
Collection-Intersect Join Algorithms for Parallel
Object-Oriented Database Systems

David Taniar 1 and J. Wenny Rahayu 2

1 Monash University - GSCIT, Churchill, Vic 3842, Australia
David. Yaniar�9 cit. monash, edu. au

La Trobe University, Dept. of Computer Sc. 8z Comp. Eng., Bundoora, Vic 3083,
Australia

wenny@latcs i. lat. oz. au

Abstrac t . One of the differences between relational and object-oriented
databases (OODB) is that attributes in OODB can of a collection type
(e.g. sets, lists, arrays, bags) as well as a simple type (e.g. integer, string).
Consequently, explicit join queries in OODB may be based on collection
attributes. One form of collection join queries in OODB is collection-
intersect join queries, where the joins are based on collection attributes
and the queries check for whether there is an intersection between the
two join collection attributes We propose two algorithms for parallel pro-
cessing of collection-intersect join queries. The first one is based on sort-
merge, and the second is based on hash. We also present two data par-
titioning methods (i.e. simple replication and "divide and partial broad-
cast") used in conjunction with the parallel collection-intersect join al-
gorithms. The parallel sort-merge algorithm can only make use of the
divide and partial broadcast data partitioning, whereas the parallel hash
algorithm may have a choice which of the two data partitioning to use.

1 I n t r o d u c t i o n

In Object-Oriented Databases (OODB), although path expression between classes
may exist, it is sometimes necessary to perform an explicit join between two or
more classes due to the absence of pointer connections or the need for value
matching between objects. Furthermore, since objects are not in a normal form,
an attribute of a class may have a collection as a domain. Collection attributes
are often mistakenly considered merely as set-valued attributes. As the mat ter
of fact, set is just one type of collections. There are other types of collection.
The Object Database Standard ODMG [1] defines different kinds of collections:
particularly set, list/array, and bag. Consequently, object-oriented join queries
may also be based on attributes of any collection type. Such join queries are
called collection join queries [9]. Our previous work reported in [9] classified three
different types of collection join queries, namely: collection-equi join, collection-
intersect join, and sub-collection join. In this paper, we would like to focus on
collection-intersect join queries. We are particularly interested in formulating
parallel algorithms for processing such queries. The algorithms are non-trivial to

506

parallel object-oriented database systems, since most conventional join algorithms
(e.g. hybrid hash join, sort-merge join) deal with single-valued attributes and
hence most of the time they are not suitable to handle collection join queries.

Collection-intersect join queries are queries that join two classes based on
an attribute of a collection type. The join predicates check for whether there
is an intersection between the two collection join attributes. An intersect predi-
cate can be written by applying an intersection between the two sets and com-
paring the intersection result with an empty set. It is normally in a form of
(a t t r l i n t e r s e c t a t t r 2) != s e t (n i l) . Attributes a t t r l and a t t r 2 are of
type set. If one or both of them are of type bag, they must be converted to
sets. Suppose the attribute editor-in-chief of class Journal and the attribute
program-chair of class Proceedings are of type sets of Person. An example of a
collection-intersect join is to retrieve pairs of Journal and Proceedings, where the
program-chairs of a conference are intersect with the editors-in-chief of a jour-
nal. The query expressed in OQL (Object Query Language) [1] can be written
as follows:

Select A, B
From A in Journal, B in Proceedings

Where (A.editor-in-chief intersect B.program-chair) != s e t (n i l)

As clearly seen that the intersection join predicates involve the creation of in-
termediate results through an intersect operator. The result of the join predicate
cannot be determined without the presence of the intermediate collection result.
This predicate processing is certainly not efficient. In a collection-intersect join
query, the original subset predicate has to produce an intermediate set, before
it can be compared with an empty set. This process checks for the smaller set
twice: one for an intersection, the other for an equality comparison. Therefore,
optimization algorithms for efficient processing of such queries are critical if
one wants to improve query processing performance. In this paper, we present
two parallel join algorithms for collection-intersection join queries. The primary
intention is to solve the inefficiency imposed by the original join predicates.

An interest in parallel OODB among database community has been grow-
ing rapidly, following the popularity of multiprocessor servers and the matur i ty
of OODB. The emerging between parallel technology and OODB has shown
promising results [3], [5], [7], [11]. However, most research done in this area
concentrated on path expression queries with pointer chasing. Explicit join pro-
cessing exploiting collection attributes has not been given much attention.

The rest of this paper is organized as follows. Section 2 explains two data
partitioning methods for parallel collection-intersect join algorithms. Section 3
describes a proposed parallel join algorithm for collection-intersect join queries
based on a sort-merge technique. Section 4 introduces another algorithm, which
is based on a hash technique. Finally, section 5 draws the conclusions and
explains the future work.

507

2 D a t a P a r t i t i o n i n g

Parallel join algorithms are normally decomposed into two steps: data partition-
ing and local join. Data partitioning creates parallelism, as it divides the data to
multiple processors, so that the join can then be performed locally in each pro-
cessor without interfering others. For collection-intersect join queries, it is not
possible to have non-overlap partitions, due to the nature of collections which
may be overlapped. Hence, some data needs to be replicated. Two non-disjoint
partit ioning methods are proposed. The first is a simple replication based on the
value of the element in each collection. The second is a variant of Divide and
Broadcast [4], called "Divide and Partial Broadcasf'.

2.1 S imple Repl ica t ion

Using a simple replication technique, each element in a collection is treated as a
single unit, and is totally independent of other elements within the same collec-
tion. Based on the value of an element in a collection, the object is placed into a
particular processor. Depending on the number of elements in a collection, the
objects that own the collections may be placed into different processors. When
an object is already placed at a particular processor based on the placement of
an element, if another element in the same collection is also to be placed at the
same place, no object replication is necessary.

As a running example, consider the data shown in Figure 1. Suppose class A
and class B are Journal and Proceedings, respectively. Both classes contain a few
objects shown by their OIDs (e.g., objects a to i are Journal objects and objects p
to w are Proceedings objects). The join attributes are editor-in-chief of Journal
and program-chair of Proceedings; and are of type collection of Person. The
OID of each person in these attributes are shown in the brackets. For example
a(250,75) denotes a Journal object with OID a and the editors of this journal
are Persons with OIDs 250 and 75.

Figure 2 shows an example of a simple replication technique. The b o l d
printed elements are the elements which are the basis for the pin'cement of those
objects. For example, object a(250, 75) in processor 1 refers to a placement for
object a in processor 1 because of the value of element 75 in the collection. And
also, object a(250, 75) in processor 3 refers to a copy of object a in processor 3
based on the first element (i.e., element 250). It is clear that object a is replicated
to processors 1 and 3. On the other hand, object i(80, 70) is not replicated since
both elements will place the object at the same processor, that is processor 1.

2.2 D iv ide and Partial Broadcast

The Divide and Partial Broadcast algorithm, shown in Figure 3, proceeds in two
steps. The first step is a divide step, and the second step is a partial broadcast
step. We divide class B and partial broadcast class A. The divide step is explained
as follows. Divide class B into n number of partitions. Each part i t ion of class
B is placed in a separate processor (e.g. parti t ion B1 to processor 1, part i t ion

508

Class A
(Journal)

Class B
(Proceedings)

a(250, 75)
b(210, 123)
c(125, 181)
d(4, 237)
e(289, 290)
f(150, 50, 250)
g(270)
h(190, 189, 170)
i(80, 70)

Journal OIDs

p(123, 210)
q(237)
r(50, 40)
s(125, 180)
t(50, 60)
u(3, 1, 2)
v(lO0, 102, 270)
w(80, 70)

Proceedings OIDs

program-chair OIDs
editor-in-chief OIDs

F ig . 1. Sample da ta

Class A Class B

a(250, 75)
d(4, 237)
f(150, SO, 250)
i(80, 70)

b(210, 123)
c(125, 181)
f(150, 50, 250)
h(190, 189, 170)

a(250, 75)
b(210, 123)
d(4, 237)
e(289,290)
f(150, 50, 250)
g(270)

r(50, 40)
t(50, 60)
u(3, 1, 2)
w(80, 70)

p(123, 210)
s(125, 180)
v(100, 102,270)

p(123,210)
q(237)

Processor 1
(range 0-99)

Processor 2
(range 100-199)

Processor 3
(range 200-299)

F ig . 2. Simple replication

509

B2 to processor 2, etc). Partitions are created based on the largest element of
each collection. For example, object p(123, 210); the first object in class B, is
parti t ioned based on element 210, as element 210 is the largest element in the
collection. Then, object p is placed on a certain partition, depending on the
parti t ion range. For example, if the first parti t ion is ranging from the largest
element 0 to 99, the second partition is ranging from 100 to 199, and the third
parti t ion is ranging from 200 to 299, then object p is placed in part i t ion B3, and
subsequently in processor 3. This is repeated for M1 objects of class B.

Procedure DividePartialBroadcast

Begin

Step

i.

2.

1 (divide):

Divide class B based on the largest element in each collection.

For each partition of B (i = I, 2 , n)

Place partition Bi to processor i

End For

Step 2 (partial broadcast):

3. Divide class A based on the smallest element in each collection.

4. For each partition of A (i = I, 2 n)

Broadcast partition Ai to processor i to n

End For

End Procedure

Fig. 3. Divide and Partial Broadcast Algorithm

The partial broadcast step can be described as follows. First, parti t ion class
A based on the smMlest element of each collection. Clearly, this part i t ioning
method is exactly the opposite of that in the divide step. Then for each par-
tition Ai where i-=1 to n, broadcast part i t ion Ai to processors i to n. This
broadcasting technique is said to be partial, since the broadcasting goes down as
the parti t ion number goes up. For example, parti t ion A1 is basically replicated
to all processors, parti t ion A2 is broadcast to processor 2 to n only, and so on.
In regard to the load of each processor, the load of the last processor may be
the heaviest, as it receives a full copy of class A and a portion of class B. The
load goes down as class A is divided into smaller size (e.g., processor 1). Load
balanced can be achieved by applying the same algorithm to each part i t ion but
with a reverse role of A and B; that is, divide A and partial broadcast B. It is
beyond the scope of this paper to evaluate the Divide and Partial Broadcast
partit ioning method. This has been reserved for future work. Some preliminary
results have been reported in [10].

510

3 Parallel S O R T - M E R G E Join Algor i thm

The partit ioning strategy for the parallel sort-merge collection-intersect join
query algorithm is based on the Divide and Partial Broadcast technique. The
use of the Divide and Partial Broadcast is attractive to collection joins because
of the nature of collections where disjoint partitions without replication are of-
ten not achievable. After data partitioning is completed, each processor has its
own data. The join operation can then be done independently. The overall query
results are the union of the results from each processor.

In the local joining process, each collection is sorted. Sorting is done within
collections, not among collections. After the sorting process is completed, the
merging process starts. We use a nested loop structure to compare the two
collections from the two operand objects. Figure 4 shows a parallel sort-merge
join algorithm for collection-intersect join queries.

Program Parallel-Sort-Merge-Collection-lntersect-Join
Begin

Step I (data partitioning):
Call DividePartialBroadcast

Step 2 (loca l jo in ing) : In each processor
a. Sort phase

For each object a(c l) and b(c2) of c lass A and B, r e sp ec t i v e ly
Sort c o l l e c t i o n cl and c2

End For
b. Merge phase

For each object a (c l) of c lass A
For each object b(c2) of c lass B

Merge collection cl and c2
If TRUE Then

Concatenate objects a and b into query result
End If

End For
End For

End Program

Fig. 4. Parallel Sort-Merge Collection-Intersect Join Algorithm

4 Parallel H A S H Join Algor i thm

In this section we introduce a parallel join algorithm based on a hash method
for collection-intersect join queries. Like the previous Parallel Sort-Merge algo-
rithm, Parallel-Hash algorithm is also divided into data parti t ioning and local
join phases. However, unlike the parallel sort-merge algorithm, data parti t ioning

511

for parallel hash algorithm is available in two forms: Divide and Partial Broad-
cast and Simple Replication. Once data partit ioning is complete, each processor
has its own data, and hence local join process can proceed.

The locM join process itself is divided into two steps: hash and probe. The
hashing is carTied out to one class, whereas the probing is performed to the
other class. In the hashing part, it basically runs through M1 elements of each
collection in a class. The probing part is done in similar way, but is applied to
the other class. Figure 5 shows the pseudo-code for parallel hash join algorithm
for collection-intersect join queries.

Program Parallel-Hash-Collection-Intersect-Join

Begin
Step I (data partitioning):

Divide and Partial Broadcast version:
Call DivideAndPartialBroadcast partitioning

Simple Replication version:
Call SimpleReplication partitioning

Step 2 (loca l jo in ing) : In each processor
a. Hash

For each object a (c l) of c lass A
Hash c o l l e c t i o n cl to a hash tab le

End For
b. Probe

For each object b(c2) of c lass B
Hash and probe collection c2 into the hash table
If there is any match Then

Concatenate obj b and the matched obj a into query result

End If
End For

End Program

Fig. 5. Parallel Hash Collection-Intersect Join Algorithm

5 Conc lus ions and Future Work

The need for join algorithms especially designed for collection-intersect join
queries is clear, as collection-intersect join predicates normally require inter-
mediate results to be generated, before the final predicate results can be deter-
mined. This is certainly not optimal. In this paper, we present two algorithms
especiMly design for collection-intersect join queries, namely Parallel Sort-Merge
and Parallel Hash algorithms. These two algorithms are designed especially for
collection-intersect join queries in object-oriented databases. Data parti t ioning

512

methods, which create parallelism, are based on either simple replication or "di-
vide and partial broadcast". Parallel Sort-Merge can make use only the divide
and partial broadcast method, whereas Parallel Hash can have a choice between
the two partitioning methods. Once a data partitioning method is applied, lo-
cal join is carried out by either a sort-merge operator (in the case of parallel
sort-merge algorithm) or a hash function (in the case of parallel hash). Local
join process is therefore much straightforward, as each processor performs se-
quential sort-merge or hash operations. Hence, the critical element is the data
parti t ioning method.

Our future work includes evaluating the two data partitioning methods (and
possibly other partitioning methods) for parallel collection-intersect join algo-
rithms, since data partitioning plays an important role in the overall efficiency
of parallel collection join algorithms.

R e f e r e n c e s

1. Cattell, R.G.G. (ed.), The Object Database Standard: ODMG-93, Release 1.1,
Morgan Kaufmann, 1994.

2. DeWitt, D.J. and Gray, J., "Parallel Database Systems: The Future of High Per-
formance Database Systems", Communication of the ACM, 35(6), pp. 85-98, 1992.

3. Kim, K-C., "Parallelism in Object-Oriented Query Processing", Proceedings of the
Sixth International Conference on Data Engineering, pp. 209-217, 1990.

4. Leung, C.H.C. and Ghogomu, H.T., "A High-Performance Parallel Database Ar-
chitecture", Proceedings of the Seventh ACM International Conference on Super-
computing, pp. 377-386, Tokyo, 1993.

5. Leung, C.H.C., and Taniar, D., "Parallel Query Processing in Object-Oriented
Database Systems", Australian Computer Science Communications, 17(2), pp.
119-131, 1995.

6. Mishra, P. and Eich, M.H., "Join Processing in Relational Databases", ACM Com-
puting Surveys, 24(1), pp. 63-113, March 1992.

7. Taniar, D., and Rahayu, W., "Parallelization and Object-Orientation: A Database
Processing Point of View", Proceedings of the Twenty-Fourth International Confer-
ence on Technology of Object-Oriented Languages and Systems TOOLS ASIA'97,
Beijing, China, pp. 301-310, 1997.

8. Taniar, D. and Rahayu, J.W., "Parallel Collection-Equi Join Algorithms for
Object-Oriented Databases", Proceedings of International Database Engineering
and Applications Symposium IDEAS'98, IEEE Computer Society Press, Cardiff,
UI(, July 1998.

9. Taniar, D. and Rahayu, J.W., "A Taxonomy for Object-Oriented Queries", a book
chapter in Current Trends in Database Technology, Idea Group Pubfishing, in press
(1998).

10. Taniar, D. and Rahayu, J.W., "Divide and Partial Broadcast Method for Parallel
Collection Join Queries", High-Performance Computing and Networking, P.Sloot
et al (eds.), Lecture Notes in Computer Science 1401, Springer-Verlag, pp. 937-939,
1998.

11. Thakore, A.K. and Su, S.Y.W., "Performance Analysis of Parallel Object-Oriented
Query Processing Algorithms", Distributed and Parallel Databases 2, pp. 59-100,
1994.

