
Language Constructs and Run-Time System
for Parallel Cellular Programming

Giandomenico Spezzano and Domenico Talia

ISI-CNR c/o DEIS,
Universits della Calabria,
87036 Rende (CS), Italy

{spezzano, talia}@si .deis .unical. it

Abstrac t . This paper describes the main features of CARPET, a high-
level programming language based on cellular automata theory. The lan-
guage has been designed for supporting the development of parallel high-
performance software abstracting from the parallel architecture on which
programs run. A CARPET user can write cellular programs to describe
the actions of a very large number of simple active agents interacting
locally. The CARPET run-time system allows a user to observe, also
in a graphical format, the global results that arises from their parallel
execution.

1 I n t r o d u c t i o n

The lack of high-level languages, tools, and application-oriented environments of-
ten limits the design and implementation of parallel algorithms that are portable,
efficient, and expressive. The restricted-computation structures represent one of
the most important models of parallel processing [8]. The interest for these mod-
els is due to the possibility to restrict the form of computations so as to restrict
communication volume achieving high performance. Restricted-computation mod-
els offer a user a structured paradigm of parallel programming and improve the
performance of the parallel algorithms reducing the overheads due to the com-
munication latency. Further, tools can be designed to estimate the performance
of various constructs of a high-level language on a specific parallel architecture.

Cellular processing languages based on the cellular au tomata (CA) model
[10] represent a significant example of restricted-computation that it is used to
model parallel computation for a large number of applications in biology, physics,
geophysics, chemistry, economics, artificial life, and engineering. A cellular au-
tomaton consists of one-dimensional or multi-dimensional lattice of cells, each
of which is connected to a finite neighborhood of cells tha t are nearby in the
lattice. Each cell in the regular spatial lattice can take any of a finite number of
discrete state values. Time is discrete, as well, and at each t ime step M1 the cells
in the lattice are updated by means of a local rule, called transition function,
that determines the cell's next state based upon the states of its neighbors. Th a t
is, the state of a cell at a given time depends only on its own state and the states

670

of its nearby neighbors at the previous time step. Different neighborhoods can be
defined for the cells. The most common neighborhoods in the two-dimensional
case are the von Neumann neighborhood consisting of the North, South, East,
West neighbors and the Moore neighborhood composed of eight neighbor cells.
The global behavior of the an automaton is defined by the evolution of the states
of all cells as a result of multiple interactions.

CA are intrinsically parallel so they can be simulated onto parallel computers
running the cell transition functions in parallel with high efficiency, as the com-
munication flow between processors can be kept low. In fact, in our approach, a
cellular algorithm is composed of all the transition functions of cells that com-
pose the lattice. Each transition function generally contains the same local rule,
but it is also possible to define some cells with different transition functions
(inhomogeneous cellular automata) .

According to this approach, we designed and implemented a high-level pro-
gramming language, called CARPET (CellulAR Programming EnvironmenT)
[9], that allows a user to design cellular algorithms. In particular, C A R P E T has
been used for programming cellular algorithms in the CAMEL (Cellular Au-
tomata environMent for systems ModeLing environment) [3]. A user can design
cellular programs by CARPET describing the actions of many simple active
agents (implemented by the cells) interacting locally, then the CAMEL system
runs cell transition functions in parallel allowing a user to observe the globM
complex evolution that arises from all the local interactions. A number of cel-
lular programming languages such as Cellang [4], CDL [6], and CARP [7] have
been defined in the last decade. However, none of those contains all the features
of C A R P E T neither a parallel run-time support for them has been implemented
till today.

2 C A R P E T

The rational of C A R P E T is to make parallel computers available to application-
oriented users hiding the implementation issues coming from their architectural
complexity. A C ARPET user can program complex problems that may be rep-
resented as discrete across a lattice. Parallelism inherent to its programming
model is not apparent to the programmer.

C A R P E T implements a cellular automaton as an SPMD program. CA are
implemented as a number of processes each one mapped on a distinct PE tha t
executes the same code on different data. According to this approach, a user must
specify by C A R P E T only the transition function of a single cell of the system
he wants to simulate. The language uses the control structures, the types, the
operators of the C language. A C A R P E T program is composed by a declaration
part that appears only once in the program and must precede any s ta tement
(except those of C pre-processor) and by a program body. The program body
has the usual C statements, without I /O instructions, and a set of s tatements
to deal with the state of a cell and its neighborhood. Further, C A R P E T users
may use C functions or procedures to improve the structure of programs.

671

The declaration section includes constructs to define the dimensions of the
au tomaton (dimension), the radius of the neighborhood (radius), the type of the
neighborhood (neighbor), and to specify the state of a cell (state) as a set of
typed substates that can be char, shorts, integers, floats, doubles and arrays of
these basic types.

The dimension declaration defines the number of dimensions of the automa-
ton in a discrete Cartesian space. The maximum number of dimensions allowed in
the current implementation is 3. Radius defines the set of cells that can compose
the neighborhood of a cell.

In C A R P E T the state of a cell is composed of a record of typed substates,
unlike classical cellular automata where the cell state is represented by a few bits.
The typification of the substates extends the range of the applications that can
be coded in C AR PET simplifying the writing the programs and improving their
readability. In the following example the state is composed of three substates:

rotate (short direction, floa~ mass, speed);

A substate of the current cell can be referred by the variable cell substate
(eg., cell_speed). To guarantee the semantics of cell updating in cellular au-
tomata the value of one substate of a cell can be modified only by the update
operation. After an execution of the update statement, the value of the substate,
in the current iteration, is unchanged. The new value does take effect in the next
iteration.

The neighbor declaration assigns a name to a set of specified neighbor cells
(of the current cell). This mechanism allows a cell to access by name the values
of the substates of its neighbor cells. Neighborhoods can be asymmetrical or
have any other special topological properties (e.g., hexagonal). Furthermore, in
the neighbor declaration it must be defined the name of a vector that has as
length the number of elements composing the logic neighborhood. The name of
the vector can be used as an alias in referring to the neighbor cell. For instance,
the von Neumann neighborhood shown in figure 1, can be defined as follows:

n e i g h b o r Neum [4] ([0, - 1] North , [- 1,0] West, [0 ,1] South , [1 ,0] East) ;

A substate of a neighbor cell is referred, for instance, as N o r t h s p e e d . Using
the vector name the same substate can be referred also as Neum[0] speed. This
referring way makes simpler to write loops in C A R P E T programs.

C A R P E T allows the program to know the number of iterations that have
been executed by the predefined variable step. Step is silently updated by the
run-time system. Initially its value is 0 and it is incremented by 1 each t ime
Ml the cells of the automata are updated. This feature allows a user to define
also time-dependent neighborhoods. The step variable permits also to change
dynamically the values of the substates dependent upon the iterations.

In modeling a complex system, it is often necessary to describe some global
features of the system. CARPET allows a user to define global parameters and
initialize them to specific values. The value of a parameter is the same in every
cell of the automaton. For this reason, the value of each parameter cannot be

672

Fig. 1. The von Neumann neighborhood in a two-dimensional CA lattice.

changed in the program but it can only be modified, during the simulation, by
the UI. An example of parameter declaration in C A R P E T is

parameter (permeability 0.9) ;

Input and output of a C A R P E T program can be performed by files or by
the edit function of the UI. A file can contain the values of one substate of all
cells, so these values can be loaded at the step 0 to initialize the au tomaton . The
output of a C A R P E T program can automatical ly be saved in files at regular
intervals to be post-processed by mathemat ica l or visualization tools. C A R P E T
offers a user the possibility to define non-deterministic rules using of a random
function. Finally, C A R P E T allows a user to define cells with different transit ion
functions by means of the Getx, Gety, Getz operations that return the value of
coordinates X, Y, and Z of a cell in the automaton.

Differently form other cellular languages, C A R P E T does not provide state-
ments to configure the automata , to visualize the cell values or to define the
process-to processor mapping. These features can be defined by means of the
GUI of its runt ime system. The CAMEL GUI allows a user to define the size
of cellular au tomata , the number of the processors onto which an au toma ton
must be executed, and choose the colors to be assigned to the cell substates to
support the graphical visualization of their values. By excluding constructs for
configuration and visualization from the language, it is possible to execute the
same C A R P E T compiled code using different configurations.

3 A P a r a l l e l C e l l u l a r R u n T i m e S y s t e m

Parallel computers are the best practical support for the effective implementa-
tion of high-performance CA [1]. According to this basic idea has been developed
CAMEL. It is a parallel software system based on the cellular a u t o m a t a model
that constitutes the parallel run-t ime system of CARPET. CAMEL has been
implemented on a parallel computer composed of a mesh of Transputers con-
nected to a host node [2]. CAMEL provides a GUI to configure a program, to
moni tor the parameters of a simulation and to dynamical ly change them at run
time. The parallel execution of cellular algorithms is implemented by the parallel
execution of the transition function of each cell in the Single Program Multiple

673

Data (SPMD) way. A portable implementat ion of CAMEL for MIMD parallel
computers based on the MPI communicat ion library is developing.

The CAMEL system is composed by a set of Macrocell processes, each one
running on a single processing element of the parallel machine, and by a Con-
troller process running on a master processor. Each Macrocell process imple-
ments an au tomaton parti t ion that includes several elementary cells, and it
makes use of a communicat ion system that handles the da ta exchange among
cells. All the Macrocells of the lattice execute in parallel the local rule tha t re-
sults in a global t ransformation of the whole lattice state. CAMEL uses a load
balancing strategy for assigning lattice parti t ions to the processors of a parallel
computer [2]. This load balancing is a domain decomposition s t rategy similar to
the scattered decomposition technique.

4 A Simple Program

This section shows a simple program written by CARPET. This example should
familiarize the reader with the C A R P E T approach. The program in figure 2
shows how the C A R P E T constructs can be used to implement the parity rule
algorithm. The pari ty rule is a very simple example of "self-reproduction" in
cellular au tomata ; an initial pat tern is replicated at some specific i teration tha t
is a power of two. The cells can have 0 or 1 values only. A cell takes the sum of
its neighbors and goes to 1 if the sum is odd, or to 0 if the sum is even. Let us
call N the number of '1 ' cells among the four nearest neighbors of a given cell.
The transit ion rule is the following: given a cell, if N is odd, the new value of
the cell will be 0; if N is even the cell's value does not change.

c a e ' f
{ dimel~ion 2; /*bidimensional l a t t i c e */

r a d i u a 1 ;
s t a t e (s h o r t v a l u e) ;
neighbor cross [4] ([0, - i] North, [- i, O] West,

[0,1] South, [1,0] East) ;
}
{int i; s h o r t N = O;

for (i = O; i<4; i++)

N = cross_value[i] + N;

i f (NY.2 == I)

update (cell value,O); /*updating the state of a cell*/
}

Fig. 2. The parity rule algorithm written in CARPET.

674

5 P e r f o r m a n c e

Together with the minimization of elapsed time, scalability is a major goal in the
design of parallel computing applications. Scalability shows the potential ability
of parallel computers to speedup their performance by adding more processing
elements. The scalability of CARPET programs has been measured increasing
the number of PEs used to solve the same problem, and using the same number
of processing elements to solve bigger problems [2].

The speedup obtained on 32 Transputers with an automaton composed of
224x70 cells which simulated the Ontake mountain (Japan) landslide was 25.0
(78.1% efficient). Table 1 shows the times (in seconds) and the speed-up obtained
running the landslide simulation on CAMEL using 1, 2, 4, 8, 16 and 32 PEs.
The second column shows the number of cells, which are mapped, on each PE.
Similar performance results have been obtained in other applications developed
.by CARPET [3].

Table 1. Execution times and speed-up.

Number of PEs Number Cells/PE Time for 2000 s t e p s ~
1 15680
2 7840
4 3920
8 1960
16 980
32 490

10231.59 1
6392.48 1.6
3181.40 3.2
1447.96 7.0
728.11 14.0
407.84 25.0

6 F i n a l R e m a r k s a n d F u t u r e W o r k

As stated also by M. J. Flynn [5], the cellular automata model is a new math-
ematical way to represent problems that allows to effectively use parallel com-
puters achieving scalable performance.

In this paper, we described the CARPET programming language designed
for programming cellular algorithms on parallel computers. CARPET has been
used successfully to implement several real life applications such as landslide
simulation, lavaflow models, freeway traffic simulation, image processing, and
genetic algorithms. The experience during the design, implementation, and use
of the CARPET language showed us that high-level languages are very useful in
the development of cellular algorithms for solving complex problems in science
and engineering.

Currently, the CARPET language is used in the COLOMBO (Parallel COm-
puters improve clean up of soils by Modelling BiOremediation) project within
the ESPRIT framework. The COLOMBO main objective is the use of CA mod-
els for the bioremediation of contaminated soils. This project is developing a

675

portable MPl-based implementat ion of C A R P E T and CAMEL on MIMD parM-
lel computers such as the Meiko CS-2, the CRAY T3E, and workstation clusters.
The new implementat ion will make the C A R P E T programs portable on a large
number of MIMD machines.

A c k n o w l e d g e m e n t s This research has been part ial ly funded by the CEC
E S P R I T project n~ 24,907.

References

1. B. P. Brinch Hansen, Parallel Cellular Automata: a Model for Computational Sci-
ence. Concurrency: Practice and Experience, 5:425-448, 1993.

2. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia,
A Parallel Cellular Automata Environment on Multicomputers for Computational
Science. Parallel Computing, 21:803-824, 1995.

3. S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia., A Parallel Cel-
lular Tool for Interactive Modeling and Simulation. IEEE Computational Science
K: Engineering 3:33-43, 1996.

4. J. D. Eckart, Cellang 2.0: Reference Manual. ACM Sigplan Notices, 27:107-112,
1992.

5. M.J. Flynn, Parallel Processors Were the Future and May Yet Be. IEEE Computer
29:152, 1996.

6. C. Hochberger and R. Hoffmann, CDL - a Language for Cellular Processing. In:
Proc. 2nd Intern. Conference on Massively Parallel Computing Systems, IEEE
Computer Society Press, 1996.

7. G. :lunger, Cellular Automaton Tool User Manual. GMD, Sankt Augustin, Ger-
many, 1994.

8. D.B. Skillicorn and D. Talia, Models and Languages for Parallel Computation.
ACM Computing Survey, 30, 1998.

9. G.Spezzano and D. Talia, A High-Level Cellular Programming Model for Massively
Parallel Processing. In: Proc. 2nd Int. Workshop on High-Level Programming Mod-
els and Supportive Environments (HIPS97), IEEE Computer Society, pages 55-63,
1997.

10. 3. von Neumann, Theory of Self Reproducing Automata. University of Illinois
Press, 1966.

