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A b s t r a c t .  In an interpreted execution there is an interdependence be- 
tween the interpreter's execution and the interpreted application's ex- 
ecution; the implementation of the interpreter determines how the ap- 
plication is executed, and the application triggers certain activities in 
the interpreter. We present a representational model for describing per- 
formance data from an interpreted execution that explicitly represents 
the interaction between the interpreter and the application in terms of 
both the interpreter and application developer's view of the execution. 
We present results of a prototype implementation of a performance tool 
for interpreted Java programs that is based on our model. Our prototype 
uses two techniques, dynamic instrumentation and transformational in- 
strumentation, to measure Java programs starting with unmodified Java 
�9 c lass  files and an unmodified Java virtual machine. We use perfor- 
mance data from our tool to tune a Java program, and as a result, im- 
prove its performance by more than a factor of three. 

1 I n t r o d u c t i o n  

An interpreted execution is the execution of one program (the interpreted ap- 
plication) by another (the interpreter); the application code is input to the in- 
terpreter, and the interpreter executes the application. Examples include just- 
in-time compiled, interpreted, dynamically compiled, and some simulator exe- 
cutions. Performance measurement of an interpreted execution is complicated 
because there is an interdependence between the execution of the interpreter 
and the execution of the application; the implementation of the interpreter de- 
termines how the application code is executed and the application code trig- 
gers what interpreter code is executed. We present a representational model for 
describing performance data from an interpreted execution. Our model charac- 
terizes this interaction in a way that  allows the application developer to look 
inside the interpreter to understand the fundamental  costs associated with the 
application's execution, and allows the interpreter developer to characterize the 
interpreter's execution in terms of application workloads. This model allows for 
a concrete description of behaviors in the interpreted execution, and it is a ref- 
erence point for what is needed to implement a performance tool for measuring 
interpreted executions. An implementation of our model can answer performance 
questions about specific interactions between the interpreter and the application. 
For example, we can represent performance data  of Java interpreter activities 
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like thread context switches, method table lookups, garbage collection, and byte- 
code instruction execution associated with different method functions in a Java 
application. We present results from a prototype implementation of our model 
for measuring the performance of interpreted Java applications and applets. Our 
prototype tool uses Paradyn's  dynamic instrumentation [4] to dynamieMly in- 
sert and remove instrumentation from the Java virtual machine and Java method 
byte-codes as the byte-code is interpreted by the Java virtual machine. Our tool 
requires no modifications to the Java virtuM machine nor to the Java source nor 
class files prior to execution. 

The difficulties in measuring the performance of interpreted codes is demon- 
strated by comparing an interpreted code's execution to a compiled code's exe- 
cution. A compiled code is in a form that  can be executed directly on a particu- 
lar operating system/architecture platform. Performance tools for compiled code 
provide performance measures in terms of platform-specific costs associated with 
executing the code; process time, number of page faults, and I /O  blocking t ime 
are all examples of platform-specific measures. In contrast, an interpreted code 
is in a form that  can be executed by the interpreter virtuM machine. The in- 
terpreter virtual machine is itself an application program that  executes on some 
operating system/architecture platform. One obvious difference between com- 
piled and interpreted application execution is the extra layer of the interpreter 
program that,  in part, determines the application's performance (see Figure 1). 
A performance tool for measuring the performance of an interpreted execution 
needs to measure the interaction between the Application layer (AP) and the 
InterpreterVM layer (VM). 

There are potentially two different program developers that  would be in- 
terested in performance measurement of the interpreted execution: the virtual 
machine developer and the application program developer. Both want perfor- 
mance data  described in terms of platform-specific costs associated with execut- 
ing parts of their program. However, each views the platform and the program 
as different layers of the interpreted execution. The VM developer sees the AP 
as input to the VM program that  is run by the Platform layer (left side of the 
interpreted execution in Figure 1). The AP developer sees the Application layer 
as the program that  is run on the VM (right side of the interpreted execution in 
Figure 1). For a VM developer, this means characterizing the virtual machine's 
performance in terms of Platform layer costs of the VM program's execution of 

Fig. 1. Compiled application's execution vs. Interpreted application's execution. VM 
and AP developers view the interpreted execution differently. 
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its input (AP) - - fo r  example,  the amount  of process t ime executing VM func- 
tion invokeMethod while interpreting AP method foo .  The application program 
developer wants performance da ta  tha t  measures the same interaction to be de- 
fined in terms of VM-specific costs associated with AP ' s  execution; for example,  
the amount  of method call context switch t ime in AP method foo .  

Another characteristic of an interpreted execution is that  the application 
program has multiple execution forms. By multiple execution forms we mean that  
AP code is t ransformed into another form or other forms while it is executed. For 
example,  a Java  class is read in by the Java  VM in . c l a s s  file format .  It  is then 
transformed into an internal form tha t  the Java  VM executes. This  differs f rom 
compiled code where the application binary is not modified as it executes. Our 
model characterizes AP ' s  t ransformations as a measurable event in the code's 
execution, and we represent the relationship between different forms of an AP 
code object so that  performance da ta  measured for one form of the code object 
can be mapped  back, to be viewed in previous forms of the object. 

2 P e r f o r m a n c e  M e a s u r e m e n t  M o d e l  

We present a representational model for describing performance da ta  from an 
interpreted execution that  explicitly represents the interaction between the ap- 
plication program and the virtual machine. Our model addresses the problems 
of representing an interpreted execution and describing performance da ta  from 
the interpreted execution in a language that  both  the virtual machine developer 
and the application program developer can understand.  

2.1 R e p r e s e n t i n g  an In terpre ted  E x e c u t i o n  

Our representation of an interpreted execution is based on Paradyn ' s  represen- 
tat ion of a program execution as a set of resource hierarchies. A resource is a 
physical or logical component  of a program (a semaphore,  a function, and a pro- 
cess are all examples of program resources). A resource h ie rarchy  is a collection 
of hierarchically related program resources. For example,  the Process resource 
hierarchy views the running program as a set of processes. It consists of a root 
node that  represents all processes in the application, and some number  of child 
resources--one for each process in the running program.  Other examples  of re- 
source hierarchies are a Code hierarchy for the code view of the program,  a 
Machine hierarchy for the set of machines on which the application is running, 
and a Synchronization hierarchy for the set of synchronization objects in the ap- 
plication. An applicat ion 's  execution might be represented as the following set 
of resource hierarchies: {Process,  Machine ,  Code,  SyncObj} .  An individual 
resource is represented by a path  from its root node. For example,  the func- 
tion resource main is represented by the pa th  / C o d e / m a i n . C / m a i n .  I ts  pa th  
represents its relationship to other resources objects in the Code hierarchy. 

Since both the application program and the vir tual  machine can be viewed 
as executing programs,  we can represent each of their executions as a set of re- 
source hierarchies. For example,  AP ' s  execution might be represented by {Code,  
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Fig. 2. Example resource hierarchies for the virtual machine and application program. 

Th read ,  SyncObj}  (right half of Figure 2), and the virtual machine 's  execution 
might be represented as {Machine ,  Process ,  Code,  SyncOb j}  (left half of Fig- 
ure 2). The resource hierarchies in this figure represent AP and VM's  executions 
separately. However, there is an interaction between the execution of the two 
that  must  be represented. The relationship between the vir tual  machine and 
its input (AP) is that  VM runs AP. We represent the VM r u n s  AP relation- 
ship as an interaction between program resources of the two; code, process, and 
synchronization objects in the vir tual  machine interact with code, process, and 
synchronization objects in the application program during the interpreted execu- 
tion. The interpreted execution is the union of AP and VM resource hierarchies. 
Figure 3 is an example of an interpreted execution represented by {Machine ,  
Code,  Process ,  SyncObj ,  A P C o d e ,  A P T h r e a d s ,  A P S y n c O b j } .  

The application program's  multiple execution forms are represented by a set 
of sets of resource hierarchies-one set for each of the forms tha t  AP takes during 
its execution, and a set of mapping  functions that  map  resources in one form to 
resources in another form of AP. For example,  in a dynamical ly  compiled Java  
application, method functions may be translated from byte-code form to native 
code form during execution. Initially we create one AP Code hierarchy for the 
byte-code form of AP. As run-t ime t ransformations occur, we create a new AP 
code hierarchy for the native form of AP objects, and create mapping  functions 
that  map  resources in one form to resources in the other form. 

2.2 R e p r e s e n t i n g  P o i n t s  in  a n  I n t e r p r e t e d  E x e c u t i o n  

We can think of a program's  execution as a series of events. Executing an in- 
struction, waiting on a synchronization primitive, and accessing a memory  page 
are examples of events. Any event in the program's  execution can be represented 

Fig. 3. Resource hierarchies representing the execution of VM r u n s  AP. 
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as a subset of its act ive resources-- those resources that  are currently involved in 
the event. For example, if the event is "process 1 is executing code in function 
foo", then the resource / C o d e / m a i n . C / f o o  and the resource / P r o c e s s / p i d _ l  
are both  active when this activity is occurring. These single resource selections 
from a resource hierarchy are called constraints .  The activity specified by the 
constraint is active when its constraint function is true. 

Def in i t ion  1. A constraint is a single resource selection from a resource hierarchy. It 
represents a restriction of  the hierarchy to some subset of its resources. 

Defini t ion 2. A constraint function, constrain(r),  is a boolean funct ion  of resource 
r that is true when r is active. For example, constrain(/Process/pid_l)  is true when 
process 1 is active (i.e. running).  

Constraint  functions are resource-specific; all constraint functions test whether 
their resource argument  is active, but the type of test that  is done depends on 
the type of the resource argument.  The constraint function for a process resource 
will test whether the specified process is running. The constraint function for a 
function resource will test whether the program counter is in the function. Each 
resource hierarchy exports the constraint  functions for the resources in its hier- 
archy. For example,  Code. c o n s t r a i n ( / C o d e / m a i n .  C) is the constraint function 
applied to the Code hierarchy resource main .  C. 

Constraint  functions can be combined with AND and OR to create boolean 
expressions containing constraints on more than one resource. By combining one 
constraint from each resource hierarchy with the AND operator,  we represent 
different activities in the running program.  This representation is called a focus.  

Def in i t ion  3. A focus is a selection of  resources (one from each resource hierarchy). It 
represents an activity in the running program. A focus is active when all of  its resources 
are active (i.e., the A N D  of the constraint funct ions) .  

I f  the focus contains resources tha t  are refined on both VM and AP resource 
hierarchies, then it represents a specific par t  of vir tual  machine 's  execution of 
the application program. For example,  

< / M a c h i n e ,  / C o d e / m a i n . C / i n v o k e M e t h o d ,  / P r o c e s s / p l d _ l ,  / S y n c O b j ,  
/ A P C o d e / f o o . c l a s s / f o o ,  / A P T h r e a d s ,  / A P S y n c O b j >  

is a focus from Figure 3 that  represents when VM's  process 1 is executing func- 
tion invokeMethod,  and interpreting AP method  foo.  This activity is occurring 
when the corresponding constraint functions are all true. 

2.3 P e r f o r m a n c e  D a t a  for  I n t e r p r e t e d  E x e c u t i o n  

To describe performance da ta  tha t  measure the interaction between the appli- 
cation program and the virtual machine, we provide a mechanism to selectively 
constrain performance information to any par t  of the execution. There are two 
complementary  (and occasionally overlapping) ways to do this: constraints are 
either implicitly specified by metric functions or explicitly specified by loci. A 
metric function is a t ime-varying function that  measures some aspect of a pro- 
gram execution's performance. Metric functions consist of t ime or count func- 
tions combined with boolean expressions built f rom constraint functions and 
constraint operators. For example: 
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- C P U t i m e  = [ ]p rocessT ime / sec .  The amount of process time per second. 
- m e t h o d C a l l T i m e  ---- [ C o d e . c o n s t r a i n ( / C o d e / m a i n . C / i n v o k e M e t h o d ) ]  

p roces sT ime / sec .  The time spent in VM function invokeMethod. 
- io_wait ---- [ C o d e . c o n s t r a i n ( / C o d e / l i b e . s o / r e a d )  O R  Code .cons t r a in (  

/Code/libc.so/write)] wal lT ime / sec .  The time spent reading or writing. 

The second way to constrain performance da ta  is by specifying loci that  represent 
restricted locations in the execution. Foci with both VM and AP resources repre- 
sent an interaction between VM and AP. The focus < / C o d e / m a i n . C / f e t c h C o d e ,  
/APCode/foo.class/foo> represents the part  of the execution when the virtual 
machine is fetching AF code object foo. This part  of the execution is active when 
[Code. constrain(/Code/main.C/fetchCode) AND APCode. constrain( 
/ A P C o d e / f o o . c l a s s / f o o ) ]  is true. If  we combine metric functions with this 
focus, we can represent performance da ta  for the specified interaction. 

We represent performance da ta  as metric-focus pairs. The AND operator  is 
used to combine a metric with a focus. The  following are some example me t r i c -  
focus pairs (we only show those components  of the focus that  are refined beyond 
a hierarchy root node): 

1. C P U t i m e ,  < / A P C o d e / f o o . c l a s s / f o o > :  
[ ] processTime/sec A N D  [APCode. cons t ra in  (/APCode/foo. c lass / foo) ]  

2. C P U t i m e ,  </Code/main.C/invokeMethod,/APCode/foo.class/foo>: 
[ ] processTime/sec A N D  [Code. constrain( /Code/main.  C/invokeMethod) 
AND APCode. cons t ra in  (/APCode/foo. c lass / foo) ]  

3. m e t h o d C a l l T i m e ,  < / A P C o d e / f o o . c l a s s / f o o > :  
[Code. cons t ra in  (/Code/main. C/invokeMethod) ] processTime/sec 
A N D  [APCode. cons t ra in  (/APCode/foo. c lass / foo) ]  

Example  1 measures the amount  of process t ime spent in AP function foo .  
The performance measurements  in examples 2 and 3 are ident ica l - -both  measure 
the amount  of process t ime spent in VM function • while interpret- 
ing AP function foo .  However, example 2 is represented in a form that  is more 
useful to a VM developer and example 3 is represented in a form that  is more 
useful to an AP developer. Example  3 uses an VM-specific metric. VM-specific 
metric functions measure activities tha t  are specific to a particular vir tual  ma-  
chine. They are designed to present performance da ta  to an AP developer who 
may  have little or no knowledge of the virtual machine; they encode knowledge 
of the virtual machine in a representation that  is closer to the semantics of the 
application language. Thus, an AP developer can measure VM costs associated 
with the execution of their program without having to know the details of the 
implementat ion of the VM; the m e t h o d C a l l T i m e  metric encodes information 
about  the VM function invokeMethod tha t  is used to compute  its value. 

A final issue is representing performance da ta  for foci with application pro- 
gram resources. An AP object may  currently be in one form, while its perfor- 
mance da ta  should be viewable in any of its forms. To do this, AP mapping  
functions are used to m a p  performance da ta  tha t  is measured in one form of an 
AP object to a logical view of the same object in any of its other forms. 
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3 Measuring Interpreted Java Applications 

We present a tool for measuring the performance of interpreted Java  applica- 
tions and applets running on Sun's version 1.0.2 of the Java  VM [6]. The tool 
is an implementa t ion of our model for representing performance da ta  from an 
interpreted execution. 

The Java  VM is an abstract  stack-based processor architecture. A Java  pro- 
gram consists of a set of classes, each compiled into its own . c l a s s  file. Each 
method function is compiled into byte-code instructions tha t  the VM executes. 

To measure the performance of an interpreted Java  application or applet,  
our performance tool (1) discovers Java  program resources as they are loaded 
by the VM, (2) generates and inserts SPARC ins t rumentat ion code into Java  
VM routines, and (3) generates and inserts Java  byte-code ins t rumentat ion into 
Java  methods and triggers the Java  VM to execute the ins t rumentat ion code. 

Since the Java  VM performs delayed loading of class files, new classes can 
be loaded at any point during the execution. We insert ins t rumentat ion code in 
the VM that  notifies our tool when a new . c l a s s  file is loaded. We parse the 
VM's internal form of the class to create application program code resources for 
the class. At this point, instrumentat ion requests can be made for the class by 
specifying metr ic-focus pairs containing the class's resources. 

We use dynamic instrumentat ion [4] to insert and delete ins t rumentat ion into 
Java  method code and Java  VM code at any point in the execution. Dynamic  
instrumentat ion is a technique where instrumentat ion code is generated in the 
heap, a branch instruction is inserted from the function's  inst rumentat ion point 
to the instrumentat ion code, and the function's instructions that  were replaced 
by the branch are relocated to the heap and executed before or after the in- 
s t rumentat ion code. Because the SPARC instruction set has instructions to save 
and restore stack frames, the instrumentat ion code and the relocated instruc- 
tions can execute in their own stack frames. Thus ins t rumentat ion code will not 
destroy the values in the function's stack frame. 

Using this technique to instrument Java  methods  is complicated by the fact 
that  a method ' s  byte-code instructions push and pop operands f rom their own 
operand stack. Java  instrumentat ion code should use its own operand stack and 
have its own execution stack frame. The Java  instruction set does not contain 
instructions to explicitly save and restore execution stack frames or to create 
new operand stacks. Our solution uses a technique called transformational in- 
strumentation. This technique forces the Java  VM to create a new operand stack 
and execution stack f rame for our inst rumentat ion code. The  following are the 
t ransformational  instrumentat ion steps: 

1. The first time an instrumentation request is made for a method, relocate the 
method byte-code to the heap and expand its size by adding nop byte-code in- 
structions around each instrumentation point. The nop instructions will be replaced 
with branches to instrumentation code. 

2. Get the VM to execute the relocated method byte-code by replacing the first 
bytes in the original method with a goto_w byte-code instruction that branches to 
the relocated method. Since the goto_w instruction is inserted after the VM has 
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verified that this method byte-code is legal, the VM will execute this instruction 
even though it branches outside the original method function. 

3. Generate instrumentation code in the heap. We generate SPARC instrumentation 
code in the heap, and use Java's native methods facility to call our instrumentation 
code from the Java method byte-code. 

4. Insert method call byte-code instructions in the relocated method to call the native 
method function that will execute the instrumentation code. This will implicitly 
cause the VM to create a new execution stack frame and value stack for the in- 
strumentation code. 

4 R e s u l t s  

We present results from running a Java  application with our performance tool. 
The application is a CPU scheduling simulator that  consists of eleven Java  classes 
and approximately 1200 lines of Java  code. Currently, we can represent perfor- 
mance da ta  in terms of VM program resources, AP code resources, and the 
combination of VM and AP program resources using both  foci and VM-specific 
metrics to describe the interaction. Figure 4 shows the resource hierarchies from 
the interpreted execution, including the separate VM and AP code hierarchies. 

We began by looking at the overall CPU utilization of the program (about 
98%). We next tried to account for the par t  of the CPU t ime due to method 
call context switching and object creation in the Java  VM. To measure these, we 
created two VM-specific me t r i c s - -Me thodCa l l_CS  measures the t ime for the 
Java  VM to perform a method call context-switch, and obj_erea te  measures 
the t ime for the Java VM to create a new object. Both are a result of the VM 
interpreting certain byte-code instructions in the AP. We measured these values 
for the Whole Program focus (no constraints). As a result, we found that  a 
large portion (~  35%) of the total  CPU t ime is spent handling method context 
switching and object creation (Figure 5)1. 

Because of these results, we first tried to reduce the method  call context 
switching t ime by in-lining method functions. Figure 6 shows the method func- 
tions tha t  are accounting for the most  CPU t ime and the largest number  of 

a With CPU enabled for every Java class, about 45% is due to executing Java code, 
5% to method call context switching, and 40-45% to instrumentation overhead. 

Fig. 4. Resource Hierarchies from the interpreted execution. 
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Fig. 5. Time Histogram showing CPU utilization, object creation time, and method 
call context switching time. This graph shows that method call context switching time 
plus object creation time account for ,,~ 35% of the total CPU time. 

method function calls. We found that  the nextlnterrupt () and isBusy() meth-  
ods of the Dev ice  class were being called often, and were accounting for a rel- 
atively large amount  of total  CPU time. By examining the code we found tha t  
the Sire. now() method was also called frequently. These three methods  return 
the value of a private da ta  member ,  and thus are good candidates for in-lining. 
After changing the code to in-line calls to these three method  functions, the 
total  number  of method calls decreased by 31% and the total  execution t ime 
decreased by 12% (second row in Table 1). 

Fig. 6. AP classes and methods that account for the largest % CPU (left) and that 
are called the most frequently (right). The first column lists the focus, and the second 
column lists the metric value for the focus. 
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We next tried to reduce the object creation time. We examined the CPU 
time for the new version of the AP code, and found that  the Sire, Device ,  Job, 
and S t r i n g B u f f e r  classes accounted for most of the CPU time. The t ime spent 
in S t r i n g B u f f e r  methods is due to a large number of calls to the append and 
constructor methods made from the Sira and Device  classes. We were able to 
reduce the number of S t r i n g B u f f e r  and S t r i n g  objects created by removing 
strings that  were created but  never used, and by creating static data  members 
for parts of strings that  were recreated multiple times (in Dev ice .  s t o p ( )  and 
Device .  s t a r t  ()) .  With these changes we are able to reduce the total execution 
time by 70% (fourth row in Table 1). 

Table 1. Performance results from different versions of the application. 

Optimization Number of Number of Total Execution 
Method Calls Object Creates Time (in seconds) 

Original Version 13,373,200 465,140 389.29 
Method in-lining 9,213,400 (31% less) 465,140 343.99 (-12% change) 
Fewer Obj. Creates 9,727,800 (27% less) 17,350 (96% less) 234.13 (-40% change) 
Both Changes 5,568,100 (58% less) 17,350 113.60 (-70% change) 

In this example, our tool provided performance data  that  is difficult to ob- 
tain with other performance tools. Our tool provided performance data  that  
described expensive interactions between the Java VM and the Java applica- 
tion, and accounted for these costs in terms of AP resources. With this data,  we 
were easily able to determine what changes to make to the Java application to 
improve its performance. 

5 R e l a t e d  W o r k  

There are many general purpose program performance measurement tools [3, 5, 7, 
4] that  can be used to measure the performance of the virtual machine. However, 
these are unable to present performance data  in terms of the application program 
or in terms of the interaction between VM and AP. There are some performance 
tools that  provide performance data  in terms of AP's execution [1,2]. These tools 
provide performance data  in terms of Java application code. However, they do 
not represent performance data  in terms of the Java VM's execution or in terms 
of the interaction between the VM and the Java application. If the time values 
provided by these tools include Java VM method call, object creation, garbage 
collection, thread context switching, or class file loading activities in the VM, 
then performance data  that  explicitly represents this interaction between the 
Java VM and the Java application's execution will help an application developer 
determine how to tune his or her application. 
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6 Conclusion and Future Work 

This paper describes a new approach to performance measurement  of inter- 
preted executions that  explicitly models the interaction between the interpreter 
program and the interpreted application program so that  performance da ta  can 
be associated with any par t  of the execution. Performance da ta  is represented in 
terms that  either an application program developer or an interpreter developer 
can understand. 

Currently, we are working to expand our prototype to include a larger set of 
VM-specific metrics, AP thread and synchronization resource hierarchies, and 
support  for mapping  performance da ta  between different views of AP code ob- 
jects. With support  for AP thread and synchronization resources our tool can 
provide performance da ta  for mult i - threaded Java  applications. 
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