual machine such as PVM.

116

The VPE project [21] aims to design and monitor parallel programs in the
same tool. The design is described as a graph where the nodes represent sequen-
tial computation or a reference to another VPE graph. Performance analysis
and graph animation are not used here, but the design aspect of this work is
elaborate.

The PARADE project [27] is mainly oriented on the animation aspects. PA-
RADE is divided into a general animation approach which is called POLKA,
and specific animation developments such as PVM with PVaniM, Threads with
GThreads and HPF. This work does not include any graphical design of paral-
lel programs, thus, the predefined animations and views can decrease the user
understanding. One of the most important aspects of POLKA is the ability of
classification between general and specific concepts.

In the SEPP project [6] (Software Engineering for Parallel Processing) a
toolset based on six types of tools has been developed. There are static design
tools, dynamic support tools, debugging tools, behaviour analysis tools, simula-
tion tools and visuMisation tools [14, 10, 15]. These tools are integrated within
the GRADE environment [16, 11]. The GRAPNEL application programming in-
terface currently supports the PVM message passing library.

The TOPSYS (TOols for Parallel SYStems) project [2] aims to develop a
portable environment which integrates tools that help programmers cope with
every step of the software development cycle of parallel applications. The TOP-
SYS environment contains tools which support specification and design, cod-
ing and debugging, and optimisation of multiprocessor programs. The TOPSYS
environment comprises: a CASE environment for the design and specification
of applications (SAMTOP) including code generation and mapping support, a
multi-processor operating system, a high level debugger (DETOP), a visualiser
(VISTOP), and a performance analyser (PATOP). The tools are based on the
MMK operating system which has been implemented for Intel's iPSC/2 hyper-
cube. The tools were later ported to PVM in [18]. A more detailed review of
parallel programming design tools and environments can be found in [8].

3 D e s c r i p t i o n o f t h e I n t e g r a t e d T o o l s e t

The advantages of the EDPEPPS toolset over traditional parallel design methods
are that it offers a rapid prototyping approach to parallel software development,
allows performance analysis to be done without accessing the target platforra,
helps the user to take decisions about scalability and sizing of the target platform,
offers modularity and extensibility through layered partitioning of the model and
allows the software designer to perform the cycle of design-simulate-analysis in
the same environment without having to leave the toolset.

Figure 1 shows the components of the EDPEPPS toolset. The process starts
with the graphical design tool (PVMGraph), step (1) in the figure, by building
a graph representing a parallel program design based on the PVM programming
model. The graph is composed of computational tasks and communications. The

117

tool provides graphical representation for PVM calls which the user can select
to build the required design.

The software designer can then generate (by the click of a button) C/PVM
code (.c files) for both simulation and real execution. The toolset also provides
a tool (C2Graph), step (0), to translate already developed parallel applications
onto graphical representation suitable for PVMGraph. The software designer can
then experiment with the toolset by changing the parallelisation model or other
parameters, such as the number of processors or processor types to optimise the
code.

Fig. 1. The EDPEPPS Integrated Environment.

In the simulation path each C/PVM source code obtained from the PVM-
Graph is instrumented using a slightly modified version of the Tape/PVM trace
pre-processor, step (2), [19]. The output is then parsed using the Program In-
struction Characteriser (PIC), step (3), which forms a part of the CPU perfor-
mance prediction tool called "Chronos" which inserts cputime calls at the end of
each computational block. The instrumented C source files are translated using
the SimPVM Translator [7], step (4), into a queueing network representation
suitable for Workbench graph (.grf file). SES/Workbench, step (5), translates
the graph file into the Workbench object oriented simulation language called
SES/sim [25] using an SES utility (sestran). The sim file is then used to gen-
erate an executable model using some SES/Workbench utilities, libraries, decla-
rations and the PVM platform model. The simulation is based on discrete-event
modelling. SES/Workbench has been used both to develop and simulate the
platform models. Thus the Workbench simulation engine is an intrinsic part of
the toolset. All these simulation actions are hidden from the user and are ex-
ecuted from the PVMGraph window by a click on the simulation button and
hence shown in the EDPEPPS environment in Figure 1 in one box under "Sim-

118

ulation Stages". The simulation executable is carried out by using three input
files containing parameters concerning the target virtual environment (e.g. num-
ber of hosts, host names, architecture, the UDP communication characteristics
and the timing costs for the set of instructions used by Chronos [4]). The UDP
model and the instruction costs are obtained by benchmarking (benchmarks are
provided off-line) the host machines in the network.

The simulation outputs are the execution time, a Tape/PVM trace file and
a statistics file about the virtual machine. These files are then used by the
visualisation tool (PVMVis), step (6), in conjunction with the current loaded
application to animate the design and visualise the performance of the system.
The design can be modified and the same cycle is repeated until a satisfactory
performance is achieved.

In the real execution path the Tape/PVM pre-processor, step (7), is used to
instrument the C source files and these are then compiled and executed, step
(8), to produce the Tape/PVM trace file required for the visualisation/animation
process. This step can be used for validation of simulation results but only when
the target machine is accessible. The visualisation tool (PVMVis) offers the de-
signer graphical views (animation) representing the execution of the designed
parallel application as well as the visualisation of its performance. The PVM-
Graph and PVMVis are incorporated within the same Graphical User Interface
where the designer can switch between these two possible modes. The perfor-
mance visualisation presents graphical plots, bar charts, space-time charts, and
histograms for performance measures concerning the platform at three levels
(the message passing layer, the operating system layer and the hardware layer).
The following sections describe the main tools within EDPEPPS.

3.1 P V M G r a p h

PVMGraph is a graphical programming environment to support the design and
implementation of parallel applications. PVMGraph offers a simple but yet ex-
pressive graphical representation and manipulation for the components of a par-
allel application. The main function of PVMGraph is to allow the parallel soft-
ware designer or programmer to develop PVM applications using a combination
of graphical objects and text. Graphical objects are composed of boxes which
represent tasks (which may include computation) and arrows which represent
communications. The communication actions are divided into two groups: input
and output. The PVM actions (calls) are numbered to represent the link between
the graph and text in the parallel program. Also different types and shapes of
arrows are used to represent different types of PVM communication calls. Paral-
lel programs (PVM/C) can be automatically generated after the completion of
the design. Additionally, the designer may enter PVM/C code directly into the
objects. The graphical objects and textual files are stored separately to enable
the designer to re-use parts of existing applications [13].

A PVMGraph on-line 1 demonstration is available on the Web.

I http://www.cpc.wmin.ac.uk/~edpepps/demo~tml/ppf.html

119

3.2 P V M V i s

The main objective of this tool is to offer the designer graphical views and
animation representing the execution and performance of the designed parallel
application from the point of view of the hardware, the design and the network.

The animation is an event-based process and is used to locate an undesirable
behaviour such as deadlocks or performance bottlenecks. The animation view in
PVMVis is similar to the design view in PVMGraph except that the pallet is
not shown and two extra components for performance analysis are added: bar-
chart view and platform view. The barchart view shows historical states for the
simulation and the platform view shows some statistics for selected performance
measures at three levels: the message passing layer, the operating system layer
and the hardware layer.

3.3 The C P U Per fo rmance P red i c t i on Tool: Chronos

The Program Instruction Characteriser (PIC) is called only in the simulation
path to estimate the time taken by computational blocks within a parallel al-
gorithm. PIC characterises a workload by a number of high-level language in-
structions (e.g. float addition) [4] taking into account the effect of instruction
and data caches. Assumptions have been made to reduce the number of possible
machine instructions to 43 (see [4] for more details on these assumptions). The
costs associated with the various instructions are kept in a file in the hardware
layer accessible by the SES utilities. These costs are obtained by benchmarking
the instructions on different machines.

PIC first parses an instrumented C/PVM program using the modified
pC++2dep (mpC++2dep) tool from the SAGE++ toolkit In the second stage,
PIC traverses the parse tree using the SAGE++ library and inserts cputime
cMls with the number of machine instructions within each sequential C code
fragment.

The cputime call is a simple function with a fixed number of parameters (a
total of 31). This is different from the number of machine instructions because
the instruction cache duplicates some of the instructions (hit or miss).

Each parameter of the cputime function represents the number of times each
instruction is executed within the sequential C code fragment. The only excep-
tion is the last parameter, which determines whether the instruction cache is hit
or miss for the code fragment in question.

3.4 C 2 G r a p h

As mentioned before, this tool allows existing PVM applications to be converted
into the EDPEPPS format. The C/PVM application files are first parsed with
mpC++2dep to get the .dep files. These files are then traversed by the C2Graph
translator using the SAGE++ library.

The translator also takes into account the PVM calls in the original code and
generates their corresponding graphical representation in the PVMGraph files.

120

The translator then determines the master process, positions it with the other
tasks by calculating appropriate coordinates for them in the PVMGraph screen,
and writes the PVMGraph definition files (.clef) for each task. The translator
finally writes the application file (.app) required for PVMGraph.

3.5 S i m P V M Trans la tor

From PVMGraph graphical and textual objects, executable and "simulatable"
PVM programs can be generated. The "simulatable" code generated by PVM-
Graph is written in a special intermediary language called SimPVM, which de-
fines an interface between PVMGraph and SES/Workbench [7].

To simulate the application, a model of the intended platform must also
be available. Thus, the simulation model is partitioned into two sub-models: a
dynamic model described in SimPVM, which consists of the application software
description and some aspects of the platform (e.g. number of hardware nodes)
and a static model which represents the underlying parallel platform.

The SimPVM language contains C instructions, PVM and PVM group
(PVMG) functions, and simulation constructs such as computation delay and
probabilistic functions.

3.6 The E D P E P P S Simula t ion Model

The EDPEPPS simulation model consists of the PVM platform model library
and the PVM programs for simulation. The PVM platform model is partitioned
into four layers: the message passing layer, the group functions layer which sits
on top of the message passing layer, the operating system layer and the hardware
layer. Modularity and extensibility are two key criteria in simulation modelling,
therefore layers are decomposed into modules which permit a re-configuration of
the entire PVM platform model. The modelled configuration consists of a PVM
environment which uses the TCP/IP protocol, and a cluster of heterogeneous
workstations connected to a 10 Mbit/s Ethernet network.

PVM Applications

[GroupS Group Libraryj

PVM Daemon PVM Library

Communication Scheduling
TCP/IP

CPU Network: Etheme

Application Layer

Message-passing Layer

Operating System Layer

Hardware Layer

Fig. 2. Simulation model architecture.

122

machines, Pentium and SuperSparc, the results are encouraging with errors of
1.7% and 3.4% respectively.

Fig. 3. Comparison between real execution and simulation.

4.2 C C I T T H.261 Decoder

The application chosen here to demonstrate the capabilities of the environment
in the search for the optimal design is the Pipeline Processor Farm (PPF) model
[9] of a standard image processing algorithm, the CCITT H.261 decoder [9].
Figure 4 shows how the H.261 algorithm decomposes into a three-stage pipeline:
frame initialisation (T1); frame decoder loop (T2) with a farm of 5 tasks; and
frame output (T3).

T1

T2

T3

Fig. 4. PPF topology for a three-stage pipeline.

5

4.5

The first and last stages are inherently sequential, whereas the middle stage
contains considerable data parallelism.

The same topological variation in the PPF model leads directly to perfor-
mance variation in the algorithm, which, typically, is only poorly understood at
the outset of design. One of the main purposes of the simulation tool in this
case is to enable a designer to identify the optimal topology, quickly and easily,
without resorting to run-time experimentation. Two experiments for 1 and 5
frames were carried out. The number of processors in Stage T2 is varied from 1
to 5 (T1 and T3 were mapped on the same processor). In every case, the load is
evenly balanced between processors.

The target platform is a heterogeneous network of up to 6 workstations
(SUN4's. SuperSparcs and PC's). Timings for the three computational stages
of the algorithm were extracted from [9] and inserted as time delays. Figure 5
shows the simulated and real experimental results for speed-up.

EDPEPPS Simulator 5 Frames
Real Expenmen~ 5 Frames

EDPgPPS Simulator 1 Frame
Fran~ ~ .

3

2,5

2

1.5

1

0 5

123

i i i i i

1 2 3 4 5
Number of Pr~essors in T2

Fig. 5. Comparison between speed-ups of simulation and real experiments for the H.261
PPF algorithm.

As expected, the figure shows that the 5-frame scenario performs better than
the 1-frame scenario, since the pipeline is fuller in the former case. The differ-
ence between simulated and real speed-ups is below 10% even though the PPF
simulation results do not include packing costs.

5 C o n c l u s i o n

This paper has described the EDPEPPS environment which is based on a
performance-oriented parallel program design method. The environment sup-
ports graphical design, performance prediction through modelling and simulation
and visualisation of predicted program behaviour. The designer is not required
to leave the graphical design environment to view the program's behaviour, since

124

the visualisation is an animation of the graphical program description. I t is in-
tended that this environment will encourage a philosophy of program design,
based on a rapid synthesis-evaluation design cycle, in the emerging breed of
parallel programmers.

Success of the environment depends critically on the accuracy of the un-
derlying simulation system. Preliminary validation experiments showed average
errors between the simulation and the real execution of less than 10%.

An impor tant future direction of our work is to extend the simulation model
to support other platforms, such as MPI. The modular i ty and flexibility of our
model will ensure that PVM layer may be re-used where appropriate in the
development of the MPI model component. Another planned extension to our
environment is the integration of a distributed debugger such as the DDBG [16].

References

1. A. Beguelin, et. al. HENCE: A Heterogeneous Network Computing Environment
Scientific Programming, Vol. 3, No. 1, pp 49-60.

2. T. Bemmerl. The TOPSYS Architecture, In H. Burkhart, editor, CONPAR90-
VAPPIV Conf., Zurich, Switzerland, Springer, September 1995, Lecture Notes in
Computer Science, 457, pp 732-743.

3. F. Bodin, et. al. Sage++: An Object-Oriented Toolkit and Class Library for Build-
ing Fortran and C + + Restructuring Tools, Proc. 2nd Annual Object-Oriented
Numerics Conf., 1994. http://www.extreme.indiana.edu/sage/docs.html.

4. J. Bourgeois. CPU Modelling in EDPEPPS EDPEPPS EPSRC Project
(GR/K40468), D3.1.6, EDPEPPS/35, Centre for Parallel Computing, University
of Westminster, London, June 1997.

5. H. Burkhart, et. al. BACS: Basel Algorithm Calssification Scheme, version 1.1,
Tech. Report 93-3, Universits Basel, URZ+IFI, 1993.

6. T. Delaitre, et. N. Simulation of Parallel Systems in SEPP, in: A. Pataticza, ed.,
The 8th Symposium on Microcomputer and Microprocessor Applications 1 (1994),
pp 294-303.

7. T. Delaitre, et. N. Finn Syntax Specification of SimPVM, EDPEPPS EPSRC
Project (GR/K40468) D2.1.4, EDPEPPS/22, Centre for Parallel Computing, Uni-
versity of Westminster, London, March 1997.

8. T. Delaitre, M.J. Zemerly, and G.R. Justo, Literature Review 2, EDPEPPS EP-
SRC Project (GR/K40468) D6.2.2, EDPEPPS/32, Centre for Parallel Computing,
University of Westminster, London, May 1997.

9. A.C. Downton, R.W.S. Tregidgo and A. Cuhadar, Top-clown structured para]leli-
sation of embedded image processing applications, in: IEE Proc.- Vis. Image Signal
Process. 141(6) (1994) 431-437.

10. G. Dozsa, T. Fadgyas and P. Kacsuk, A Graphical Programming Language for
Parallel Programs, in: A. Pataricza, E. Selenyi and A. Somogyi, ed., Proc. of the
symposium on Microcomputer and Microprocessor Applications (1994), pp 304-314.

11. G. Dozsa, P. Kacsuk and T. Fadgyas, Development of Graphical Parallel Programs
in PVM Environments, Proc. of DAPSYS'96, pp 33-40

12. A. Geist, et. N. PVM: Parallel Virtual Machine, MIT Press, 1994.
13. G.R. Justo, PVMGraph: A Graphical Editor for the Design of PVM Programs,

EDPEPPS EPSRC Project (GR/K40468) D2.3.3, EDPEPPS/5, Centre for Parallel
Computing, University of Westminster, February 1996.

125

14. P. Kacsuk, P.Dozsa and T. Fadgyas, Designing Parallel Programs by the Graphical
Language GRAPNEL, Microprocessing and Microprogramming 41 (1996), pp 625-
643.

15. P. Kacsuk, et. al. Visual Parallel Programming in Monads-DPV, in: Ldpez Zapata,
ed., Proc. of the 4th Euromicro Workshop on Parallel and Distributed Processing
(1996), pp 344-351.

16. P. Kacsuk, et. al. A Graphical Development and Debugging Environment for
Parallel Programs, Parallel Computing, 22:1747-1770, 1997.

17. W. Kuhn and H. Burkhart. The ALPSTONE Project: An Overview of a Perfor-
mance Modelling Environment, In 2nd [nt. Con]. on HiPC'96, McGraw Hill 1996,
pp 491-496.

18. T. Ludwig, et. al. The TOOL-SET - An Integrated Tool Environment for PVM,
In EuroPVM'95, Lyon, France, September 1995. Tech. Rep. 95-02, Ecole Normale
Superieure de Lyon.

19. E. Maillet, TAPE/PVM: An Efficient Performance Monitor for PVM Applications
- User Guide. LMC-IMAG, ftp://ftp.imag.fr/ in pub/APACHE/TAPE, March
1995.

20. M. P. I. Forum. MPI: A Message Passing Interface Standard. The Int. Journal of
Supercomputer Applications and High-Performance Computing, 8(3/4), 1994.

21. P. Newton, J. Dongarra, Overview of VPE: A Visual Environment for Message-
Passing, Heterogeneous Computing Workshop, 1995.

22. C. Pancake, M. Simmons and J. Yah, Performance Evaluation Tools for Parallel
and Distributed Systems, Computer 28 (1995), pp 16-19.

23. P. Pouzet, J. Paris and V. Jorrand, Parallel Application Design: The Simulation
Approach with HASTE, in: W. Gentzsch and U. Harms, ed., HPCN 2 (1994), pp
379-393.

24. Scientific and Engineering Software Inc. SES/workbench Reference Manual, Re-
lease 3.1, Scientific Engineering Software Inc., 1996.

25. K. Sheehan and M. Esslinger, The SES/sim Modeling Language, Proc. The Society
for Computer Simulation, San Diego CA, July 1989, pp 25-32.

26. A. Reinefeld and V. Schnecke, Portability vs Efficiency? Parallel Applications on
PVM and Parix, in Parallel Programming and Applications, P. Fritzson and L.
Finmo eds., (IOS Press, 1995), pp 35-49.

27. J.T. Stasko. The PARADE Environment for Visualizing Parallel Program Exe-
cutions, Technical Report GITGVU-95-03, Graphics, Visualization and Usability
Center, Georgia Inst. of Tech., 1994.

