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Abs t rac t .  Iteration space tiling is a common strategy used by paral- 
lelizing compilers and in performance tuning of parallel codes. We ad- 
dress the problem of determining the tile size that minimizes the total 
execution time. We restrict our attention to orthogonal tiling--uniform 
dependency programs with (hyper) parallelepiped shaped iteration do- 
mains which can be tiled with hyperplanes parallel to the domain bound- 
aries. Our formulation includes many machine and program models used 
in the literature, notably the BSP programming model. We resolve the 
optimization problem analytically, yielding a closed form solution. 

1 I n t r o d u c t i o n  

Tiling the iteration space [17, 7, 14] is a common method for improving the per- 
formance of loop programs on distributed memory machines. It may be used 
as a technique in parallelizing compilers as well as in performance tuning of 
parallel codes by hand (see also [6, 13, 10, 15]). A tile in the iteration space is a 
(hyper) parallelepiped shaped collection of iterations to be executed as a single 
unit, with the communication and synchronization being done only once per tile. 
Typically, communication are performed by send/receive calls and also serve as 
synchronization points. The code for the body contains no communication calls. 

The tiling problem can be broadly defined as the problem of choosing the 
tile parameters (notably the shape and size) in an optimal manner. It may 
be decomposed into two subproblems: tile shape optimization [5], and tile size 
optimization [2,6,9, 13] (some authors also a t tempt  to resolve both problems 
under some simplifying assumptions [14, 15]). In this paper, we address the tile 
size problem, which, for a given tile shape, seeks to choose the size (length along 
each dimension of the hyper parallelepiped) so as to minimize the total  execution 
time. We assume that  the dependencies are uniform, the iteration space (domain) 
is an n-dimensional hyper-rectangle, and the tile boundaries are parallel to the 
domain boundary (this is called orthogonal tiling). A sufficient condition for this 
that  in all dependence vectors, all non-zero terms have the same sign. Whenever 
orthogonal tiling is possible, it leads to the simplest form of code; indeed most 
compilers do not even implement any other tiling strategy. We show here that  
when orthogonal tiling is possible the tile sizing problem is easily solvable even 
in its most general, n-dimensional case. 
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Our approach is based on the two step model proposed by Andonov and 
Rajopadhye for the 2-dimensional case in [2], and which was later extended 
to 3 dimensions in [3]. In this model we first abstract  each tile by two simple 
parameters:  tile period, 7 9 and inter-tile latency, Z:. We then "instantiate" the 
abstract  model by accounting for specific architectural and program features, 
and analytically solve the resulting non-linear optimizat ion problem, yielding 
the desired tile size. In this paper we first extend and generalize our model to the 
case where an n-dimensional iteration space is implemented on a k-dimensionM 
(hyper) toroid (for any 1 < k < n - 1). We also consider a more general form 
of the specific functions for s and P.  These functions are general enough to not 
only include a wide variety of machine and program models, but also be used 
with the Bse model [11, 16], which is gaining wide acceptance as a well founded 
theoreticM model for developing architecture independent parallel programs.  

Being an extension of previous results, the emphasis of this paper  is on the 
new points in the mathemat ica l  framework and on the relations of our model to 
others proposed in the literature. More details about  the definitions, notat ions 
and their interpretations, as well about  some practical aspects of the experimen- 
tal validations are available elsewhere [1-3]. 

The  remainder of this paper  is organized as follows. In the following section we 
develop the model and formulate the abstract  optimizat ion problem. In Section 3 
we instantiate the model for specific machine and program parameters ,  and 
show how our model subsumes most of those used in the literature. In Section 4 
we resolve the problem for the simpler H K T  model which assumes tha t  the 
communicat ion cost is constant, independent of the message volume (and also 
a sub-case of the asP model, where the network bandwidth is very high). Next,  
in Section 5 we resolve the more general opt imizat ion problem. We present our 
conclusions in Section 6. 

2 Abstract Model Building 

We first develop an analytical performance model for the running t ime of the 
tiled program. We introduce the notat ion required as we go along. The original 
i teration space is an N1 • N2 • . . .  • N~ hyper-rectangle, and it has (at least 
n linearly independent) dependency vectors, d l , . . ,  din. The nonzero elements of 
the dependency vectors all have the same sign (say positive). Hence, orthogonM 
tiling is possible (i.e., does not induce any cyclic dependencies between the tiles). 
Let the tiles be ~1 x x~ • . . .  • x~ hyper-rectangles, and let q~ = ~ be the 
number  of tiles in the i-th dimension. The tile graph is the graph where each 
node represents a tile and each arc represents a dependency between tiles, and 
can be modeled 
hyper-rectangle. 
elements of the 
are unit vectors 

1 In general this 
some constant. 

by a uniform recurrence equation [8] over an ql x q2 x . . .  x qn 
I t  is well known that  if the z i ' s  are large as compared to the 
dependency vectors 1 , then the dependencies between the tiles 
(or binary linear combinations thereof, which can be neglected 

implies that the feasible value of each zi is bounded from below by 
For the sake of clarity, we assume that this is 1. 
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for analysis purposes wi thout  any loss of generality)�9 A tile can be identified by 
an index vector z = [Z l , . . . ,  z~]. Two tiles, z and z ~, are said to  be success ive ,  
if z - z  ~ is a unit  vector. A simple analysis [7] shows tha t  the earliest " t ime 
ins tant"  (counting a tile execution as one t ime unit) tha t  tile z can be executed 
i s t z  = z l  + . . . +  zn.  

We map  the tiles to Pl • P2 • - �9 �9 • Pk processors, arranged in a k d imensional  
hyper- toro id  2 (for k < n). The  m a pp i ng  is by project ion onto  the subspace 
spanned by k of  the n canonical  axes. To visualize this mapping ,  first consider 
the case when k = n - 1, where tiles are al located to processors by projec t ion  
along (without  loss of  generality) the n- th  dimension,  i.e., tile z is executed by 
processor [ z l , . . . , z ~ - l ] .  This yields a (virtual) array of  ql • q2 • . . .  • q ~ - i  
processors, each one executing all the tiles in the n- th  dimension.  In general 
Pi <_ qi, so this array is emulated by our Pl • P2 • . . -  • Pn-1 hyper - to ro id  by 
using mult iple passes (there are ~ passes in the i- th dimension) .  The  case when 
k < n - 1 is modeled by simply let t ing Pk+l : -  . . . .  Pn-1  = 1. 

The period,  7 ~ of a tile is defined as the t ime between executions of  corre- 
sponding instruct ions in two successive tiles (of the same pass) m a p p e d  to  the 
same processor. The  la tency ,  s between tiles is defined to be the t ime between 
executions of  corresponding instruct ions in two successive tiles m a p p e d  to  dif- 
f e r e n t  processors. Depending on the volume of  the d a t a  t r ansmi t t ed  and the 
na ture  of  the p rogram dependencies, the la tency m a y  be different for different 
dimensions of  the hyper-toroid,  and we use s  (for i = 1 . . . k )  to denote  the 
la tency in the i-th dimension. 

We assume tha t  by the t ime the first processor, 1 = [ 1 . . .  1], finishes com-  
pu t ing  its macro  column,  at least one of the "last" processors (i.e., one of 
[ 1 , . . . , p ~ , . . . , 1 ] ,  for 1 <_ i < k) has finished its first tile 3. In this case, pro- 

n 

cessor 1 can i m m e d i a t e l y  star t  another  pass. Let W = 1-[i=1 Ni denote  the to ta l  
�9 ~ . n 

compu ta t i on  volume, v = 1-[i-1 xi be the tile volume and P = 1--[i-1 Pi be the 
- -  �9 �9 r ~  - -  W 

to ta l  number  of  processors. The  total  number  of  tries is 1-[i=1 qi = -C" Let 

denote  Pi - 1, Pkk = ~ = 1  ~ and Vm~• = (1"-[~=1 N i ) / P .  

Let us first analyze a single pass. Each processor mus t  execute qn tiles, and 
this takes qn7 ) t ime. However, the last processor (i.e., the one wi th  coordina tes  
[Pl, P2, . . -Pk])  cannot  s tar t  because of the dependencies of  the tile graph.  Indeed,  
processor [Pl, 1 . . . ,  1] can only star t  at t ime (pl - 1)s processor [Pt, P 2 - . . ,  1], 
at  t ime (Pl - 1)/21 + (P2 - 1)s and hence processor [Pl, P 2 . . . ,  Pk] can only  s tar t  

its first pass at t ime ~ i = 1  pi i. 

w tiles, of  which Pq~ are executed in each pass, and hence there There are v 

are w--ix- passes. Because there is no idle t ime between passes, the last pass s tar ts  Pq,, 

2 This is just an abstract machine architecture. Our machine model is independent of 
the topology, since we will later assume that communication time is independent of 
distance and/or  contention. 

3 There is no loss of generality in this assumption�9 Were it not true, the processors 
would be idle between passes, and this would lead to a sub-optimal solution, this has 
been proved for 2 and 3 dimensions [2, 3] and the arguments carry over. 
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at time ( ~ w  _ 1) 5Oq~. Thus, the last processor starts executing its last macro 
k 

column at time instant ( p  W l )  Pqn+E~lZi .  It takesanotherT)qn time, 
n i = 1  

and hence the total running time and the corresponding optimization problem 
are as follows. 

k WP 
= p v  + (1) 

P r o b .  1: Minimize (1) in the feasible space, 
lower bounds may be other than 1, based on 
recurrence). 

n = e z I 1 

where ul = N, for i = 1 . . . k ,  and ui = Ni for k 
P~ 

Tr given below (recall that  the 
the dependencies of the original 

< < } (2) 

< i < n .  

3 M a c h i n e  a n d  P r o g r a m  S p e c i f i c  M o d e l  

We now "instantiate" P r o b .  1 for a specific program and machine architecture. 
The code executed for a tile is the standard loop: 

repeat 
receive(v1); receive(v2) ..... receive(vk) ; 
compute(body); 
send(vl); send(v2) ..... send(vk) ; 

end 

where v i  denotes the message transmitted in the i-th dimension. We will now 
determine P and s Our development is based on Andonov & Rajopadhye [1], 
and uses standard assumptions about low level behavior of the architecture and 
program [4]. The sole difference is that each tile now makes k systems calls to 
send (and receive) messages. A tile depends directly on its n neighbors in each 
dimension. The volume of data transfer along the i-th dimension is proportional 
to the (hyper) surface of the tile in that  dimension, i.e., YIj~i XJ "~ V/Xi" In 
the first k dimensions, this corresponds to an inter-processor communication, 
whereas in the dimensions k + 1 . . . n ,  the transfer is achieved through locM 
memory. Hence the period of a tile can be written as follows. 

P = k ( / 3 ~ + f ~ ) +  2TCv + a v  (3) 
k i = 1  

Here f ,  (rasp. fir) is the overhead of the send (rasp. r e c e i v e )  system call, re 
is the time (per byte) to copy from user to system memory, ~ is the computat ion 
time for a single instance of the loop body (we neglect the overhead of setting up 
the loop for each tile, as well as cache effects). Similarly, if 1/rt is the network 
bandwidth, the latency is as follows (see [2] for details). 
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V 

Xi 

= k f l ~ +  2r~v + a v + r t - -  (4) 
k i=1 Xi 

Note that  the/3~'s are subtracted because the r e c e i v e  occurs on a dif ferent 
processor, and when the sender and receiver are properly synchronized, the calls 
are overlapped. Substituting in Eqn. (1) and simplifying, we obtain 

k 1 k ~ 2roW ~ 1 
+ 

i = 1  xi  i=1 xi  ~ i : 1  xi  

W ~W 

+ 

(5) 

3.1 Simplifying Assumptions and Particular Cases 

The model of (5) is very general. One may want to specialize it for a number of 
reasons--say rendering the final optimization problem more tractable, or mod- 
eling a certain class of architectures or computations. It turns out that  many 
of these simply consist of choosing the parameters appropriately in the above 
function. 

The HKT model, first used by Hiranandani et al. [6], corresponds to setting 
fir = rc = rt = 0 (a slightly more general version consists of letting fir be 
nonzero). This model assumes that  communication cost is independent of the 
message size, but is dominated by the startup time(s) fls (and fir). 

At first sight this may seem an oversimplification. However, in addition to 
making the mathematical  problem more tractable, it is not far from the truth,  as 
corroborated by other authors [12, 13]. Indeed, experimental as well as analytic 
evidence [1] shows that  on machines such as the Intel Paragon the more accurate 
models yield no observable difference in the predictions. With rc = rt = 0, we 
obtain the H K T  cos t  f u n c t i o n :  

,~W W (~v + k ~ s ) ~  (6) 
Tk( ) = - -U  + k(Z  + Z,) + 

The BSP model [11,16] has been proposed as a formal model for developing 
architecture independent parallel programs. It is a bridge between the PRAM 
model which is general but somewhat unrealistic, and machine-specific models 
which lead to lack of portability and predictability of performance. Essentially, 
the computation is described in terms of a sequence of "super-steps" executed 
in parallel by all the processors. A super-step consists of (i) some local compu- 
tation, (ii) some communication events launched during the super-step, and (iii) 
a synchronization which ensures that  the communication events are completed. 
The time for a super-step is the sum of the times for each of the above activities. 
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This is very similar to our tile model: indeed, if we simply set rt = fir = 0 and 
fls = k ~ (• is the BSP synchronization cost) we obtain the running t ime of the 
program under the BSP model. With this simplification, we obtain the B S P  
cost func t ion  as follows. 

~k(~) = - p -  + ~ + (~v + ~ ) E  + 2re E v  + - (7) 
i = 1  x i  

In the BSP model, the communication startup cost is replaced by the syn- 
chronization cost. However, in our general cost function (5) we incur the s tar tup 
cost k times. As a result, if we take a particular case of the BSP model where 
the network bandwidth is extremely high (the communication t ime is dominated 
by the synchronization cost), then this high bandwidth B S P  cost . function 
is given as follows (it is similar but not identical to the H K T model). 

Tk(~) = - 7  + + (~v + ~)E (S) 

With some other simple modifications, our cost function can also model the 
overlap of communication and computation, which is often used as a performance 
tuning strategy. This is not detailed here due to space constrMnts. 

4 S o l u t i o n  f o r  H K T  a n d  H i g h  B a n d w i d t h  B S P  M o d e l s  

In this section, we will focus only on the simple models (6, 8). Our main results 
are that  the optimal tile volume and the dimension of optimal virtual architecture 
can be determined as a closed form solution. These results serve two important  
purposes, in spite of the apparent simplicity of the model. First, they are valid 
for a number of current machines where the communication latency and network 
bandwidth are both relatively high (such as the Intel Paragon, and a number of 
similar machines as well as networks of workstations). Second, they give a good 
indication of our solution method for the more general results. We first solve 
the problem for the HKT model, and then show how the high bandwidth BSP 
model follows almost directly. 

4.1 O p t i m a l  T i l e  V o l u m e  

It is easy to see that  the running time (6) depends only on the tile volume and 
A is a strictly convex function of the form Tk(v) = V + Bv + C, which attains its 

optimal value of C + 2 Av/-A--B at ~ = C A .  By substituting we obtain 

V PaPk (9) 

Tk= p ~  ~ W + k ~ E + 2  ~ ~ +p~")wpk (10) 
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The optimal solution will be as given above i f7  is a feasible tile volume. Now, 
observe that  each xi is bounded from above by -~ and hence v < w .  Since W 

grows much faster than P,  we have 1 < ~" < w asymptotically. Hence we have 
the following result. 

T h e o r e m  1. The optimal tile volume and the corresponding running time for 
the HKT model are given by (9-10). 

4.2 O p t i m a l  A r c h i t e c t u r e  

So far, we have assumed that k is a fixed constant as are each o f  the Pi 's. In prac- 
tice, we typically have P processors, and the values of each pi are not specified, 
and neither is k, and we now solve this problem. Note that  the dominant  term 
in (10) is - ~ ,  the "ideal" parallel t ime with no overhead. The ideal architecture 

will seek to minimize the overhead whose dominant term is O ( ~ / w ) .  
g - - . . . . .  

From (10) it can be easily deduced that  for a given k and P,  the optimal 

architecture is the one that  minimizes Pkk, i.e., the torus with Pi = ~/-fi. Sub- 
stituting this in (10), the coefficient of the overhead term is proportional  to the 

= k P~- Thus ~kk is minimized for the square root of the function f (k ,  P)  2 1 _ k2" 
value of k that minimizes f ( k ,  P),  i.e., k* = 0.625 In P.  Since f ( k ,  P)  is monoton- 
ically decreasing up to k* (for each P)  and monotonically increasing thereafter, 
we have the following result. 

C o r o l l a r y  1. I f  n < [k*] the optimal architecture is a balanced n - 1 dimen- 
sional torus, and for n > [k*] it is either a balanced [k*] or a [k*] dimensional 
torus depending respectively on whether f ( [k*] ,  P) is smaller than f ( [k*J ,  P) or 
not. 

It is thus clear that  as the number of processors grows, the optimal archi- 
tecture tends towards an n - 1 dimensional hyper-torus. However, k* grows 
logarithmically with P,  and for a limited number of processors (most practical 
cases), the optimal may not be n -  1 dimensional. Indeed, the sensitivity of k* 
with respect to number of processors P is illustrated by the following: for up 
to 25 processors, the optimal architecture is a linear array, from 25-130 it is 
2-dimensional, for 130-650 processors it is a 3-dimensional, etc. 

The extension of these results to the high bandwidth BSP model (Eqn 8) is 
straightforward, and indeed the mathematical  t reatment  is a little simpler. The 
solution is the same as that  given by (9-10), but with k,/3, and/3s respectively 
equal to 1, 0 and /3. The sole subtle difference is that  the function f ( k ,  P)  is 
k P  1 / k -  k, and hence k* = +oo, i.e., f ( k ,  P)  is monotonically decreasing. Hence, 
the optimal architecture is always a balanced n - 1 dimensional torus. 

Finally, note that  the optimization of the processor architecture yields a 
second order improvement-- i t  does not affect the dominant  term -g-~-. 
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5 S o l u t i o n  for  t h e  B S P  C o s t  F u n c t i o n  

We now solve our optimization problem for the BSP cost function (7) in the 
feasible space specified by (2). We will show that  our problem can be decom- 
posed into two special cases. The first case is very similar to the H K T  model, but  
the second one is more complicated, for which we first solve the corresponding 
unconstrained optimization problem and then determine where the constrained 
solution lies. Finally, we show that  the second solution is globally opt imM asymp- 
toticMly. 

L e m m a  1. The minimum of (7) over conv(7~) is attained at: 

either x~ = N_~ for i = 1 k 
P i  ' " ' "  

or x ~ = l ,  for i = k + l . . . n  

Proof. Let v be an arbi trary feasible volume and let there exist two indices l, m 
for I < k, k + 1 _< m _< n such that  xt < Nl/p~ and xm > 1. Then by increasing 
xl, decreasing x~n and keeping their product  constant,  the function (7) strictly 
decreases and we obtain the needed. | 

Based on this, we have to look for the solution in the two regions of Tr 
corresponding to the above two conditions. Let T r  TCNxl = N_~ for i = 1 . . .  k, 

P~ 
and T~2 = T~ VIxi = 1 for i = k + 1 . . . n .  

5.1 C a s e  I 

The  cost function in region T~I can be simplified to 

w Zw 
T k ( , )  = (a + 2vcNk)-~ + flPkk + --~v + (a + 2rcNkk)~V (11) 

k 
where N k = ~ i = l  N~(" We can now use the same reasoning as in Section 4, and 
obtain the opt imal  volume and running t ime as follows: 

~ - -  w . , , / ~ w ~  
~ =  ~ W  and Tk = (a + 2~-cNk)--~ + f l ~  . z V p (12) 

where w -- (~ 4- 2"rcNk)Pk. As before, appropriate  values for xk+l . . . z n  in T~I 
tha t  yield the opt imal  volume are all equivalent. Observe tha t  in (12) we have 

a factor 2vcNk in the dominant  term, and this turns out to be impor tan t  as we 
shall see later. 

5.2 Case  I I  

k Let us now consider region ~2 .  Here, v -- r I i= l  xi, but the cost function remains 
the same as (7), except that  we have only k variables to solve for. We obtain the 
solution in two steps. 



488 

U n c o n s t r a i n e d  O p t i m i z a t i o n  We first solve the problem in the entire positive 
orthant,  without any constraints. This can be formulated as follows. 

P r o b .  2: Minimize (7) in the feasible space T~_ = { [ x l . . . x k ]  T I xi >_ 0}. 
k Let Hv be the hyperboloid defined by {x G 7~_ ] I'L'=I xi = v}. Observe 

that  the set of families Hv is a parti t ion of 7~_, i.e., 7 ~  = U H~, and hence 

minTk(x)  = minminTk(x) .  Thus, we first minimize (7) for a given tile volume 
R~_ v H ~  

(i.e., over a given hyperboloid H . )  and then choose the volume. Now, observe 
1 whose minimum is at tained at that  for a fixed v, (7) is of the form A +  B ~ i  ~-7 

E H v , x l  = x2 . . . . .  xk. Hence, for a given tile volume, v, the optimal  tile 
k 1 k 

shape is (hyper) cubic with xi = ~ ,  for each i =  1 . . . k .  Thus, E xi - ~/~' 
i = 1  

and we can define, 

= minT(. , )  = A + Bv + 2 ,-cPkv + kZ)v-  + - -g-  + (13) 
/-/,~ V 

where A = ~ B -- c~Pk, and D = 2r~w Now we have to determine the p , p �9 

optimal tile volume by minimizing f (v)  in the feasible space, 1 < v < Vm~• It 
:an easily be shown that f(v) is an unimodal function and attains its minimum 

the root of f~(v) = 0. Unfortunately this is not easily obtained in closed form 
:t it is quite well approximated by the root of the function h(v) = =._#_A + B + 

/ A~D Thus, we obtain the following 2 r c ( k - 1 ) P k -  D,  whose zero is at V2,o(k_l)jy + B . 

(approximate) optimal solution of the unconstrained problem. 

v ~ and Tk ,~ 7 -  + 2krc + O (14) 

where 7 = (~+2Tc)/((2Tc(k--1)+a)Pk). Of course we could always determine 
an exact solution if needed, but we have found the approximate solution to 
be reasonable in practice. Moreover, as we shall see later, it illustrates some 
interesting points. Also recall that  in the problem as we have resolved so far, we 
assume that  k and the pi's are fixed, as also the choice of which of the Ni's to 
map to the processor space. 

C o n s t r a i n e d  O p t i m i z a t i o n  We now address the question of the restrictions on 
the optimal solution imposed by the feasibility constraints (2) namely 1 < xi < 
ui. Note that  the unconstrained (global) optimal solution is on the intersection 
of the line defined by the vector 1, and the hyperboloid H7, where ~" is the 
optimal tile volume (14). If this intersection is outside the feasible space (2) we 
will need to solve the constrained optimization problem. We have observed that  
the optimal running time is extremely sensitive to the tile volume, and much less 
dependent on the particular values of xi (indeed this is predicted by the H K T 
model). We have the following cases 
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Case A: ~ > Vma x In this case, the optimal volume hyperboloid does not inter- 
sect the feasible space, and according to the properties of the function f ( v )  the 
optimal tile size is given by xi -- N~ for i = 1 .. k. However, note that  since 

= O ( x / - W ~ )  while vm~• = O ( W / P ) ,  this case is unlikely. 

Case B: ~ <_ Vm~• Now, H~" has a non-empty intersection with (2) and so our 
heuristic is to choose a solution by moving one of the xi's such that  we move 
within the feasible region. 

5.3 W h e r e  is t h e  G l o b a l  O p t i m u m ?  

The  optimal solutions for the two cases are given, respectively by (12) for region 
7~1 and by (14) for region T~2. Most authors [6, 13, 12] have only considered 
region 7~1 either implicitly by not posing the problem in full generality, or by 
erroneously claiming that the solution is always in 7~a. This is incorrect because 
the final solution will always asymptotically be in 7~2, due to the additional 
factor, 2yeN{ in the dominant term in (12) as compared to (14). The following 
simple example illustrates the prediction of lemma 1: for n = 3, k = 2, Pl = P2 -- 
4, ~ - fl = vc = 10 -6, N1 = 50, N2 --- Na = 1000, the optimal t ime in 7~1 is 1.8 
while that  in 7~2 is 1.5. More illustrative instances with real da ta  can be found 
in [3]. 

6 C o n c l u s i o n s  

We addressed the problem of finding the tile size that  minimizes the running t ime 
of SPMD programs. We formulated a discrete non-linear optimization problem 
using first an abstract model and then specific machine model. The resulting cost 
function is general enough to subsume most of those in the literature, includ- 
ing the BSP model. We then anMytically solved the resulting discrete nonlinear 
optimization problem, yielding the desired solution. 

There are a number of open questions. The first one is the direct extension 
to the non orthogonal case (when the tiles boundaries cannot be parallel to the 
domain boundaries). We have addressed this elsewhere (for the 2-dimensional 
case) and formulated a non-linear optimization problem [2], but  a closed form 
solution is not available. Finally, experimental validation on a number of target  
machines is the subject of our ongoing work. 
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