
Parallel Constant Propagation

Jens Knoop

Universit~t Passau, D-94030 Passau, Germany
knoop@fmi, uni-passau, de

phone: ++49-851-509-3090 fax: ++49-...-3092

Abstract . Constant propagation (CP) is a powerful, practically relevant
optimization of sequential programs. However, systematic adaptions to
the parallel setting are still missing. In fact, because of the computational
complexity paraphrased by the catch-phrase "state explosion problem",
the successful transfer of sequential techniques is currently restricted
to bitvector-based optimizations, which because of their structural sim-
plicity can be enhanced to parallel programs at almost no costs on the
implementation and computation side. CP, however, is beyond this class.
Here, we show how to enhance the framework underlying the transfer of
bitvector problems obtaining the basis for developing a powerful algo-
rithm for parallel constant propagation (PCP). This algorithm can be
implemented as easily and as efficiently as its sequential counterpart for
simple constants computed by state-of-the-art sequential optimizers.

1 M o t i v a t i o n

In comparison to automatic parallelization (cf. [15, 16]), optimization of parallel
programs attracted so far only little attention. An important reason may be that
straightforward adaptions of sequential techniques typically fail (cf. [10]), and
that the costs of rigorous, correct adaptions are unacceptably high because of the
combinatorial explosion of the number of interleavings manifesting the possible
executions of a parallel program. However, the example of unidirectional bitvector
(UBv) problems (cf. [2]) shows that there are exceptions: UBv-problems can be
solved as easily and as efficiently as for sequential programs (cf. [9]). This opened
the way for the successful transfer of the classical bitvector-based optimizations
to the parallel setting at Mmost no costs on the implementation and computation
side. In [6] and [8] this has been demonstrated for partial dead-code elimination
(cf. [7]), and partial redundancy elimination (cf. [11]).

Constant propagation (CP) (cf. [4, 3,12]), however, the application considered
in this article, is beyond bitvector-based optimization. CP is a powerful and
widely used optimization of sequential programs. It improves performance by
replacing terms, which at compile-time can be determined to yield a unique
constant value at run-time by that value. Enhancing the framework of [9], we
develop in this article an algorithm for parallel constant propagation (PCP).
Like the bitvector-based optimizations it can be implemented as easily and as
efficiently as its sequential counterpart for simple constants (SCs) (cf. [4, 3, 12]),
which are computed by state-of-the-art optimizers of sequential programs.

446

The power of this algorithm is demonstrated in Figure 1. It detects that y
has the value 15 before entering the parallel statement, and that this value is
maintained by it. Similarly, it detects that b, c, and e have the constant values
3, 5, and 2 before and after leaving the parallel assignment. Moreover, it detects
that independently of the interleaving sequence taken at run-time d and x are
assigned the constant values 3 and 17 inside the parallel assignment. Together
this allows our algorithm not only to detect the constancy of the right-hand side
terms at the edges 48, 56, 57, 60, and 61 after the parallel statement, but also
the constancy of the right-hand side terms at the edges 22, 37, and 45 inside
the parallel statement. We do not know of any other algorithm achieving this.

sO
l~)a:~2

2~x:~5

b := a + l d 9 " ~ ' ~ ' ~ b := x-a
| |

Fig. 1. The power of parallel constant propagation.

Importantly, this result is obtained without any performance penalty in com-
parison to sequential CP. Fundamental for achieving this is to conceptually de-
compose PCP to behave differently on sequential and parallel program parts.
Intuitively, on sequential program parts our PCP-algorithm coincides with its
sequential counterpart for SCs, on parallel program parts it computes a safe
approximation of SCs, which is tailored with respect to side-conditions allowing

447

us as for unidirectional bitvector problems to capture the phenomena of inter-
ference and synchronization of parallel components completely without having
to consider interleavings at all. Summarizing, the central contributions of this
article are as follows: (1) Extending the framework of [9] to a specific class of non-
bitveetor problems. (2) Developing on this basis a PCP-algori thm, which works
for reducible and irreducible control flow, and is as efficient and can as easily
be implemented as its sequential counterpart for SCs. An extended presentation
can be found in [5].

2 P r e l i m i n a r i e s

This section sketches our parallel setup, which has been presented in detail in [9].
We consider parallel imperative programs with shared memory and interleaving
semantics. Parallelism is syntactically expressed by means of a p a r statement.
As usual, we assume that there are neither jumps leading into a component
of a parallel s tatement from outside nor vice versa. As shown in Figure 1, we
represent a parallel program by an edge-labelled parallel flow graph G with node
set N, and edge set E. Moreover, we consider terms t E T, which are inductively
built from variables v E V, constants c E C, and operators op E O p of arity
r > 1. Their semantics is induced by an interpretation I = (D ' U {.1_, "1-}, Io),
where D' denotes a non-empty data domain, • and -1- two new data not in
D ~, and Io a function mapping every constant c E C to a datum Io(c) E D' ,
and every r -a ry operator o19 E Op to a total, strict function Io(op) : D r ~ D ,
D=~f D' U {_k, T} (i.e., Io(op)(dl, . . . , dr) = _k, whenever there is a j , 1 ~ j ~ r,
with dj = _1_). Z = { a I a : V --4 D } denotes the set of states, and a j_ the distinct
start state assigning • to all variables v E V (this reflects tha t we do not assume
anything about the context of a program being optimized). The semantics of
terms t E T is then given by the evaluation function g : T ~ (~ - + D). It is
inductively defined by: Vt E T Va E Z.

{ a(x) if t = x E V
Io(c) if t - - ---cEC
Io(op)(g(tl)(a), . . . , g(t ,) (a)) if t -- op(t l , . . . , tr)

In the following we assume D ~ C T, i.e., the set of data D ~ is identified with the
set of constants C. We introduce the state transformation function O, : E-+ ~,

_= x : = t, where O~(a)(y) is defined by g(t) (a) , if y = x , and by a(y) other-
wise. Denoting the set of all parallel program paths, i.e., the set of interleaving
sequences, from the unique start node s to a program point n by PP[s , n], the
set of states En being possible at n is given by Zn=df {0p(a • E PP[s ,n]} .
Here, 0p denotes the straightforward extension of t~ to parallel paths. Based on
~ we can now define the set Cn of all terms yielding a unique constant value
at program point n E N at run-time:

448

with gd=d/ {t �9 T lVa e S~. C(t)(~r) = d} for all d �9 D'. Unfortunately, even for
sequential programs gn is in general not decidable (cf. [12]). Simple constants
recalled next are an efficiently decidable subset of Ca, which is computed by
state-of-the-art optimizers of sequential programs.

3 Simple Constants

Intuitively, a term is a (sequential) simple constant (SC) (cf. [4]), if it is a program
constant or all its operands are simple constants (in Figure 2, a, b, c and d are
SCs, whereas e, though it is a constant of value 5, and f , which in fact is not
constant, are not). Data flow analysis provides the means for computing SCs.

a) 0 b)
a : = 2

i a [- -> 2
b : = a

1 a,b 1~-> 2
r := a+b
) a,b [--> 2, c I--> 4
d := a+l

a,b 1--> 2, c I--> 4, d I--> 3

b I--> 2, c [--> 4
r : = a+d

) b [--> 2, c [--> 4
f := a+b*c

a : = 3
a [_> 3, b i._> 2 ~ : ~

a F > 3, b I--> 2, c l - - r '4
d := c-2~

a I--> 3, b,d [--> 2, c I--~" 4

Fig. 2. Simple constants.

O

~ a := 2

b : = 2
a : = 3

c : = 4
c : = 4

d : = 3
d ? 2 ? : =

~ e := a+d

I f := a+8

D a t a Flow Analys i s . In essence, data flow analysis (DFA) provides informa-
tion about the program states, which may occur at a specific program point at
run-time. Theoretically well-founded are DFAs based on abstract interpretation
(cf. [1]). Usually, the abstract semantics, which is tailored for a specific problem,
is specified by a local semantic functional [] : E--+ (~--+ Z:) giving abstract
meaning to every program statement (here: every edge e E E of a sequential
or parMlel flow graph G) in terms of a transformation function on a complete
lattice (Z:, fq, E , / , T). Its elements express the DFA-information of interest.

Local semantic functionMs can easily be extended to capture finite paths.
This is the key to the so-called meet over all paths (MOP) approach. It yields
the intuitively desired solution of a DFA-problem as it directly mimics possible
program executions: it "meets" all informations belonging to a program path
leading from s to a program point n E N.

T h e MOP-Solution: Vlo e Z:. MOPlo(n) =[7 { [p](lo)IP E P[s, n] }

Unfortunately, this is in general not effective, which leads us to the maximal
fixed point (MFP) approach. Intuitively, it approximates the greatest solution

449

of a system of equations imposing consistency constraints on an annotation of
the program with DFA-information with respect to a start information 10 E s

mfp(n) = { l0 /f n = s
{ [(re, n) ~ (m f p (m)) l (m , n) E E } otherwise

The greatest solution of this equation system, denoted by mfp~o, can effectively
be computed, if the semantic functions ~ e], e E E, are monotonic, and s is of
finite height. The solution of the MFP-approach is then defined as follows:

T h e MFP-Solution: V lo E E V n E N. MFPIo (n)=dl mfPl 0 (n)

Central is now the following theorem relating both solutions. It gives sufficient
conditions for the correctness and even precision of the MFP-solution (cf. [3, 4]):

T h e o r e m 1 (Safe ty a n d Coincidence).

1. Safety: MFP(n) E MOP(n), if all ~ e], e E E, are monotonic.
2. Coincidence: MFP(n) = MOP(n), if all ~ e], e E E, are distributive.

Computing Simple Constants. Considering D a flat lattice as illustrated in
Figure 3(a), the set of states Z together with the pointwise ordering is a complete
lattice, too. The computation of SCs relies then on the local semantic functional

]sc : E - + (Z - + Z) defined by [e]sc=diOe for all e E E, with respect to the
start state a j . Because the number of variables occurring in a program is finite,
we have (cf. [3]):

L e m m a 1. ~ is of finite height, and all functions [e]sc, e E E, are monotonic.

Hence, the MFP-solution MFP~C~ of the SC-problem can effectively be com-
puted inducing the formal definition of (sequential) simple constants.

C8c__ psc , rn fp__ r . D I. sc ~ --df-~ --d/l~ E T I 3 d E E (t) (M F F ~ (n)) = d }

C ~,m~ {t E T I 3 d E D'. C(t) (MOP~(n))=d} in- Defining dually the set ~ -4f
duced by the MOP~-solution, we obtain by means of Theorem 1(1) (cf. [3]):

T h e o r e m 2 (S C -Cor r ec tne s s) . Vn E N. Cn _~ --nCSC'm~ _D -nCsc'mlP __-- CnSe .

a) T b)

�9 . .

..L

T

* " r . . " di. 1 d i di+! " " d i . j oo.

I I I) I
. . . d,.~ ... d~, ~ d~ . . . d~%...

•

Fig. 3. a), b) Flat (data) lattices, c) Extended lattice.

450

4 Parallel Constant Propagat ion

In a parallel program, the validity of the SC-property for terms occurring in a
parallel s tatement depends mutually on the validity of this property for other
terms; verifying it cannot be separated from the interleaving sequences. The costs
of investigating them explicitly, however, are prohibitive because of the well-
known state explosion problem. We therefore introduce a safe approximation of
SCs, called strong constants (StCs). Like the solution of a unidirectional bitveetor
(UBv) problem they can be computed without having to consider interleavings
at all. The computation of StCs is based on the local semantic functional ~]stc :
E--+ (~ - + Z) defined by ~e]stc(a)=d$Ostc(o -) for all e E E and a E ~ , where
O~ tc denotes the state transformation function of Section 2, where, however, the
evaluation function E is replaced by the simpler gstc, where gstc(t)(~r) is defined
by I0 (c), if t = c E C, and • otherwise. The set of strong constants at n, denoted
by C stc is then analogously defined to the set of SCs at n. v n ,

Denoting by ~'D=d] { Cstdld E D} U {IdD} the set of constant functions
Cstd on D, d E D, enlarged by the identity IdD on D, we obtain:

i e m m a 2. Ve E E Vv E V. ~eLt~lv E ~D\{CstT} , where Iv denotes the
restriction of [e Lt~ to v.

Intuitively, Lemma 2 means that (1) all variables are "decoupled": each vari-
able in the domain of a state a E Z can be considered like an (independent)
slot of a bitvector. (2), the transformation function relevant for a variable is
either a constant function or the identity on D. This is quite similar to UBv-
problems. There, for every bit (slot) of the bitvector the set of data is given
by the flat lattice B of Boolean t ru th values as illustrated in Figure 3(b), and
the transformation functions relevant for a slot are the two constant functions
and the identity on B. However, there is also an important difference..~'D is not
closed under pointwise meet: consider the pointwise meet of IdD and Cstd for
some d E D; it is given by the "peak"-function Pd with pal(x) = d, if x = d, and
• otherwise. These two facts together with an extension allowing us to mimic
the effect of pointwise meet in a setting with only constant functions and the
identity are the key for extending the framework of [9] focusing on the scenario
of bitvector problems to the scenario of StC-like problems.

4.1 Parallel Data Flow Analysis

As in the sequential case, the abstract semantics of a parallel program is specified
by a local semantic functional [~ : E - + (s --~ s giving meaning to its state-
ments in terms of functions on an (arbitrary) complete lattice s In analogy
to their sequential counterparts, they can be extended to capture finite parallel
paths. Hence, the definition of the parallel variant of the MOP-approach, the
PMOP-approach and its solution, is obvious:

T h e PMOP-Solution: Vlo E s PMOPlo(n) = ['-1 { [p]~(lo)IP E P P [s , n] }

451

The point of this section now is to show that as for UBv-problems, also for the
structurally more complex StC-like problems the PMOP-solution can efficiently
be computed by means of a fixed point computation.

StC-like problems. StC-like problems are characterized as UBv-problems by
(the simplicity of) their local semantic functional [] : E --+ (1/9 --+//9). It specifies
the effect of an edge e on a single component of the problem under consideration
(considering StCs, for each variable v E V), where /D is a flat lattice of some
underlying (finite) set /D ~ enlarged by two new elements _1_ and T (cf. Figure
3(a)), and where every function [e], e E E, is an element of ~K):df { Cstd I d E
1D} U {IdtD}. As shown before, SD is not closed under pointwise meet. The
possibly resulting peak-functions, however, are here essential in order to always
be able to model the effect when control flows together. Fortunately, this can
be mimiced in a setting, where all semantic functions are constant ones (or the
identity). To this end we extend/D to/Dx by inserting a second layer as shown
in Figure 3(c), considering then the set of functions 9v~x =dr (~ \ { I d ~ }) U
{Ida)• } U { Cstdp I d E K)}. The functions CStdp, d E/D ~, are constant functions
like their respective counterparts Cstd, however, they play the role of the peak-
functions p~, and in fact, after the termination of the analysis, they will be
interpreted as peak-functions.

Intuitively, considering StCs and synchronization, the "doubling" of functions
allows us to distinguish between components of a parallel statement assigning
a variable under consideration a unique constant value not modified afterwards
along all paths (Cstd), and those doing this along some paths (Cstd~). While for
the former components the variable is a total StC (or shorter: an StC) after their
termination (as the property holds for all paths), it is a partial StC for the latter
ones (as the property holds for some paths only). Keeping this separately in our
data domain, gives us the handle for treating synchronization and interference
precisely. E.g., in the program of Figure 1, d is a total StC for the parallel com-
ponent starting with edge 15, and a partial one for the component starting with
edge 35. Hence, d is an StC of value 3 after termination of the complete parallel
statement as none of the parallel "relatives" destroys this property established
by the left-most component because it is a partial StC of value 3, too, for the
right-most component, and it is transparent for the middle one. On the other
hand, d would not be an StC after the termination of the parallel statement, if,
let's say, d would be a partial StC of value 5 of the right-most component.

Obviously, all functions of) ~ x are distributive. Moreover, together with
the orderings ___seq and ~par displayed in Figure 4, they form two complete
lattices with least element Cst• and greatest element CstT, and least element
Cst• and greatest element Id~x, respectively. Moreover, Jr~) x is closed under
function composition (for both orderings). Intuitively, the "meet" operation with
respect to ~par models the merge of information in "parallel" join nodes, i.e., end
nodes of parallel statements, which requires that all their parallel components
terminated. Conversely, the "meet" operation modelling the merge of informa-
tion at points, where sequential control flows together, which actually would be
given by the pointwise (indicated below by the index "pw") meet-operation on

452

S e q u e n t i a l J o i n P a r a l l e l J o i n " Idvx

= = I - - seq - - par

. f i '
ldn , . . CSt i "~176 C s t Cst d Cst i+ "~ C s t d + ' ' " C S t d ~ C td~ I CS tdp C t d ~ 1 di~ j

t
�9 "" CStdp " ' " C s t p CStd~ Cst p " " C s t p , . . " ' " C s ' d " ' , Cst d Cst d Cst " ' " C s t d " ' "

~' ~. i i+ ,+J i . + �9 l ~ i "

C s t • C s t ~ .

Fig. 4. The function lattices for "sequential" and "parallel join".

functions of Zn), is here equivalently modelled by the "meet" operation with
respect to C seq. In the following we drop this index. Hence, ~ and C expand to
[Tseq and C__seq, respectively. Recalling Lemma 2 and identifying the functions
Cstdp, d 6]19', with the peak-functions Pd, we obtain for every sequential flow
graph G and start information out of Z:

L e m m a 3. V n e N. MOPpw (n) = MOP(n) = MFP(n)

Lemma 3 together with Lemma 4, of which in [9] its variant for bitvector prob-
lems was considered, are the key for the efficient computation of the effects of
"interference" and "synchronization" for StC-like problems.

L e m m a 4 (M a i n - L e m m a) . Let fi : Y r ~ x - + } : ~ x , 1 < i < q, q E IV, be
functions of Y ~ x . Then: 3 k 6 {1,...,q}. fq o ... o f2 o f l ----fk A V j e {k +
1, ..., q}. f j = Idl)x.

Interference. As for UBv-problems, also for StC-like problems the relevance of
Main Lemma 4 is that each possible interference at a program point n is due to a
single statement in a parallel component, i.e., due to a s tatement whose execution
can be interleaved with the statement of n's incoming edge(s), denoted as n's
interleaving predecessors IntPred(n) C_ E. This is implied by the fact tha t for
each e E IntPred(n), there is a parallel pa th leading to n whose last step requires
the execution of e. Together with the obvious existence of a path to n tha t does
not require the execution of any statement of IntPred(n), this implies tha t the
only effect of interference is "destruction". In the bitvector situation considered
in [9], this observation is boiled down to a predicate NonDestruct inducing the
constant function "true" or "false" indicating the presence or absence of an
interleaving predecessor destroying the property under consideration. Similarly,
we here define for every node n E N the function

Inter/erenceE# (n)=~/ [~{[e] le C IntPred(n) A ~ e] r I d a }

These (precomputable) constant functions Inter]erenceEff(n), n E N, suffice for
modelling interference.

453

Synchronization. In order to leave a parallel statement, all parallel compo-
nents are required to terminate. As for UBv-problems, the information required
to model this effect can be hierarchically computed by an algorithm, which only
considers purely sequential programs. The central idea coincides with that of
interprocedural DFA (cf. [14]): one needs to compute the effect of complete
subgraphs, in this case of complete parallel components. This information is
computed in an "innermost" fashion and then propagated to the next surround-
ing parallel statement. In essence, this three-step procedure ~A is a hierarchical
adaptation of the functional version of the MFP-approach to the parallel setting.
Here we only consider the second step realizing the synchronization at end nodes
of parallel statements in more detail. This step can essentially be reduced to the
case of parallel statements G with purely sequential components G1, . . . ,Gk.
Thus, the global semantics ~ Gi]]* of the component graphs Gi can be com-
puted as in the sequential case. Afterwards, the global semantics ~ G ~* of G is
given by:

~[G]* = [-]p~T{ ~Gi 1" I i e {1,. . . ,k} } (Synchronization)

Central for proving the correctness of this step, i.e., ~ G 4" coincides with the
PMOP-solution, is again the fact that a single statement is responsible for the
entire effect of a path. Thus, it is already given by the projection of this path
onto the parallel component containing the vital statement. This is exploited in
the synchronization step above. Formally, it can be proved by Main Lemma 4
together with Lemma 2 and Lemma 3, and the identification of the functions
CStdp with the peak-function Pd. The correctness of the complete hierarchical
process then follows by a hierarchical coincidence theorem generalizing the one
of [9]. Subsequently, the information on StCs on parallel program parts can be
fed into the analysis for SCs on sequential program parts. In spirit, this follows
the lines of [9], however, the process is refined here in order to take the specific
meaning of peak-functions represented by Cstd~ into account.

4.2 The Application: Parallel Constant Propagation

We now present our algorithm for PCP. It is based on the semantic functional
[]pcp : E ~ (S -+ S), where [e] is defined by ~ e]stc, if e belongs to a parallel
statement, and by ~ e]s~ otherwise. Thus, for sequential program parts, []pep
coincides with the functional for SCs, for parallel program parts with the func-
tional for StCs. The computation of parallel constants proceeds then essentially
in three steps. (1) Hierarchically computing (cf. procedure .4) the semantics of
parallel statements according to Section 4.1. (2) Computing the data flow infor-
mation valid at program points of sequential program parts. (3) Propagating the
information valid at entry nodes of parallel statements into their components.

The first step has been considered in the previous section. The second step
proceeds almost as in the sequential case because at this level parallel statements
are considered "super-edges", whose semantics (~[]~*) has been computed in the
first step. The third step, finally, can similarly be organized as the corresponding
step of the algorithm of [9]. In fact, the complete three-step procedure evolves as

454

an adaption of this algorithm. Denoting the final annotat ion computed by the
PCP-algori thm by Ann pcp : N -+ ~, the set of constants detected, called parallel
simple constants (PSCs), is given by

gPSC---{ te T I 3 d e D'. g(t)(Ann pcp) d)
n - - d] -~-

The correctness of this approach, whose power has been demonstrated in the
example of Figure 1, is a consequence of Theorem 3:

T h e o r e m 3 (P S C - C o r r e c t n e s s) . Vn C N. gn D CP 8c
- - - - n "

Aggressive PCP. P CP can detect the constancy of complex terms inside parallel
statements as e.g. of y + b at edge 45 in Figure 1. In general, though not in this
example, this is the source of second-order effects (cf. [13]). They can be captured
by incrementally reanalyzing affected program parts start ing with the enclosing
parallel statement. In effect, this leads to an even more powerful, aggressive
variant of PCP. Similar this holds for extensions to subscripted variables. We here
concentrated on scalar variables, however, along the lines of related sequential
algorithms, our approach can be extended to subscripted variables, too.

5 Conc lus ions

Extending the framework of [9], we developed a PCP-algori thm, which can be
implemented as easily and as efficiently as its sequential counterpart for SCs.
The key for achieving this was to decompose the algorithm to behave differently
on sequential and parallel program parts. On sequential parts this allows us to be
as precise as the algorithm for SCs; on parallel parts it allows us to capture the
phenomena of interference and synchronization without having to consider any
interleaving. Together with the successful earlier transfer of bitvector-based opti-
mizations to the parallel setting, complemented here by the successful transfer of
CP, a problem beyond this class, we hope that compiler writers are encouraged
to integrate classical sequential optimizations into parallel compilers.

References

1. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conf. Rec.
~th Symp. Principles of Prog. Lang. (POPL'77), pages 238 - 252. ACM, NY, 1977.

2. M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland, 1977.
3. J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta

Informatica, 7:309- 317, 1977.
4. G. A. Kildall. A unified approach to global program optimization. In Conf. Rec.

1st Symp. Principles of Prog. Lang. (POPL '~3), pages 194 - 206. ACM, NY, 1973.
5. J. Knoop. Constant propagation in explicitly parallel programs. Technical report,

Fak. f. Math. u. Inf., Univ. Passau, Germany, 1998.
6. J. Knoop. Eliminating partially dead code in explicitly parallel programs. TCS,

196(1-2):365 - 393, 1998. (Special issue devoted to Euro-Par'96).

455

7. J. Knoop, O. Riithing, and B. Steffen. Part ia l dead code elimination. In Proc.
ACM SIGPLAN Conf. on Prog. Lang. Design and Impl. (PLDI'g4), volume 29,6
of ACM SIGPLAN Not., pages 147 - 158, 1994.

8. J. Knoop, B. Steffen, and J. Vollmer. Code motion for parallel programs. In Proc.
of the Poster Session of the 6th Int. Conf. on Compiler Construction (CC'96),
pages 81 - 88. TR LiTH-IDA-R-96-12, 1996.

9. J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Trans. Prog. Lang. Syst., 18(3):268

- 299, 1996.
10. S. P. Midkiff and D. A. Padua. Issues in the optimizat ion of parallel programs. In

Proc. Int. Conf. on Parallel Processing, Volume II, pages 105 - 113, 1990.
11. E. Morel and C. Renvoise. Global optimization by suppression of part ia l redun-

dancies. Comm. ACM, 22(2):96 - 103, 1979.
12. J. H. Reif and R. Lewis. Symbolic evaluation and the global value graph. In Conf.

Ree. 4th Symp. Principles of Prog. Lang. (POPL '77), pages 104 - 118. ACM, NY,
1977.

13. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In Conf. Rec. 15th Syrup. Principles of Pro 9. Lang. (POPL '88),
pages 2 - 27. ACM, NY, 1988.

14. M. Sharir and A. Pnueli. Two approaches to interprocedural da t a flow analysis.
In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189 - 233. Prentice Hall, Englewood Cliffs, N J, 1981.

15. M. Wolfe. High performance compilers for parallel computing. Addison-Wesley,
NY, 1996.

16. H. Zima and B. Chapman. Supercompilers for parallel and vector computers.
Addison-Wesley, NY, 1991.

