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Abs t rac t .  To optimize programs for parallel computers with distributed 
shared memory two main problems need to be solved: load balance be- 
tween the processors and minimization of interprocessor communica- 
tion. This article describes a new technique called data-driven scheduling 
which can be used on sequentially iterated program regions on parallel 
computers with a distributed shared memory. During the first execution 
of the program region, statistical data on execution times of tasks and 
memory access behaviour are gathered. Based on this data, a special 
graph is generated to which graph partitioning techniques are applied. 
The resulting partitioning is stored in a template which is used in subse- 
quent executions of the program region to efficiently schedule the parallel 
tasks of that region. Data-driven scheduling is integrated into the SVM- 
Fortran compiler. Performance results are shown for the Intel Paragon 
XP/S with the DSM-extension ASVM and for the SGI Origin2000. 

1 I n t r o d u c t i o n  

Parallel computers with a global address space share an important  abstraction 
appreciated by programmers as well as compiler writers: the global, linear ad- 
dress space seen by all processors. To build such a computer in a scalable and 
economical way, such systems usually distribute the memory with the proces- 
sors. Parallel computers with physically distributed memory but a global address 
space are termed distributed shared memory machines (DSM). Examples are SGI 
Origin2000, KSR-I ,  and Intel Paragon X P / S  with ASVM [3]). To implement the 
global address space on top of a distributed memory, techniques for multi-cache 
systems are used which distinguish between read and write operations. If proces- 
sors read from a memory location, the data  is copied to the local memory of that  
processor where it is cached. On a write operation of a processor, this processor 
gets exclusive ownership of this location and all read copies get invalidated. The 
unit of coherence (and therefore the unit of communication) is a cache line or 
a page of the virtual memory system. For this reason, care has to be taken to 
avoid false sharing (independent data objects are mapped to the same page). 
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There are two main problems to be solved for parallel computers with a 
distributed shared memory and a large number of processors: load balancing 
and minimization of interprocessor communication, Data-driven scheduling is 
a new approach to solve both problems. The compiler modifies the code such 
that  at run-time da ta  on task times and memory access behaviour of the tasks 
is gathered. With this data  a special graph is generated and parti t ioned for 
communication minimization and load balance. The parti t ioning result is stored 
in a template and it is used in subsequent executions of the program region to 
efficiently schedule the parallel tasks to the processors. 

The paper is organized as follows. After giving an overview of related work 
in section 2, section 3 gives an introduction to SVM-Fortran. In section 4 the 
concept of data-driven scheduling is discussed and in section 5 performance 
results are shown for an application executed on two different machines. Section 
6 concludes and gives a short outlook of further work. 

2 R e l a t e d  W o r k  

There are a number of techniques known for parallel machines which try to 
balance the load, or to minimize the interprocessor communication, or both. 

Dynamic scheduling methods are well known as an a t tempt  to balance the 
load on parallel computers,  usually for parallel computers with a physically 
shared memory. The most rigid approach is self scheduling [10] where each idle 
processor requests only one task to be executed. With Factoring [7]) each idle 
processor requests at the beginning of the scheduling process larger chunks of 
tasks to reduce the synchronization overhead. All of these dynamic scheduling 
techniques take in some sense a greedy approach and therefore they have prob- 
lems if the tasks at the end of the scheduling process have significantly larger 
execution times than tasks scheduled earlier. Another disadvantage is the local 
scheduling aspect with respect to one parallel loop only and the fact that  the 
data  locality aspect is not taken into account. 

There are several scheduling methods known which have a main objective 
in generating data  locality. Execute-on-Home [6] uses the information of a data  
distribution to execute tasks on that  processor to which the accessed data  is 
assigned (i.e. the processor which owns the data).  An efficient implementation 
of the execute-on-home scheduling based on data  distributions is often difficult 
if the da ta  is accessed in an indirect way. In that  case, run-time support  is neces- 
sary. CHAOS/PARTI  [13] (and in a similar manner RAPID [4]) is an approach to 
handle indirect accesses as it is for example common in sparse matr ix  problems. 
In an inspector phase the indices for indirection are examined and a graph is 
generated which includes through the edges the relationship between the data.  
Then the graph is parti t ioned and the data  is redistributed according to the 
partitioning. 

Many problems in the field of technical computing are modeled by the tech- 
nique of finite elements. The original (physical) domain is parti t ioned into dis- 
crete elements connected through nodes. A usual approach of mapping such 
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problems to parallel computers is the partitioning (e.g. [8]) of the resulting grid 
such that  equally sized subgrids are mapped to the processors. For regular grids, 
partitioning can be done as a geometric partitioning. Non-uniform computat ion 
times involved with each node and data  that  need to be communicated between 
the processors have to be taken into account in the parti t ioning step. The whole 
problem of mapping such a finite element graph onto a parallel computer  can 
be formulated as a graph parti t ioning problem where the nodes of the graph are 
the tasks associated which each node of the finite element grid and the edges 
represent communication demands. There are several software libraries available 
which can be used to parti t ion such graphs (e.g. Metis [8], Chaco [5], Party [9], 
JOSTLn [12]). 

Getting realistic node costs (i.e. task costs) is often difficult for non-uniform 
task execution times. Also, graph partitioners take no page boundaries into ac- 
count when they map finite element nodes onto the memory of a DSM-computer 
and thus they ignore the false sharing problem. [11] discusses a technique to 
reorder the nodes after the parti t ioning phase with the aim to minimize com- 
munication. 

3 S V M - F o r t r a n  

SVM-Fortran [2] is a shared memory parallel Fortran77 extension targeted mainly 
towards data  parallel applications on DSM-systems. SVM-Fortran supports coarse- 
grained functional parallelism where a parallel task itself can be da ta  parallel. 
A compiler and run-time system is implemented on several parallel machines 
such as lntel Paragon XP /S  with ASVM, SGI Origin2000, and SUN and DEC 
multiprocessor machines. 

SVM-Fortran provides standard features of shared memory parallel Fortran 
languages as well as specific features for DSM-computers. In SVM-Fortran the 
main concept to generate data  locality and to balance the load is the dedicated 
assignment of parallel work to processors, e.g. the distribution of iterations of a 
parallel loop to processors. 

Data locality is not a problem to be solved on the level of individual loops but  
it is a global problem. SVM-Fortran uses the concept of processor arrangements 
and templates as a tool to specify scheduling decisions globally via template dis- 
tributions. Loop iterations are assigned to processors according to the distribu- 
tion of the appropriate template element. Therefore, in SVM-Fortran templates 
are used to distribute the work rather than used to distribute the data  as it is 
done in HPF. Different to HPF,  it is not necessary for the SVM-Fortran-compiler 
to know the distribution of a template at compile time. 

4 Data-Driven Scheduling 

User-directed scheduling, where the user specifies the distribution of work to 
processors (e.g. specifying a block distribution for a template),  makes sense and 
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is efficient if the user has reliable information on the access behaviour (interpro- 
cessor communication) and execution times (load balance) of the parallel tasks 
in the application. But the prerequisite for this is often a detailed understanding 
of the program, all da ta  structures, and their content at run-time. If the effort to 
gain this information is too high or if the interrelations are too complex (e.g. in- 
direct addressing on several levels, unpredictable task execution times), the help 
of a tool or an automated scheduling is desirable. 

Data-driven scheduling tries to help the programmer in solving the load bal- 
ancing problem as well as the communication problem. Due to the way data- 
driven scheduling works, the new technique can be applied to program regions 
which are iterated several times (sequentially iterated program regions; see Fig. 1 
for an example). This type of program region is common in iterative algorithms 
(e.g. iterative solvers), nested loops where the outer loop has not enough paral- 
lelism, or nested loops where data  dependencies prohibit the parallel execution 
of the outer loop. The basic idea behind data-driven scheduling is to gather 
run-time data  on task execution times and memory access behaviour on the 
first execution of the program region, use this information to find a good sched- 
ule which optimizes communication and load balance, and use the computed 
schedule in subsequent executions of the program region. 

For simplicity, we restrict the description to schedule regions with one parallel 
loop inside, although more complex structures can be handled. Fig. 1 shows a 
small example program. This program is an artificial program to explain the 
basic idea. In a real program, the false sharing problem introduced with variable 
a could be easily solved with the introduction of a second array. In this example, 
the strategy to optimize for data  locality and therefore how to distribute the 
iterations of the parallel loop to the processors might differ dependent on the 
content of the index field ix.  On the other side, the execution t ime for each 
of the iterations might differ significantly based on the call to w o r k ( i )  and 
therefore load balancing might be a challenging task. Data-driven scheduling 
tries to model both optimization aspects with the help of a weighted graph. The 
compiler generates two different codes (code-l, code-2) for the program region. 

Code-1 is executed on the first execution of the program region 1. Beside the 
normal code generation (e.g. handling of PDOs), the code is further instrumented 
to gather statistics. At run-time, execution times of tasks and accesses to shared 
variables (marked with the VARS-attribute in the directive) are stored in parallel 
in distributed data structures. Reaching the end of the schedule region, the 
gathered data  is processed. A graph is generated by the run-time system where 
each node of the graph represents a task and the node weights are the task's 
execution time. To get a realistic value, measured execution times have to be 
subtracted by overhead times (measurement times, page miss times etc.) and 
synchronization times. 

To explain the generation of edges in the graph, have a look at Fig. 2(a) which 
shows the assignments done in the example program. Task 1 and 3 access page 1, 

I The user can reset a schedule region through a directive in which case code-1 is 
executed again, for example if the content of an index field has changed. 
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C --- simple, artificial example to explain the basic idea 

C --- a memory page shall consist of 2 words 

PARAMETER (n=4) 

REAL,SHARED,ALIGNED a(2,n) ! shared variable 

I N T E G E R  ix(n) ! index field 

DATA /ix/I,2,1,2 
C --- declare prec. field, template, and distribute template --- 

CSVM$ PROCESSORS:: proc(numproc()) 
CS VM$ TEMPLATE tempi(n) 
CSVM$ DISTRIBUTE (BLOCK) ONTO proc:: tempi 

C --- sequentially iterated program region --- 

DO iter=l ,niter 

C --- parallel loop enclosed in schedule region --- 

CS VM$ SCHED ULE_REGION(ID(1), VA RS(a)) 
CSVM$ PDO (STRATEGY (ON_HOME (tempi(i)))) 

D O  i=l ,n 

a(1,i) -- a(2,ix(i)) ! possible communication 

CALL work(i) ! possible load imbalance 

ENDDO 

CS VM$ SCHED ULE_REGION_END 
E N D D O  

Fig.  1. (Artificial) Example of a sequentially iterated program region. 

task h ~ = ~ 10 

task3: a(1,3) = ~ 
task4." a(1,4) = ~ 1 

access to page 1 

access to page 2 

(a) Executed assignments. 

n o : ~ : ~ S t o s t L ~  task number 

(b) Generated graph. 

Fig.  2. Memory accesses and resulting graph for example program. 

page 1 
page 2 
page 3 
page 4 
task time 

task #/:tasks 
1 2 3 4 

w/r  r 2 
w/ r  r 2 

w 1 
w 1 

10 10 10 10 

Fig.  3. Page accesses and task times (w=write access, re read  access). 
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task 2 and 4 access page 2 either with a read access or with a write access. Page 
j (j=3,4) is accessed only within task j. Table 4 shows the corresponding access 
table as it is generated internally as a distr ibuted sparse da ta  structure at run- 
time. The most  interesting column is labeled # t a s k s  and gives the number  of 
different tasks accessing a page. If  this entry is 1, no conflicts exist for this page 
and therefore no communicat ion between processors is necessary for this page, 
independent of the schedule of tasks to processors. If  two or more tasks access a 
page ( ~ t a s k s  > 1) of which at least one access is a write access, communicat ion 
might be necessary due to the multi-cache protocol if these tasks are not assigned 
to the same processor. This is modeled in the graph with an edge between the 
two tasks /nodes  with edge costs of one page miss. Fig. 2(b) shows the graph 
corresponding to the access table in table 4 (for this simple example,  task t imes 
are assumed 10 units and a page miss counts 1 unit). 

The handling of compulsory page misses is difficult as this depends on pre- 
vious da ta  accesses. If  the distribution of pages to processors can be determined 
at run t ime (e.g. in ASVM[3]) and if this distr ibution is similar for all i terations, 
then these misses can be modeled by artificial nodes in the graph which are 
pre-assigned to processors. 

In a next step, this graph is parti t ioned. We found that  multilevel algori thms 
as found in most  part i t ioning libraries give good results over a large variety of 
graphs. The  part i t ioning result (i.e. the mapp ing  of task i to processor j) is stored 
in the templa te  given in the PDO-directive. The da ta  gathering phase is done 
in parallel, but the graph generation and part i t ioning phase is done sequentially 
on one processor. We investigate to use parallel part i t ioners in the future. 

Code-2 is executed at the second and all subsequent executions of the pro- 
gram region and this code is optimized code without  any instrumentat ion.  The  
iterations of the parallel loop are distr ibuted according to the templa te  distri- 
bution which is the schedule found in the graph part i t ioning step. 

5 R e s u l t s  

We show performance results for the ASEMBL-program which is the assembly 
of a finite element mat r ix  done in a sequential loop modeling t ime steps as it 
is used in m a n y  areas of technical computing.  The results were obtained on an 
Intel Paragon X P / S  with the extension ASVM [3] implementing SVM in software 
(embedded in the MACH3 micro kernel) and on a SGI Origin2000 with a fast 
DSM-implementa t ion  in hardware. A multilevel algori thm with Kernighan-Lin 
refinement of the Metis l ibrary [8] was used for part i t ioning the graph. 

For the Paragon XP/S ,  a data  set with 900 elements was taken, and for 
the Origin2000 a da ta  set with 8325 elements was chosen. Due to a search loop 
in every parallel task, task times differ. The sparse mat r ix  to be assembled is 
allocated in the shared memory  region; the variable accesses are protected by 
page locks where only one processor can access a page but accesses to different 
pages can be done in parallel. The bandwidth  of the sparse mat r ix  is small, 
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therefore strategies which partition the iteration space in clusters will generate 
better data locality. 

Fig. 4 shows speedup values for the third sequential time step. Because of 
the relative small size of the shared array and the large page size on Paragon 
XP/S (8 KB), the performance improvements are limited to a small number of 
processors. 

On both systems, the performance with the Factoring strategy is limited 
because data locality (and communication) is of no concern with this strategy. 
Particularly on the Paragon system with high page miss times, this strategy 
shows no real improvements. Although the shared matrix has a low bandwidth 
and therefore the Block strategy is in favor, differences in task times cause load 
imbalances with the Block strategy. Data-driven Scheduling (DDS) performs 
better than the other strategies on both systems. 
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(a) Speedup on Paragon XP/S. (b) Speedup on SGI Origin2000. 

Fig. 4. Results for ASEMBL. 

6 S u m m a r y  

We have introduced data-driven scheduling to optimize interprocessor communi- 
cation and load balance on parallel computers with a distributed shared memory. 
With the new technique, statistics on task execution times and data sharing are 
gathered at run-time. With this data, a special graph is generated and graph 
partitioning techniques are applied. The resulting partitioning is stored in a 
template and used in subsequent executions of that program region to efficiently 
schedule the parallel tasks to the processors. We have compared this method 
with two loop scheduling methods on two DSM-computers where data-driven 
scheduling performs better than the other two methods. 
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Currently, we use deterministic values for all model parameters .  To refine our 
model, we plan to investigate into non-determinist ic  values, e.g. number  of page 
misses, page miss times. 
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