
Language Constructs and Run-Time System 
for Parallel Cellular Programming 

Giandomenico Spezzano and Domenico Talia 

ISI-CNR c/o DEIS, 
Universits della Calabria, 
87036 Rende (CS), Italy 

{spezzano, talia}@si .deis .unical. it 

Abstrac t .  This paper describes the main features of CARPET, a high- 
level programming language based on cellular automata theory. The lan- 
guage has been designed for supporting the development of parallel high- 
performance software abstracting from the parallel architecture on which 
programs run. A CARPET user can write cellular programs to describe 
the actions of a very large number of simple active agents interacting 
locally. The CARPET run-time system allows a user to observe, also 
in a graphical format, the global results that arises from their parallel 
execution. 

1 I n t r o d u c t i o n  

The lack of high-level languages, tools, and application-oriented environments of- 
ten limits the design and implementation of parallel algorithms that  are portable,  
efficient, and expressive. The restricted-computation structures represent one of 
the most important  models of parallel processing [8]. The interest for these mod- 
els is due to the possibility to restrict the form of computations so as to restrict 
communication volume achieving high performance. Restricted-computation mod- 
els offer a user a structured paradigm of parallel programming and improve the 
performance of the parallel algorithms reducing the overheads due to the com- 
munication latency. Further, tools can be designed to estimate the performance 
of various constructs of a high-level language on a specific parallel architecture. 

Cellular processing languages based on the cellular au tomata  (CA) model 
[10] represent a significant example of restricted-computation that  it is used to 
model parallel computation for a large number of applications in biology, physics, 
geophysics, chemistry, economics, artificial life, and engineering. A cellular au- 
tomaton consists of one-dimensional or multi-dimensional lattice of cells, each 
of which is connected to a finite neighborhood of cells tha t  are nearby in the 
lattice. Each cell in the regular spatial lattice can take any of a finite number of 
discrete state values. Time is discrete, as well, and at each t ime step M1 the cells 
in the lattice are updated by means of a local rule, called transition function, 
that  determines the cell's next state based upon the states of its neighbors. Th a t  
is, the state of a cell at a given time depends only on its own state and the states 
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of its nearby neighbors at the previous time step. Different neighborhoods can be 
defined for the cells. The most common neighborhoods in the two-dimensional 
case are the von Neumann neighborhood consisting of the North, South, East, 
West neighbors and the Moore neighborhood composed of eight neighbor cells. 
The global behavior of the an automaton is defined by the evolution of the states 
of all cells as a result of multiple interactions. 

CA are intrinsically parallel so they can be simulated onto parallel computers 
running the cell transition functions in parallel with high efficiency, as the com- 
munication flow between processors can be kept low. In fact, in our approach, a 
cellular algorithm is composed of all the transition functions of cells that  com- 
pose the lattice. Each transition function generally contains the same local rule, 
but it is also possible to define some cells with different transition functions 
(inhomogeneous cellular automata) .  

According to this approach, we designed and implemented a high-level pro- 
gramming language, called CARPET (CellulAR Programming EnvironmenT) 
[9], that  allows a user to design cellular algorithms. In particular, C A R P E T  has 
been used for programming cellular algorithms in the CAMEL (Cellular Au- 
tomata  environMent for systems ModeLing environment) [3]. A user can design 
cellular programs by CARPET describing the actions of many simple active 
agents (implemented by the cells) interacting locally, then the CAMEL system 
runs cell transition functions in parallel allowing a user to observe the globM 
complex evolution that  arises from all the local interactions. A number of cel- 
lular programming languages such as Cellang [4], CDL [6], and CARP [7] have 
been defined in the last decade. However, none of those contains all the features 
of C A R P E T  neither a parallel run-time support for them has been implemented 
till today. 

2 C A R P E T  

The rational of C A R P E T  is to make parallel computers available to application- 
oriented users hiding the implementation issues coming from their architectural 
complexity. A C ARPET user can program complex problems that  may be rep- 
resented as discrete across a lattice. Parallelism inherent to its programming 
model is not apparent to the programmer. 

C A R P E T  implements a cellular automaton as an SPMD program. CA are 
implemented as a number of processes each one mapped on a distinct PE  tha t  
executes the same code on different data. According to this approach, a user must 
specify by C A R P E T  only the transition function of a single cell of the system 
he wants to simulate. The language uses the control structures, the types, the 
operators of the C language. A C A R P E T  program is composed by a declaration 
part that  appears only once in the program and must precede any s ta tement  
(except those of C pre-processor) and by a program body. The program body 
has the usual C statements, without I /O instructions, and a set of s tatements 
to deal with the state of a cell and its neighborhood. Further, C A R P E T  users 
may use C functions or procedures to improve the structure of programs. 
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The declaration section includes constructs to define the dimensions of the 
au tomaton  (dimension), the radius of the neighborhood (radius), the type of the 
neighborhood (neighbor), and to specify the state of a cell (state) as a set of 
typed substates that  can be char, shorts, integers, floats, doubles and arrays of 
these basic types. 

The dimension declaration defines the number of dimensions of the automa- 
ton in a discrete Cartesian space. The maximum number of dimensions allowed in 
the current implementation is 3. Radius defines the set of cells that  can compose 
the neighborhood of a cell. 

In C A R P E T  the state of a cell is composed of a record of typed substates, 
unlike classical cellular automata  where the cell state is represented by a few bits. 
The typification of the substates extends the range of the applications that  can 
be coded in C AR PET simplifying the writing the programs and improving their 
readability. In the following example the state is composed of three substates: 

rotate (short direction, floa~ mass, speed); 

A substate of the current cell can be referred by the variable cell substate 
(eg., cell_speed). To guarantee the semantics of cell updating in cellular au- 
tomata  the value of one substate of a cell can be modified only by the update 
operation. After an execution of the update statement,  the value of the substate, 
in the current iteration, is unchanged. The new value does take effect in the next 
iteration. 

The neighbor declaration assigns a name to a set of specified neighbor cells 
(of the current cell). This mechanism allows a cell to access by name the values 
of the substates of its neighbor cells. Neighborhoods can be asymmetrical  or 
have any other special topological properties (e.g., hexagonal). Furthermore,  in 
the neighbor declaration it must be defined the name of a vector that  has as 
length the number of elements composing the logic neighborhood. The name of 
the vector can be used as an alias in referring to the neighbor cell. For instance, 
the von Neumann neighborhood shown in figure 1, can be defined as follows: 

n e i g h b o r  Neum [4] ( [0, - 1] North ,  [- 1,0] West, [0 ,1]  South ,  [1 ,0]  East) ; 

A substate of a neighbor cell is referred, for instance, as N o r t h s p e e d .  Using 
the vector name the same substate can be referred also as Neum[0] speed. This 
referring way makes simpler to write loops in C A R P E T  programs. 

C A R P E T  allows the program to know the number of iterations that  have 
been executed by the predefined variable step. Step is silently updated by the 
run-time system. Initially its value is 0 and it is incremented by 1 each t ime 
Ml the cells of the automata  are updated. This feature allows a user to define 
also time-dependent neighborhoods. The step variable permits also to change 
dynamically the values of the substates dependent upon the iterations. 

In modeling a complex system, it is often necessary to describe some global 
features of the system. CARPET allows a user to define global parameters and 
initialize them to specific values. The value of a parameter  is the same in every 
cell of the automaton.  For this reason, the value of each parameter  cannot be 
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Fig. 1. The von Neumann neighborhood in a two-dimensional CA lattice. 

changed in the program but it can only be modified, during the simulation, by 
the UI. An example of parameter  declaration in C A R P E T  is 

parameter (permeability 0.9) ; 

Input  and output  of a C A R P E T  program can be performed by files or by 
the edit function of the UI. A file can contain the values of one substate  of all 
cells, so these values can be loaded at the step 0 to initialize the au tomaton .  The 
output  of a C A R P E T  program can automatical ly be saved in files at regular 
intervals to be post-processed by mathemat ica l  or visualization tools. C A R P E T  
offers a user the possibility to define non-deterministic rules using of a random 
function. Finally, C A R P E T  allows a user to define cells with different transit ion 
functions by means of the Getx, Gety, Getz operations that  return the value of 
coordinates X, Y, and Z of a cell in the automaton.  

Differently form other cellular languages, C A R P E T  does not provide state- 
ments  to configure the automata ,  to visualize the cell values or to define the 
process-to processor mapping.  These features can be defined by means of the 
GUI of its runt ime system. The CAMEL GUI allows a user to define the size 
of cellular au tomata ,  the number of the processors onto which an au toma ton  
must  be executed, and choose the colors to be assigned to the cell substates to 
support  the graphical visualization of their values. By excluding constructs for 
configuration and visualization from the language, it is possible to execute the 
same C A R P E T  compiled code using different configurations. 

3 A P a r a l l e l  C e l l u l a r  R u n  T i m e  S y s t e m  

Parallel computers are the best practical support  for the effective implementa-  
tion of high-performance CA [1]. According to this basic idea has been developed 
CAMEL. It  is a parallel software system based on the cellular a u t o m a t a  model 
that  constitutes the parallel run-t ime system of CARPET.  CAMEL has been 
implemented on a parallel computer  composed of a mesh of Transputers  con- 
nected to a host node [2]. CAMEL provides a GUI to configure a program,  to 
moni tor  the parameters  of a simulation and to dynamical ly change them at run 
time. The parallel execution of cellular algorithms is implemented by the parallel 
execution of the transition function of each cell in the Single Program Multiple 
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Data  (SPMD) way. A portable implementat ion of CAMEL for MIMD parallel 
computers  based on the MPI communicat ion library is developing. 

The CAMEL system is composed by a set of Macrocell processes, each one 
running on a single processing element of the parallel machine, and by a Con- 
troller process running on a master  processor. Each Macrocell process imple- 
ments  an au tomaton  parti t ion that  includes several elementary cells, and it 
makes use of a communicat ion system that  handles the da ta  exchange among 
cells. All the Macrocells of the lattice execute in parallel the local rule tha t  re- 
sults in a global t ransformation of the whole lattice state. CAMEL uses a load 
balancing strategy for assigning lattice parti t ions to the processors of a parallel 
computer  [2]. This load balancing is a domain decomposition s t rategy similar to 
the scattered decomposition technique. 

4 A Simple Program 

This section shows a simple program written by CARPET.  This example should 
familiarize the reader with the C A R P E T  approach. The program in figure 2 
shows how the C A R P E T  constructs can be used to implement  the parity rule 
algorithm. The pari ty rule is a very simple example of "self-reproduction" in 
cellular au tomata ;  an initial pat tern  is replicated at some specific i teration tha t  
is a power of two. The cells can have 0 or 1 values only. A cell takes the sum of 
its neighbors and goes to 1 if the sum is odd, or to 0 if the sum is even. Let us 
call N the number  of '1 '  cells among the four nearest neighbors of a given cell. 
The transit ion rule is the following: given a cell, if N is odd, the new value of 
the cell will be 0; if N is even the cell's value does not change. 

c a e ' f  
{ dimel~ion 2; /*bidimensional  l a t t i c e  */ 

r a d i u a  1 ; 
s t a t e  ( s h o r t  v a l u e )  ; 
neighbor cross [4] ( [0, - i] North, [- i, O] West, 

[0,1] South, [ 1,0] East)  ; 
} 
{int i; s h o r t  N = O; 

for (i = O; i<4; i++) 

N = cross_value[i] + N; 

i f  (NY.2 == I) 

update (cell value,O); /*updating the state of a cell*/ 
} 

Fig. 2. The parity rule algorithm written in CARPET. 
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5 P e r f o r m a n c e  

Together with the minimization of elapsed time, scalability is a major goal in the 
design of parallel computing applications. Scalability shows the potential ability 
of parallel computers to speedup their performance by adding more processing 
elements. The scalability of CARPET programs has been measured increasing 
the number of PEs used to solve the same problem, and using the same number 
of processing elements to solve bigger problems [2]. 

The speedup obtained on 32 Transputers with an automaton composed of 
224x70 cells which simulated the Ontake mountain (Japan) landslide was 25.0 
(78.1% efficient). Table 1 shows the times (in seconds) and the speed-up obtained 
running the landslide simulation on CAMEL using 1, 2, 4, 8, 16 and 32 PEs. 
The second column shows the number of cells, which are mapped, on each PE. 
Similar performance results have been obtained in other applications developed 
.by CARPET [3]. 

Table 1. Execution times and speed-up. 

Number of PEs Number Cells/PE Time for 2000 s t e p s ~  
1 15680 
2 7840 
4 3920 
8 1960 
16 980 
32 490 

10231.59 1 
6392.48 1.6 
3181.40 3.2 
1447.96 7.0 
728.11 14.0 
407.84 25.0 

6 F i n a l  R e m a r k s  a n d  F u t u r e  W o r k  

As stated also by M. J. Flynn [5], the cellular automata model is a new math- 
ematical way to represent problems that allows to effectively use parallel com- 
puters achieving scalable performance. 

In this paper, we described the CARPET programming language designed 
for programming cellular algorithms on parallel computers. CARPET has been 
used successfully to implement several real life applications such as landslide 
simulation, lavaflow models, freeway traffic simulation, image processing, and 
genetic algorithms. The experience during the design, implementation, and use 
of the CARPET language showed us that high-level languages are very useful in 
the development of cellular algorithms for solving complex problems in science 
and engineering. 

Currently, the CARPET language is used in the COLOMBO (Parallel COm- 
puters improve clean up of soils by Modelling BiOremediation) project within 
the ESPRIT framework. The COLOMBO main objective is the use of CA mod- 
els for the bioremediation of contaminated soils. This project is developing a 
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portable MPl-based implementat ion of C A R P E T  and CAMEL on MIMD parM- 
lel computers  such as the Meiko CS-2, the CRAY T3E, and workstation clusters. 
The new implementat ion will make the C A R P E T  programs portable  on a large 
number  of MIMD machines. 
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