
Optimiz ing Load Balance and C o m m u n i c a t i o n
on Parallel Computers wi th Dis tr ibuted Shared

M e m o r y

Rudolf Berrendorf

Central Institute for Applied Mathematics
Research Centre J/ilich

D-52425 Jfilich, Germany
r . ber rendorfOfz- jue l ich , de

Abs t rac t . To optimize programs for parallel computers with distributed
shared memory two main problems need to be solved: load balance be-
tween the processors and minimization of interprocessor communica-
tion. This article describes a new technique called data-driven scheduling
which can be used on sequentially iterated program regions on parallel
computers with a distributed shared memory. During the first execution
of the program region, statistical data on execution times of tasks and
memory access behaviour are gathered. Based on this data, a special
graph is generated to which graph partitioning techniques are applied.
The resulting partitioning is stored in a template which is used in subse-
quent executions of the program region to efficiently schedule the parallel
tasks of that region. Data-driven scheduling is integrated into the SVM-
Fortran compiler. Performance results are shown for the Intel Paragon
XP/S with the DSM-extension ASVM and for the SGI Origin2000.

1 I n t r o d u c t i o n

Parallel computers with a global address space share an important abstraction
appreciated by programmers as well as compiler writers: the global, linear ad-
dress space seen by all processors. To build such a computer in a scalable and
economical way, such systems usually distribute the memory with the proces-
sors. Parallel computers with physically distributed memory but a global address
space are termed distributed shared memory machines (DSM). Examples are SGI
Origin2000, KSR-I , and Intel Paragon X P / S with ASVM [3]). To implement the
global address space on top of a distributed memory, techniques for multi-cache
systems are used which distinguish between read and write operations. If proces-
sors read from a memory location, the data is copied to the local memory of that
processor where it is cached. On a write operation of a processor, this processor
gets exclusive ownership of this location and all read copies get invalidated. The
unit of coherence (and therefore the unit of communication) is a cache line or
a page of the virtual memory system. For this reason, care has to be taken to
avoid false sharing (independent data objects are mapped to the same page).

300

There are two main problems to be solved for parallel computers with a
distributed shared memory and a large number of processors: load balancing
and minimization of interprocessor communication, Data-driven scheduling is
a new approach to solve both problems. The compiler modifies the code such
that at run-time da ta on task times and memory access behaviour of the tasks
is gathered. With this data a special graph is generated and parti t ioned for
communication minimization and load balance. The parti t ioning result is stored
in a template and it is used in subsequent executions of the program region to
efficiently schedule the parallel tasks to the processors.

The paper is organized as follows. After giving an overview of related work
in section 2, section 3 gives an introduction to SVM-Fortran. In section 4 the
concept of data-driven scheduling is discussed and in section 5 performance
results are shown for an application executed on two different machines. Section
6 concludes and gives a short outlook of further work.

2 R e l a t e d W o r k

There are a number of techniques known for parallel machines which try to
balance the load, or to minimize the interprocessor communication, or both.

Dynamic scheduling methods are well known as an a t tempt to balance the
load on parallel computers, usually for parallel computers with a physically
shared memory. The most rigid approach is self scheduling [10] where each idle
processor requests only one task to be executed. With Factoring [7]) each idle
processor requests at the beginning of the scheduling process larger chunks of
tasks to reduce the synchronization overhead. All of these dynamic scheduling
techniques take in some sense a greedy approach and therefore they have prob-
lems if the tasks at the end of the scheduling process have significantly larger
execution times than tasks scheduled earlier. Another disadvantage is the local
scheduling aspect with respect to one parallel loop only and the fact that the
data locality aspect is not taken into account.

There are several scheduling methods known which have a main objective
in generating data locality. Execute-on-Home [6] uses the information of a data
distribution to execute tasks on that processor to which the accessed data is
assigned (i.e. the processor which owns the data). An efficient implementation
of the execute-on-home scheduling based on data distributions is often difficult
if the da ta is accessed in an indirect way. In that case, run-time support is neces-
sary. CHAOS/PARTI [13] (and in a similar manner RAPID [4]) is an approach to
handle indirect accesses as it is for example common in sparse matr ix problems.
In an inspector phase the indices for indirection are examined and a graph is
generated which includes through the edges the relationship between the data.
Then the graph is parti t ioned and the data is redistributed according to the
partitioning.

Many problems in the field of technical computing are modeled by the tech-
nique of finite elements. The original (physical) domain is parti t ioned into dis-
crete elements connected through nodes. A usual approach of mapping such

301

problems to parallel computers is the partitioning (e.g. [8]) of the resulting grid
such that equally sized subgrids are mapped to the processors. For regular grids,
partitioning can be done as a geometric partitioning. Non-uniform computat ion
times involved with each node and data that need to be communicated between
the processors have to be taken into account in the parti t ioning step. The whole
problem of mapping such a finite element graph onto a parallel computer can
be formulated as a graph parti t ioning problem where the nodes of the graph are
the tasks associated which each node of the finite element grid and the edges
represent communication demands. There are several software libraries available
which can be used to parti t ion such graphs (e.g. Metis [8], Chaco [5], Party [9],
JOSTLn [12]).

Getting realistic node costs (i.e. task costs) is often difficult for non-uniform
task execution times. Also, graph partitioners take no page boundaries into ac-
count when they map finite element nodes onto the memory of a DSM-computer
and thus they ignore the false sharing problem. [11] discusses a technique to
reorder the nodes after the parti t ioning phase with the aim to minimize com-
munication.

3 S V M - F o r t r a n

SVM-Fortran [2] is a shared memory parallel Fortran77 extension targeted mainly
towards data parallel applications on DSM-systems. SVM-Fortran supports coarse-
grained functional parallelism where a parallel task itself can be da ta parallel.
A compiler and run-time system is implemented on several parallel machines
such as lntel Paragon XP /S with ASVM, SGI Origin2000, and SUN and DEC
multiprocessor machines.

SVM-Fortran provides standard features of shared memory parallel Fortran
languages as well as specific features for DSM-computers. In SVM-Fortran the
main concept to generate data locality and to balance the load is the dedicated
assignment of parallel work to processors, e.g. the distribution of iterations of a
parallel loop to processors.

Data locality is not a problem to be solved on the level of individual loops but
it is a global problem. SVM-Fortran uses the concept of processor arrangements
and templates as a tool to specify scheduling decisions globally via template dis-
tributions. Loop iterations are assigned to processors according to the distribu-
tion of the appropriate template element. Therefore, in SVM-Fortran templates
are used to distribute the work rather than used to distribute the data as it is
done in HPF. Different to HPF, it is not necessary for the SVM-Fortran-compiler
to know the distribution of a template at compile time.

4 Data-Driven Scheduling

User-directed scheduling, where the user specifies the distribution of work to
processors (e.g. specifying a block distribution for a template), makes sense and

302

is efficient if the user has reliable information on the access behaviour (interpro-
cessor communication) and execution times (load balance) of the parallel tasks
in the application. But the prerequisite for this is often a detailed understanding
of the program, all da ta structures, and their content at run-time. If the effort to
gain this information is too high or if the interrelations are too complex (e.g. in-
direct addressing on several levels, unpredictable task execution times), the help
of a tool or an automated scheduling is desirable.

Data-driven scheduling tries to help the programmer in solving the load bal-
ancing problem as well as the communication problem. Due to the way data-
driven scheduling works, the new technique can be applied to program regions
which are iterated several times (sequentially iterated program regions; see Fig. 1
for an example). This type of program region is common in iterative algorithms
(e.g. iterative solvers), nested loops where the outer loop has not enough paral-
lelism, or nested loops where data dependencies prohibit the parallel execution
of the outer loop. The basic idea behind data-driven scheduling is to gather
run-time data on task execution times and memory access behaviour on the
first execution of the program region, use this information to find a good sched-
ule which optimizes communication and load balance, and use the computed
schedule in subsequent executions of the program region.

For simplicity, we restrict the description to schedule regions with one parallel
loop inside, although more complex structures can be handled. Fig. 1 shows a
small example program. This program is an artificial program to explain the
basic idea. In a real program, the false sharing problem introduced with variable
a could be easily solved with the introduction of a second array. In this example,
the strategy to optimize for data locality and therefore how to distribute the
iterations of the parallel loop to the processors might differ dependent on the
content of the index field ix. On the other side, the execution t ime for each
of the iterations might differ significantly based on the call to w o r k (i) and
therefore load balancing might be a challenging task. Data-driven scheduling
tries to model both optimization aspects with the help of a weighted graph. The
compiler generates two different codes (code-l, code-2) for the program region.

Code-1 is executed on the first execution of the program region 1. Beside the
normal code generation (e.g. handling of PDOs), the code is further instrumented
to gather statistics. At run-time, execution times of tasks and accesses to shared
variables (marked with the VARS-attribute in the directive) are stored in parallel
in distributed data structures. Reaching the end of the schedule region, the
gathered data is processed. A graph is generated by the run-time system where
each node of the graph represents a task and the node weights are the task's
execution time. To get a realistic value, measured execution times have to be
subtracted by overhead times (measurement times, page miss times etc.) and
synchronization times.

To explain the generation of edges in the graph, have a look at Fig. 2(a) which
shows the assignments done in the example program. Task 1 and 3 access page 1,

I The user can reset a schedule region through a directive in which case code-1 is
executed again, for example if the content of an index field has changed.

303

C --- simple, artificial example to explain the basic idea

C --- a memory page shall consist of 2 words

PARAMETER (n=4)

REAL,SHARED,ALIGNED a(2,n) ! shared variable

I N T E G E R ix(n) ! index field

DATA /ix/I,2,1,2
C --- declare prec. field, template, and distribute template ---

CSVM$ PROCESSORS:: proc(numproc())
CS VM$ TEMPLATE tempi(n)
CSVM$ DISTRIBUTE (BLOCK) ONTO proc:: tempi

C --- sequentially iterated program region ---

DO iter=l ,niter

C --- parallel loop enclosed in schedule region ---

CS VM$ SCHED ULE_REGION(ID(1), VA RS(a))
CSVM$ PDO (STRATEGY (ON_HOME (tempi(i))))

D O i=l ,n

a(1,i) -- a(2,ix(i)) ! possible communication

CALL work(i) ! possible load imbalance

ENDDO

CS VM$ SCHED ULE_REGION_END
E N D D O

Fig. 1. (Artificial) Example of a sequentially iterated program region.

task h ~ = ~ 10

task3: a(1,3) = ~
task4." a(1,4) = ~ 1

access to page 1

access to page 2

(a) Executed assignments.

n o : ~ : ~ S t o s t L ~ task number

(b) Generated graph.

Fig. 2. Memory accesses and resulting graph for example program.

page 1
page 2
page 3
page 4
task time

task #/:tasks
1 2 3 4

w/r r 2
w/ r r 2

w 1
w 1

10 10 10 10

Fig. 3. Page accesses and task times (w=write access, re read access).

304

task 2 and 4 access page 2 either with a read access or with a write access. Page
j (j=3,4) is accessed only within task j. Table 4 shows the corresponding access
table as it is generated internally as a distr ibuted sparse da ta structure at run-
time. The most interesting column is labeled # t a s k s and gives the number of
different tasks accessing a page. If this entry is 1, no conflicts exist for this page
and therefore no communicat ion between processors is necessary for this page,
independent of the schedule of tasks to processors. If two or more tasks access a
page (~ t a s k s > 1) of which at least one access is a write access, communicat ion
might be necessary due to the multi-cache protocol if these tasks are not assigned
to the same processor. This is modeled in the graph with an edge between the
two tasks /nodes with edge costs of one page miss. Fig. 2(b) shows the graph
corresponding to the access table in table 4 (for this simple example, task t imes
are assumed 10 units and a page miss counts 1 unit).

The handling of compulsory page misses is difficult as this depends on pre-
vious da ta accesses. If the distribution of pages to processors can be determined
at run t ime (e.g. in ASVM[3]) and if this distr ibution is similar for all i terations,
then these misses can be modeled by artificial nodes in the graph which are
pre-assigned to processors.

In a next step, this graph is parti t ioned. We found that multilevel algori thms
as found in most part i t ioning libraries give good results over a large variety of
graphs. The part i t ioning result (i.e. the mapp ing of task i to processor j) is stored
in the templa te given in the PDO-directive. The da ta gathering phase is done
in parallel, but the graph generation and part i t ioning phase is done sequentially
on one processor. We investigate to use parallel part i t ioners in the future.

Code-2 is executed at the second and all subsequent executions of the pro-
gram region and this code is optimized code without any instrumentat ion. The
iterations of the parallel loop are distr ibuted according to the templa te distri-
bution which is the schedule found in the graph part i t ioning step.

5 R e s u l t s

We show performance results for the ASEMBL-program which is the assembly
of a finite element mat r ix done in a sequential loop modeling t ime steps as it
is used in m a n y areas of technical computing. The results were obtained on an
Intel Paragon X P / S with the extension ASVM [3] implementing SVM in software
(embedded in the MACH3 micro kernel) and on a SGI Origin2000 with a fast
DSM-implementa t ion in hardware. A multilevel algori thm with Kernighan-Lin
refinement of the Metis l ibrary [8] was used for part i t ioning the graph.

For the Paragon XP/S , a data set with 900 elements was taken, and for
the Origin2000 a da ta set with 8325 elements was chosen. Due to a search loop
in every parallel task, task times differ. The sparse mat r ix to be assembled is
allocated in the shared memory region; the variable accesses are protected by
page locks where only one processor can access a page but accesses to different
pages can be done in parallel. The bandwidth of the sparse mat r ix is small,

305

therefore strategies which partition the iteration space in clusters will generate
better data locality.

Fig. 4 shows speedup values for the third sequential time step. Because of
the relative small size of the shared array and the large page size on Paragon
XP/S (8 KB), the performance improvements are limited to a small number of
processors.

On both systems, the performance with the Factoring strategy is limited
because data locality (and communication) is of no concern with this strategy.
Particularly on the Paragon system with high page miss times, this strategy
shows no real improvements. Although the shared matrix has a low bandwidth
and therefore the Block strategy is in favor, differences in task times cause load
imbalances with the Block strategy. Data-driven Scheduling (DDS) performs
better than the other strategies on both systems.

"~-.-,, oos " ~
4.5-= - Block ~

3,5

~.

0,
1 2 4 6 8 10

Anzahl prozessoren

4O

35

30

25

15

10

5

0

c c DDS
~ _-

number of processors

(a) Speedup on Paragon XP/S. (b) Speedup on SGI Origin2000.

Fig. 4. Results for ASEMBL.

6 S u m m a r y

We have introduced data-driven scheduling to optimize interprocessor communi-
cation and load balance on parallel computers with a distributed shared memory.
With the new technique, statistics on task execution times and data sharing are
gathered at run-time. With this data, a special graph is generated and graph
partitioning techniques are applied. The resulting partitioning is stored in a
template and used in subsequent executions of that program region to efficiently
schedule the parallel tasks to the processors. We have compared this method
with two loop scheduling methods on two DSM-computers where data-driven
scheduling performs better than the other two methods.

306

Currently, we use deterministic values for all model parameters . To refine our
model, we plan to investigate into non-determinist ic values, e.g. number of page
misses, page miss times.

7 Acknowledgments

Reiner Vogelsang (SGI/Cray) and Oscar P la ta (University of Malaga) gave me
access to SGI Origin2000 machines. Heinz Bast (Intel SSD) supported me on
the Intel Paragon. I would like to thank the developers of the graph part i t ioning
libraries I used in my work, namely: George Karypis (Metis), Chris Walshaw
(Jostle), Bruce A. Hendrickson (Chaco), and Rober t Preis (Party) .

References

1. R. Berrendorf, M. Gerndt. Compiling SVM-Fortran for the Intel Paragon
XP/S. Proc. Working Conference on Massively Parallel Programming Models
(MPPM'95), pages 52-59, Berlin, October 1995. IEEE Society Press.

2. R. Berrendorf, M. Gerndt. SVM Fortran reference manual version 1.4. Technical
Report KFA-ZAM-IB-9510, Research Centre Jfilich, April 1995.

3. R. Berrendorf, M. Cerndt, M. Mairandres, S. Zeisset. A programming
environment for shared virtual memory on the Intel Paragon supercom-
puter. In Proc. Intel User Group Meeting, Albuquerque, NM, June 1995.
http ://www. cs. sandia, gov/ISUG/ps/pesvm, ps.

4. C. Fu, T. Yang. Run-time compilation for parallel sparse matrix computations. In
Proc. ACM [nt'l Conf. Supercomputing, pages 237-244, 1996.

5. B. Hendrickson, R. Leland. The Chaco user's guide, version 2.0. Technical Report
SAND95-2344, Sandia National Lab., Albuquerque, NM, July 1995.

6. High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion, 2.0 edition, January 1997.

7. S. F. Hummel, E. Schonberg, L. E. Flynn. Factoring - a method for schedufing
parallel loops. Comm. ACM, 35(8):90-101, August 1992.

8. G. Karypis, V. Kumar. Analysis of multilevel graph partitioning. Technical Report
95-037, Univ. Minnesota, Department of Computer Science, 1995.

9. R. Preis, R. Dieckmann. The P A R T Y Partitioning-Library, User Guide, Version
1.1. Univ. Paderborn, September 1996.

10. P. Tang, P.-C. Yew. Processor self-scheduling for multiple nested parallel loops. In
Proc. IEEE Int'l Conf. Parallel Processing, pages 528-535, August 1986.

11. K. A. Tomko, S. G. Abraham. Data and program restructuring of irregular appli-
cations for cache-coherent multiprocessors. In Proc. ACM Int'l Conf. Supercom-
puting, pages 214-225, July 1994.

12. C. Walshaw, M. Cross, M.G. Everett, S. Johnson, K. McManus. Partitioning &
mapping of unstructured meshed to parallel machine topologies. In Proe. Irregular
95: Parallel Algorithms for Irregularly Structured Problems, volume 980 of LNCS,
pages 121-126. Springer, 1995.

13. J. Wu, R. Das, J. Saltz, H. Berryman, S. Hiranandani. Distributed memory com-
piler design for sparse problems. IEEE Trans. Computers, 44(6), 1995.

