
Optimal Orthogonal Tiling

Rumen Andonov i, Sanjay Rajopadhye 2, and Nicola Yanev a

1 LIMAV, University of Valenciennes, France. andonov@univ-valenciennes.fr
2 lrisa, Rennes, France. Sanj ay. Rajopadhye@irisa. f r
3 University of Sofia, Bulgaria. choby@raath.acad.bg

Abs t rac t . Iteration space tiling is a common strategy used by paral-
lelizing compilers and in performance tuning of parallel codes. We ad-
dress the problem of determining the tile size that minimizes the total
execution time. We restrict our attention to orthogonal tiling--uniform
dependency programs with (hyper) parallelepiped shaped iteration do-
mains which can be tiled with hyperplanes parallel to the domain bound-
aries. Our formulation includes many machine and program models used
in the literature, notably the BSP programming model. We resolve the
optimization problem analytically, yielding a closed form solution.

1 I n t r o d u c t i o n

Tiling the iteration space [17, 7, 14] is a common method for improving the per-
formance of loop programs on distributed memory machines. It may be used
as a technique in parallelizing compilers as well as in performance tuning of
parallel codes by hand (see also [6, 13, 10, 15]). A tile in the iteration space is a
(hyper) parallelepiped shaped collection of iterations to be executed as a single
unit, with the communication and synchronization being done only once per tile.
Typically, communication are performed by send/receive calls and also serve as
synchronization points. The code for the body contains no communication calls.

The tiling problem can be broadly defined as the problem of choosing the
tile parameters (notably the shape and size) in an optimal manner. It may
be decomposed into two subproblems: tile shape optimization [5], and tile size
optimization [2,6,9, 13] (some authors also a t tempt to resolve both problems
under some simplifying assumptions [14, 15]). In this paper, we address the tile
size problem, which, for a given tile shape, seeks to choose the size (length along
each dimension of the hyper parallelepiped) so as to minimize the total execution
time. We assume that the dependencies are uniform, the iteration space (domain)
is an n-dimensional hyper-rectangle, and the tile boundaries are parallel to the
domain boundary (this is called orthogonal tiling). A sufficient condition for this
that in all dependence vectors, all non-zero terms have the same sign. Whenever
orthogonal tiling is possible, it leads to the simplest form of code; indeed most
compilers do not even implement any other tiling strategy. We show here that
when orthogonal tiling is possible the tile sizing problem is easily solvable even
in its most general, n-dimensional case.

481

Our approach is based on the two step model proposed by Andonov and
Rajopadhye for the 2-dimensional case in [2], and which was later extended
to 3 dimensions in [3]. In this model we first abstract each tile by two simple
parameters: tile period, 7 9 and inter-tile latency, Z:. We then "instantiate" the
abstract model by accounting for specific architectural and program features,
and analytically solve the resulting non-linear optimizat ion problem, yielding
the desired tile size. In this paper we first extend and generalize our model to the
case where an n-dimensional iteration space is implemented on a k-dimensionM
(hyper) toroid (for any 1 < k < n - 1). We also consider a more general form
of the specific functions for s and P. These functions are general enough to not
only include a wide variety of machine and program models, but also be used
with the Bse model [11, 16], which is gaining wide acceptance as a well founded
theoreticM model for developing architecture independent parallel programs.

Being an extension of previous results, the emphasis of this paper is on the
new points in the mathemat ica l framework and on the relations of our model to
others proposed in the literature. More details about the definitions, notat ions
and their interpretations, as well about some practical aspects of the experimen-
tal validations are available elsewhere [1-3].

The remainder of this paper is organized as follows. In the following section we
develop the model and formulate the abstract optimizat ion problem. In Section 3
we instantiate the model for specific machine and program parameters , and
show how our model subsumes most of those used in the literature. In Section 4
we resolve the problem for the simpler H K T model which assumes tha t the
communicat ion cost is constant, independent of the message volume (and also
a sub-case of the asP model, where the network bandwidth is very high). Next,
in Section 5 we resolve the more general opt imizat ion problem. We present our
conclusions in Section 6.

2 Abstract Model Building

We first develop an analytical performance model for the running t ime of the
tiled program. We introduce the notat ion required as we go along. The original
i teration space is an N1 • N2 • . . . • N~ hyper-rectangle, and it has (at least
n linearly independent) dependency vectors, d l , . . , din. The nonzero elements of
the dependency vectors all have the same sign (say positive). Hence, orthogonM
tiling is possible (i.e., does not induce any cyclic dependencies between the tiles).
Let the tiles be ~1 x x~ • . . . • x~ hyper-rectangles, and let q~ = ~ be the
number of tiles in the i-th dimension. The tile graph is the graph where each
node represents a tile and each arc represents a dependency between tiles, and
can be modeled
hyper-rectangle.
elements of the
are unit vectors

1 In general this
some constant.

by a uniform recurrence equation [8] over an ql x q2 x . . . x qn
I t is well known that if the z i ' s are large as compared to the
dependency vectors 1 , then the dependencies between the tiles
(or binary linear combinations thereof, which can be neglected

implies that the feasible value of each zi is bounded from below by
For the sake of clarity, we assume that this is 1.

482

for analysis purposes wi thout any loss of generality)�9 A tile can be identified by
an index vector z = [Z l , . . . , z~]. Two tiles, z and z ~, are said to be success ive ,
if z - z ~ is a unit vector. A simple analysis [7] shows tha t the earliest " t ime
ins tant" (counting a tile execution as one t ime unit) tha t tile z can be executed
i s t z = z l + . . . + zn.

We map the tiles to Pl • P2 • - �9 �9 • Pk processors, arranged in a k d imensional
hyper- toro id 2 (for k < n). The m a pp i ng is by project ion onto the subspace
spanned by k of the n canonical axes. To visualize this mapping , first consider
the case when k = n - 1, where tiles are al located to processors by projec t ion
along (without loss of generality) the n- th dimension, i.e., tile z is executed by
processor [z l , . . . , z ~ - l] . This yields a (virtual) array of ql • q2 • . . . • q ~ - i
processors, each one executing all the tiles in the n- th dimension. In general
Pi <_ qi, so this array is emulated by our Pl • P2 • . . - • Pn-1 hyper - to ro id by
using mult iple passes (there are ~ passes in the i- th dimension) . The case when
k < n - 1 is modeled by simply let t ing Pk+l : - Pn-1 = 1.

The period, 7 ~ of a tile is defined as the t ime between executions of corre-
sponding instruct ions in two successive tiles (of the same pass) m a p p e d to the
same processor. The la tency , s between tiles is defined to be the t ime between
executions of corresponding instruct ions in two successive tiles m a p p e d to dif-
f e r e n t processors. Depending on the volume of the d a t a t r ansmi t t ed and the
na ture of the p rogram dependencies, the la tency m a y be different for different
dimensions of the hyper-toroid, and we use s (for i = 1 . . . k) to denote the
la tency in the i-th dimension.

We assume tha t by the t ime the first processor, 1 = [1 . . . 1], finishes com-
pu t ing its macro column, at least one of the "last" processors (i.e., one of
[1 , . . . , p ~ , . . . , 1] , for 1 <_ i < k) has finished its first tile 3. In this case, pro-

n

cessor 1 can i m m e d i a t e l y star t another pass. Let W = 1-[i=1 Ni denote the to ta l
�9 ~ . n

compu ta t i on volume, v = 1-[i-1 xi be the tile volume and P = 1--[i-1 Pi be the
- - �9 �9 r ~ - - W

to ta l number of processors. The total number of tries is 1-[i=1 qi = -C" Let

denote Pi - 1, Pkk = ~ = 1 ~ and Vm~• = (1"-[~=1 N i) / P .

Let us first analyze a single pass. Each processor mus t execute qn tiles, and
this takes qn7) t ime. However, the last processor (i.e., the one wi th coordina tes
[Pl, P2, . . -Pk]) cannot s tar t because of the dependencies of the tile graph. Indeed,
processor [Pl, 1 . . . , 1] can only star t at t ime (pl - 1)s processor [Pt, P 2 - . . , 1],
at t ime (Pl - 1)/21 + (P2 - 1)s and hence processor [Pl, P 2 . . . , Pk] can only s tar t

its first pass at t ime ~ i = 1 pi i.

w tiles, of which Pq~ are executed in each pass, and hence there There are v

are w--ix- passes. Because there is no idle t ime between passes, the last pass s tar ts Pq,,

2 This is just an abstract machine architecture. Our machine model is independent of
the topology, since we will later assume that communication time is independent of
distance and/or contention.

3 There is no loss of generality in this assumption�9 Were it not true, the processors
would be idle between passes, and this would lead to a sub-optimal solution, this has
been proved for 2 and 3 dimensions [2, 3] and the arguments carry over.

483

at time (~ w _ 1) 5Oq~. Thus, the last processor starts executing its last macro
k

column at time instant (p W l) Pqn+E~lZi . It takesanotherT)qn time,
n i = 1

and hence the total running time and the corresponding optimization problem
are as follows.

k WP
= p v + (1)

P r o b . 1: Minimize (1) in the feasible space,
lower bounds may be other than 1, based on
recurrence).

n = e z I 1

where ul = N, for i = 1 . . . k , and ui = Ni for k
P~

Tr given below (recall that the
the dependencies of the original

< < } (2)

< i < n .

3 M a c h i n e a n d P r o g r a m S p e c i f i c M o d e l

We now "instantiate" P r o b . 1 for a specific program and machine architecture.
The code executed for a tile is the standard loop:

repeat
receive(v1); receive(v2) receive(vk) ;
compute(body);
send(vl); send(v2) send(vk) ;

end

where v i denotes the message transmitted in the i-th dimension. We will now
determine P and s Our development is based on Andonov & Rajopadhye [1],
and uses standard assumptions about low level behavior of the architecture and
program [4]. The sole difference is that each tile now makes k systems calls to
send (and receive) messages. A tile depends directly on its n neighbors in each
dimension. The volume of data transfer along the i-th dimension is proportional
to the (hyper) surface of the tile in that dimension, i.e., YIj~i XJ "~ V/Xi" In
the first k dimensions, this corresponds to an inter-processor communication,
whereas in the dimensions k + 1 . . . n , the transfer is achieved through locM
memory. Hence the period of a tile can be written as follows.

P = k (/ 3 ~ + f ~) + 2TCv + a v (3)
k i = 1

Here f , (rasp. fir) is the overhead of the send (rasp. r e c e i v e) system call, re
is the time (per byte) to copy from user to system memory, ~ is the computat ion
time for a single instance of the loop body (we neglect the overhead of setting up
the loop for each tile, as well as cache effects). Similarly, if 1/rt is the network
bandwidth, the latency is as follows (see [2] for details).

484

V

Xi

= k f l ~ + 2r~v + a v + r t - - (4)
k i=1 Xi

Note that the/3~'s are subtracted because the r e c e i v e occurs on a dif ferent
processor, and when the sender and receiver are properly synchronized, the calls
are overlapped. Substituting in Eqn. (1) and simplifying, we obtain

k 1 k ~ 2roW ~ 1
+

i = 1 xi i=1 xi ~ i : 1 xi

W ~W

+

(5)

3.1 Simplifying Assumptions and Particular Cases

The model of (5) is very general. One may want to specialize it for a number of
reasons--say rendering the final optimization problem more tractable, or mod-
eling a certain class of architectures or computations. It turns out that many
of these simply consist of choosing the parameters appropriately in the above
function.

The HKT model, first used by Hiranandani et al. [6], corresponds to setting
fir = rc = rt = 0 (a slightly more general version consists of letting fir be
nonzero). This model assumes that communication cost is independent of the
message size, but is dominated by the startup time(s) fls (and fir).

At first sight this may seem an oversimplification. However, in addition to
making the mathematical problem more tractable, it is not far from the truth, as
corroborated by other authors [12, 13]. Indeed, experimental as well as analytic
evidence [1] shows that on machines such as the Intel Paragon the more accurate
models yield no observable difference in the predictions. With rc = rt = 0, we
obtain the H K T cos t f u n c t i o n :

,~W W (~v + k ~ s) ~ (6)
Tk() = - -U + k(Z + Z,) +

The BSP model [11,16] has been proposed as a formal model for developing
architecture independent parallel programs. It is a bridge between the PRAM
model which is general but somewhat unrealistic, and machine-specific models
which lead to lack of portability and predictability of performance. Essentially,
the computation is described in terms of a sequence of "super-steps" executed
in parallel by all the processors. A super-step consists of (i) some local compu-
tation, (ii) some communication events launched during the super-step, and (iii)
a synchronization which ensures that the communication events are completed.
The time for a super-step is the sum of the times for each of the above activities.

485

This is very similar to our tile model: indeed, if we simply set rt = fir = 0 and
fls = k ~ (• is the BSP synchronization cost) we obtain the running t ime of the
program under the BSP model. With this simplification, we obtain the B S P
cost func t ion as follows.

~k(~) = - p - + ~ + (~v + ~) E + 2re E v + - (7)
i = 1 x i

In the BSP model, the communication startup cost is replaced by the syn-
chronization cost. However, in our general cost function (5) we incur the s tar tup
cost k times. As a result, if we take a particular case of the BSP model where
the network bandwidth is extremely high (the communication t ime is dominated
by the synchronization cost), then this high bandwidth B S P cost . function
is given as follows (it is similar but not identical to the H K T model).

Tk(~) = - 7 + + (~v + ~)E (S)

With some other simple modifications, our cost function can also model the
overlap of communication and computation, which is often used as a performance
tuning strategy. This is not detailed here due to space constrMnts.

4 S o l u t i o n f o r H K T a n d H i g h B a n d w i d t h B S P M o d e l s

In this section, we will focus only on the simple models (6, 8). Our main results
are that the optimal tile volume and the dimension of optimal virtual architecture
can be determined as a closed form solution. These results serve two important
purposes, in spite of the apparent simplicity of the model. First, they are valid
for a number of current machines where the communication latency and network
bandwidth are both relatively high (such as the Intel Paragon, and a number of
similar machines as well as networks of workstations). Second, they give a good
indication of our solution method for the more general results. We first solve
the problem for the HKT model, and then show how the high bandwidth BSP
model follows almost directly.

4.1 O p t i m a l T i l e V o l u m e

It is easy to see that the running time (6) depends only on the tile volume and
A is a strictly convex function of the form Tk(v) = V + Bv + C, which attains its

optimal value of C + 2 Av/-A--B at ~ = C A . By substituting we obtain

V PaPk (9)

Tk= p ~ ~ W + k ~ E + 2 ~ ~ +p~")wpk (10)

486

The optimal solution will be as given above i f7 is a feasible tile volume. Now,
observe that each xi is bounded from above by -~ and hence v < w . Since W

grows much faster than P, we have 1 < ~" < w asymptotically. Hence we have
the following result.

T h e o r e m 1. The optimal tile volume and the corresponding running time for
the HKT model are given by (9-10).

4.2 O p t i m a l A r c h i t e c t u r e

So far, we have assumed that k is a fixed constant as are each o f the Pi 's. In prac-
tice, we typically have P processors, and the values of each pi are not specified,
and neither is k, and we now solve this problem. Note that the dominant term
in (10) is - ~ , the "ideal" parallel t ime with no overhead. The ideal architecture

will seek to minimize the overhead whose dominant term is O (~ / w) .
g - -

From (10) it can be easily deduced that for a given k and P, the optimal

architecture is the one that minimizes Pkk, i.e., the torus with Pi = ~/-fi. Sub-
stituting this in (10), the coefficient of the overhead term is proportional to the

= k P~- Thus ~kk is minimized for the square root of the function f (k , P) 2 1 _ k2"
value of k that minimizes f (k , P), i.e., k* = 0.625 In P. Since f (k , P) is monoton-
ically decreasing up to k* (for each P) and monotonically increasing thereafter,
we have the following result.

C o r o l l a r y 1. I f n < [k*] the optimal architecture is a balanced n - 1 dimen-
sional torus, and for n > [k*] it is either a balanced [k*] or a [k*] dimensional
torus depending respectively on whether f ([k*] , P) is smaller than f ([k*J , P) or
not.

It is thus clear that as the number of processors grows, the optimal archi-
tecture tends towards an n - 1 dimensional hyper-torus. However, k* grows
logarithmically with P, and for a limited number of processors (most practical
cases), the optimal may not be n - 1 dimensional. Indeed, the sensitivity of k*
with respect to number of processors P is illustrated by the following: for up
to 25 processors, the optimal architecture is a linear array, from 25-130 it is
2-dimensional, for 130-650 processors it is a 3-dimensional, etc.

The extension of these results to the high bandwidth BSP model (Eqn 8) is
straightforward, and indeed the mathematical t reatment is a little simpler. The
solution is the same as that given by (9-10), but with k,/3, and/3s respectively
equal to 1, 0 and /3. The sole subtle difference is that the function f (k , P) is
k P 1 / k - k, and hence k* = +oo, i.e., f (k , P) is monotonically decreasing. Hence,
the optimal architecture is always a balanced n - 1 dimensional torus.

Finally, note that the optimization of the processor architecture yields a
second order improvement-- i t does not affect the dominant term -g-~-.

487

5 S o l u t i o n for t h e B S P C o s t F u n c t i o n

We now solve our optimization problem for the BSP cost function (7) in the
feasible space specified by (2). We will show that our problem can be decom-
posed into two special cases. The first case is very similar to the H K T model, but
the second one is more complicated, for which we first solve the corresponding
unconstrained optimization problem and then determine where the constrained
solution lies. Finally, we show that the second solution is globally opt imM asymp-
toticMly.

L e m m a 1. The minimum of (7) over conv(7~) is attained at:

either x~ = N_~ for i = 1 k
P i ' " ' "

or x ~ = l , for i = k + l . . . n

Proof. Let v be an arbi trary feasible volume and let there exist two indices l, m
for I < k, k + 1 _< m _< n such that xt < Nl/p~ and xm > 1. Then by increasing
xl, decreasing x~n and keeping their product constant, the function (7) strictly
decreases and we obtain the needed. |

Based on this, we have to look for the solution in the two regions of Tr
corresponding to the above two conditions. Let T r TCNxl = N_~ for i = 1 . . . k,

P~
and T~2 = T~ VIxi = 1 for i = k + 1 . . . n .

5.1 C a s e I

The cost function in region T~I can be simplified to

w Zw
T k (,) = (a + 2vcNk)-~ + flPkk + --~v + (a + 2rcNkk)~V (11)

k
where N k = ~ i = l N~(" We can now use the same reasoning as in Section 4, and
obtain the opt imal volume and running t ime as follows:

~ - - w . , , / ~ w ~
~ = ~ W and Tk = (a + 2~-cNk)--~ + f l ~ . z V p (12)

where w -- (~ 4- 2"rcNk)Pk. As before, appropriate values for xk+l . . . z n in T~I
tha t yield the opt imal volume are all equivalent. Observe tha t in (12) we have

a factor 2vcNk in the dominant term, and this turns out to be impor tan t as we
shall see later.

5.2 Case I I

k Let us now consider region ~2 . Here, v -- r I i= l xi, but the cost function remains
the same as (7), except that we have only k variables to solve for. We obtain the
solution in two steps.

488

U n c o n s t r a i n e d O p t i m i z a t i o n We first solve the problem in the entire positive
orthant, without any constraints. This can be formulated as follows.

P r o b . 2: Minimize (7) in the feasible space T~_ = { [x l . . . x k] T I xi >_ 0}.
k Let Hv be the hyperboloid defined by {x G 7~_] I'L'=I xi = v}. Observe

that the set of families Hv is a parti t ion of 7~_, i.e., 7 ~ = U H~, and hence

minTk(x) = minminTk(x) . Thus, we first minimize (7) for a given tile volume
R~_ v H ~

(i.e., over a given hyperboloid H .) and then choose the volume. Now, observe
1 whose minimum is at tained at that for a fixed v, (7) is of the form A + B ~ i ~-7

E H v , x l = x2 xk. Hence, for a given tile volume, v, the optimal tile
k 1 k

shape is (hyper) cubic with xi = ~ , for each i = 1 . . . k . Thus, E xi - ~/~'
i = 1

and we can define,

= minT(. ,) = A + Bv + 2 ,-cPkv + kZ)v- + - -g- + (13)
/-/,~ V

where A = ~ B -- c~Pk, and D = 2r~w Now we have to determine the p , p �9

optimal tile volume by minimizing f (v) in the feasible space, 1 < v < Vm~• It
:an easily be shown that f(v) is an unimodal function and attains its minimum

the root of f~(v) = 0. Unfortunately this is not easily obtained in closed form
:t it is quite well approximated by the root of the function h(v) = =._#_A + B +

/ A~D Thus, we obtain the following 2 r c (k - 1) P k - D, whose zero is at V2,o(k_l)jy + B .

(approximate) optimal solution of the unconstrained problem.

v ~ and Tk ,~ 7 - + 2krc + O (14)

where 7 = (~+2Tc)/((2Tc(k--1)+a)Pk). Of course we could always determine
an exact solution if needed, but we have found the approximate solution to
be reasonable in practice. Moreover, as we shall see later, it illustrates some
interesting points. Also recall that in the problem as we have resolved so far, we
assume that k and the pi's are fixed, as also the choice of which of the Ni's to
map to the processor space.

C o n s t r a i n e d O p t i m i z a t i o n We now address the question of the restrictions on
the optimal solution imposed by the feasibility constraints (2) namely 1 < xi <
ui. Note that the unconstrained (global) optimal solution is on the intersection
of the line defined by the vector 1, and the hyperboloid H7, where ~" is the
optimal tile volume (14). If this intersection is outside the feasible space (2) we
will need to solve the constrained optimization problem. We have observed that
the optimal running time is extremely sensitive to the tile volume, and much less
dependent on the particular values of xi (indeed this is predicted by the H K T
model). We have the following cases

489

Case A: ~ > Vma x In this case, the optimal volume hyperboloid does not inter-
sect the feasible space, and according to the properties of the function f (v) the
optimal tile size is given by xi -- N~ for i = 1 .. k. However, note that since

= O (x / - W ~) while vm~• = O (W / P) , this case is unlikely.

Case B: ~ <_ Vm~• Now, H~" has a non-empty intersection with (2) and so our
heuristic is to choose a solution by moving one of the xi's such that we move
within the feasible region.

5.3 W h e r e is t h e G l o b a l O p t i m u m ?

The optimal solutions for the two cases are given, respectively by (12) for region
7~1 and by (14) for region T~2. Most authors [6, 13, 12] have only considered
region 7~1 either implicitly by not posing the problem in full generality, or by
erroneously claiming that the solution is always in 7~a. This is incorrect because
the final solution will always asymptotically be in 7~2, due to the additional
factor, 2yeN{ in the dominant term in (12) as compared to (14). The following
simple example illustrates the prediction of lemma 1: for n = 3, k = 2, Pl = P2 --
4, ~ - fl = vc = 10 -6, N1 = 50, N2 --- Na = 1000, the optimal t ime in 7~1 is 1.8
while that in 7~2 is 1.5. More illustrative instances with real da ta can be found
in [3].

6 C o n c l u s i o n s

We addressed the problem of finding the tile size that minimizes the running t ime
of SPMD programs. We formulated a discrete non-linear optimization problem
using first an abstract model and then specific machine model. The resulting cost
function is general enough to subsume most of those in the literature, includ-
ing the BSP model. We then anMytically solved the resulting discrete nonlinear
optimization problem, yielding the desired solution.

There are a number of open questions. The first one is the direct extension
to the non orthogonal case (when the tiles boundaries cannot be parallel to the
domain boundaries). We have addressed this elsewhere (for the 2-dimensional
case) and formulated a non-linear optimization problem [2], but a closed form
solution is not available. Finally, experimental validation on a number of target
machines is the subject of our ongoing work.

R e f e r e n c e s

1. R. Andonov, H. Bourzoufi, and S. Rajopadhye. Two-dimensional orthogonal tiling:
from theory to practice. In International Conference on High Performance Com-
puting, pages 225-231, Tiruvananthapuram, India, December 1996. IEEE.

2. R. Andonov and S. Rajopadhye. Optimal orthogonal tiling of 2-d iterations. Jour-
nal of Parallel and Distributed Computing, 45(2):159-165, September 1997.

490

3. R. Andonov, N. Yanev, and H. Bourzoufi. Three-dimensional orthogonal tile siz-
ing problem: Mathematical programming approach. In ASAP 97: International
Conference on Application-Specific Systems, Architectures and Processors, pages
209-218, Zurich, Switzerland, July 1997. IEEE, Computer Society Press.

4. S. Bokhari. Communication overheads on the Intel iPSC-860 Hypercube. Technical
Report Interim Report 10, NASA ICASE, May 1990.

5. P. Boulet, A. Darte, T. Risset, and Y. Robert. (pen)-ultimate tiling? INTEGRA-
TION, the VLSI journal, 17:33-51, Nov? 1994.

6. S. Hiranandani, K. Kennedy, and C-W. Tseng. Evaluating compiler optimizations
for Fortran D. Journal Of Parallel and Distributed Computing, 21:27-45, 1994.

7. F. Irigoin and R. Tifiolet. Supernode partitioning. In 15th ACM Symposium on
Principles of Programming Languages, pages 319-328. ACM, Jan 1988.

8. R. M. Karp, R. E. Miller, and S. V. Winograd. The organization of computations
for uniform recurrence equations. JA CM, 14(3):563-590, July 1967.

9. C-T. King, W-H. Chou, and L. Ni. Pipefined data-parallel algorithms: Part I-
concept and modelling. IEEE Transactions on Parallel and Distributed Systems,
1(4):470-485, October 1990.

10. C-T. King, W-H. Chou, and L. Ni. Pipelined data-parallel algorithms: Part II-
design. IEEE Transactions on Parallel and Distributed Systems, 1(4):486-499,
October 1990.

11. W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer Sci-
ence Today: Recent Trends and Developments, volume 1000, pages 46-61. Springer
Verlag, 1995.

12. H. Ohta, u Saito, M. Kainaga, and H. Ono. Optimal tile size adjsutment in
compifing general DOACROSS loop nests. In International Conference on Super-
computing, pages 270-279, Barcelona, Spain, July 1995. ACM.

13. D. Palermo, E. Su, J. Chandy, and P. Banerjee. Communication optimizations
used in the PARADIGM compiler for distributed memory multicomputers. In In-
ternational Conference on Parallel Processing, pages xx-yy, St. Charles, IL, August
1994. IEEE.

14. J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for
non shared-memory machines. In Supercomputing 91, pages 111-120, 1991.

15. R. Schreiber and J. Dongarra. Automatic blocking of nested loops. Technical
Report 90.38, RIACS, NASA Ames Research Center, Aug 1990.

16. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

17. M. J. Wolfe. Iteration space tiling for memory hierarchies. Parallel Processing for
Scientific Computing (SIAM), pages 357-361, 1987.

