
A Parallel Solver for E x t r e m e Eigenpairs I

Leonardo Borges and Suely Oliveira 2

Computer Science Department, Texas A&M University, College Station, TX
77843-3112, USA.

Abs t r ac t . In this paper a parallel algorithm for finding a group of ex-
treme eigenvalues is presented. The algorithm is based on the well known
Davidson method for finding one eigenvalue of a matrix. Here we incor-
porate knowledge about the structure of the subspace through the use
of an arrowhead solver which allows more parallelization in both the
original Davidson and our new version. In our numerical results various
preeonditioners (diagonal, multigrid and ADI) are compared. The per-
formance results presented are for the Paragon but our implementation
is portable to machines which provide MPI and BLAS.

1 I n t r o d u c t i o n

A large number of scientific applications rely on the computa t ion of a few eigen-
values for a given mat r ix A. Typically they require the lowest or highest eigen-
values. Our algorithm (DSE) is based on the Davidson algorithm, but calculates
various eigenvalues through implicit shifting. DSE was first presented in [10]
under the name RDME to express its ability to identify eigenvalues with mul-
tiplicity bigger than one. The choice of preconditioner is an impor tan t issue in
eliminating convergence to the wrong eigenvalue [14] In the next section, we
describe the Davidson algorithm and our version for computing several eigen-
values. In [9] Oliveira presented convergence rates for Davidson type algori thm
dependent on the type of preconditioner. These results are summarized here in
Section 3. Section 4 addresses parallelization strategies discussing the da ta dis-
tr ibution in a MIMD architecture, and a fast solver for the projected subspace
eigenproblem. In Section 5 we present numerical and performance results for
the parallel implementat ion on the Paragon. Further results about the parallel
algori thm and other numerical results are presented in [2].

2 T h e D a v i d s o n Algorithm

Two of the most popular iterative methods for large symmetr ic eigenvalue prob-
lems are Lanczos and Davidson algorithms. Both methods solve the eigenvalue

1 This research is supported by NSF grant ASC 9528912 and a Texas A~M University
Interdisciplinary Research Initiative Award.
Department of Computer Science, Texas A&M University, College Station, TX
77843.
email: suely@cs.tamu.edu.

764

problem Au =)~u by constructing an orthonormal basis Vk = Iv1, �9 �9 vk], at each
k th iteration step, and then finding an approximation for the eigenvector u of A
by using a vector uk from the subspace spanned by Vk. Specifically, the original
problem is projected onto the subspace which reduces the problem to a smaller
eigenproblem Sky = ~Yk, where Sk = VTAVk. Then the eigenpair (~k, Yk) can
be obtained by applying a efficient procedure for small matrices. To complete
the iteration, the eigenveetor Yk is mapped back as uk = Vkyk, which is an ap-
proximation to the eigenveetor u of the original problem. The difference between
the two algorithms consists on the way that basis Vk is built. The attractiveness
of the Lanczos algorithm results from the fact that each projected matr ix Sk is
tridiagonal. Unfortunately, sometimes this method may require a large number
of iterations. The Davidson algorithm defines a dense matr ix Sk on the subspace,
but since we can incorporate a preconditioner in this algorithm the number of
iterations can be much lower than for Lanczos. In Davidson type algorithms, a
preconditioner Ma k is applied to the current residual, rk : A u k - - /~kUk , and
the preconditioned residual tk = Mxk rk is orthonormalized against the previous
columns of Vk = Iv1, v=, . . . , vk]. Although in the original formulation Ma is the
diagonal matr ix (diag(A) - M)-1 [6], the Generalized Davidson (GD) algorithm
allows the incorporation of different operators for Mx. The DSE algorithm can
be summarized as follows.

A l g o r i t h m 1 - R e s t a r t e d D a v i d s o n fo r S e v e r a l E i g e n v a l u e s Given a ma-
trix A, a normalized vector Vl, number of eigenpairs p, restart index q, and the
minimal dimension m for the projected matrix S (m > p), compute approxima-
tions 3~ and u for the p smallest eigenpairs of A.

1. Set 71 ~ [l)1]- (initial guess)
2. For j = 1, ..., p (approximation for j-th eigenpair)

While k = 1 or Ilrk_lll < e do
(a) Project Sk = VT A Vk .
(b) If (re + q) <_ dim S (restart Sk)

Reduce Sk +-- (Ak)(,~xm) to its m smaller eigenvectors, and
update Vk for the new basis.

(c) Compute the jth smallest eigenpair Ak, Yk of Sk.
(d) Compute the Ritz vector uk +-- Vkyk.
(e) Check convergence for rk +-- Auk --)~kuk.
(f) Apply preconditioner tk +-- Mrk.
(g) Expand basis Vk+l +--- [Vk, tk] using modified Gram Schmidt (MGS').
End while

3. End For.

The core ideas of DSE (Algorithm 1) are based on the projection of A
into the subspace spanned by the columns of Vk. The interation number k is
not necessarily equal to dim Sk, since we have incorporated implicit restarts.
The matr ix Sk is obtained by adding one more column and row VTAvk to
matr ix Sk- , (step 2.a). Other important aspects of the DSE algorithm are:

765

(1) the eigenvalue solver for the subspace matrix Sk (step 2.e); (2) the use
of an auxiliary matrix Wk = [wl , . . . ,wk] to provide a residual calculation
rk = Auk -)~ku~ = wkyk --)~kUk with less computational work (step 2.e); the
choice of a preconditioner M (step 2.f); and the use of modified Gram-Schmidt
orthonormMization (step 2.g) which preserves numerical stability when updat-
ing the orthonormal basis Vk+l. At each iteration, the Mgorithm expands the
matrix S either until all the first p eigenvalues have been converged, or S reaches
a maximum dimension m + q; In the latter case, restarting is applied by using
the orthonormM decomposition Sk = y T A k Y k of S. It corresponds to step 2.b
in the algorithm. Because of our choice for m, note that in step 2.e dim S will
be always bigger or equal to j.

3 C o n v e r g e n c e R a t e

A proof of convergence (but without a rate estimate) for the Davidson algorithm
is given in Crouzeix, Philippe and Sadkane [5]. A bound on the convergence
rate was first presented in [10]. The complete proof is shown in Oliveira [9].
Let A be the given matrix whose eigenvalues and eigenvectors are wanted. The
preconditioner M is given for one step, and Davidson's algorithm is used with
uk being the current computed approximate eigenvector. The current eigenvalue
estimate is the Rayleigh quotient ,~k flA (uk) u T u T = = (k A u k) / (k uk). Let the exact
eigenvector with the smallest eigenvalue of A be u, and

A u ~)~u.

(If/~ is a repeated eigenvalue of A, then we can let u be the normalized projection
of Uk onto this eigenspace.)

T h e o r e m 1. Let P be the orthogonal projection onto ker(A - AI) • Suppose
that A and M are symmetric positive definite. I f

l I P - P M P (A -)~I)II2 < a < 1,

then for almost any starting value x l , the convergence of the eigenvalue estimates
Ak converge to)~ ultimately geometrically with convergence factor bounded by c ~ ,
and the angle between the computed eigenvector and the exact eigenspace goes to
zero ultimately geometrically with convergence factor bounded by er.

A geometric convergence rate can be found for DSE (which obtains eigen-
values beyond the smallest (or largest) eigenvalue) by modifying Theorem 1. In
the following theorem assume that

~' = l i P ' - P ' M P ' P ' (A - Ap/)P'II2

where P~ is the orthogonal projection onto the orthogonal complement of the
span of the first p - 1 eigenvectors. Then we can shown, in a similar way to
Theorem 1 that the convergence factor for the new algorithm is bounded by

766

(a~)2 To prove Theorem 2 we use the fact that P~sk = sk, as sk is orthogonal
to the bot tom p eigenvectors, and that although (A - ApI) is no longer positive
semi-definite, PI (A - ~vI)P I is.

T h e o r e m 2. Suppose that A and M are symmetric positive definite and that
the first p - 1 eigenvectors have been found exactly. Let P~ be the orthogonal pro-
jection onto the orthogonal complement of the span of the first p - 1 eigenvectors
of A. If

l i P ' - P ' M P ' (A - ApI)P'II2 < c / < 1,

then for almost any starting value xl , the eigenvalue estimates'Ak obtained by our
modified Davidson algorithm for several eigenvalues converges to Ap ultimately
geometrically with convergence factor is bounded by (~)2, and the angle between
the exact and computed eigenvector goes to zero ultimately geometrically with
convergence factor bounded by (r t.

4 P a r a l l e l I m p l e m e n t a t i o n

Previous implementations for the Davidson algorithm solve the eigenvalue prob-
lem in subspace S by using algorithms for dense matrices: early works [3, 4, 17]
adopt EISPACK [12] routines, and later implementations [13, 15] use LAPACK
[1] or reductions to tridiagonal form. Partial parallelization is obtained through
the matrix-vector operations and sparse format storage for matr ix A [13, 15].
Here we explore the relationship between two successive matrices Sk which al-
lows us to represent Sk through an arrowhead matrix. The arrowhead structure
is extremely sparse and the associated eigenvalue problem can be solved by a
highly parallelizable method.

4.1 D a t a D i s t r i b u t i o n

Data partitioning significantly affects the performance of a parallel system by
determining the actual degree of concurrency of the processors. Matrices are
parti t ioned along distinct processors so that the program exploits all the best
possible data parallelism: The final distribution is well balanced, and most of
the computat ional work can be performed without communication. These two
conditions make the parallel program very suited for distributed memory archi-
tectures. Both computational workload and storage requirements are the same
for all processors. Communication overhead is kept as low as possible. Matrix
A is split into row blocks A i, i = 1 , . . . , N, each one containing ~ [n/N] rows
of A. Thus processor i, i = 1 , . . . , N stores A i, the i th r o w block of A. Matrices
Vk and Wk are stored in the same fashion. This data distribution allow us to
perform many of the matrix-vector computations in place.

The orthonormalization strategy is also an important aspect in parallel en-
vironments. Recall that the modi fed Gram Schmidt (MGS) algorithm will be
applied to the extended matr ix [Vk, tk] where the current basis Vk has been pre-
viously orthonormalized. This observation reduces the computat ional work by
eliminating the outer loop from the two nested loops in the full MGS algorithm.

767

4.2 The Arrowhead Relat ionship B e t w e e n Matrices Sk

As pointed in [2, 10], the relationship between Sk and Sk-1 can be used to show
that Sa is explicitly similar to an arrowhead matr ix Sk of the form

(1)

where ak = YI~-IVk_lWk,T T Skk = vTwk, and the diagonal matr ix Ak-1 corre-
sponds to the orthonormal decomposition Sk-1 = Yk- lAk- lYkr_ , . In practice,
the matr ix Sk does not need to be stored: only a vector for Ak and a matr ix for
Yk are required from one iteration to the next. Thus, given the eigenvalues Ak-1
and eigenvectors Yk-, of Sk-1, matr ix Sk can be used to find the eigenvalues
Ak of Sk. Arrowhead eigensolvers [8, 11] are highly parallelizable and typically
perform O(k 2) operations, instead of the usual C9(k 3) effort of algorithms for
dense matrices S.

5 N u m e r i c a l R e s u l t s

In our numerical results we employ three kind of preconditiners: diagonal pre-
conditioner (as in the original Davidson), multigrid and ADI. A preconditioner
can be expressed as the matrix which solves Ax = b by applying an iterative
method to M A x = Mb instead. In the case of a Diagonal preconditioner this
would correspond to scaling the system and then solving. Multigrid and ADI
preconditioners are more complex and for that we refer the reader to [16, 18, 19].
In our implementation level 1, 2 and 3 BLAS and the Message Passing Interface
(MPI) library were used for easy portability.

The computational results in this section were obtained with a finite differ-
ence approximation for

- A u + gu = f (2)

on a unit square domain. Here g is null inside a 0.2 • 0.2 square on the center
of the rectangle and g = 100 for the remaining domain.

To compare the performance delivered by distinct preconditioners we observe
the total timing and number of iterations required for the sequential DSE for
finding the ten smallest eigenpairs (p = 10) assuming convergence for residual
norms less or equal to 10 -7. The restart indexes were q = 10 and m = 15.
This corresponds to apply restarting every t ime that the projected matr ix S~
achieves order 25, reducing its order to 15. Table 1 presents the actual running
tIMINGS In a single processor of the Intel Paragon, running three grid sizes:
31x31, 63x63, and 127x127 (matrices of orders 961, 3969 and 16129, respec-
tively.). It reflects the tradeoff between preconditioning strategies: although the
diagonal preconditioner (DIAG) is the easiest and fastest to compute, it requires
an increasing number of iterations for larger matrices. Multigrid preconditioners
(MG) are more expensive than DIAG, but they turn to be more effective for
larger matrices. Finally, the ADI method aggregate the advantages of the previ-
ous preconditioners in the sense that it is more effective and less expensive than

768

MG. More details about the preconditioners used here can be found in [2] and
its references.

Table 1. Sequential times and number of iterations for three preeonditioners.

16129]
ime (~'~J

4.7 ~ 16.2 ~ 80.7 l
8.8 43.0 254.1
8.6 43.2 386.0

The overall behavior of the DSE algorithm (with a multigrid preconditioner)
is shown in Figure 1 for matrices sizes 3969 and 16129, as a function of the
number of processors. Note that the estimated optimal number of processors is
not far from the actual optimal. The model for our estimates is presented in [2].

22

20

18

16

g
Nt4
E

12

10

8

6

Actual times compared wdh theoretical estimates

r::::::t3:,0:9
~ m a t e d optimal

\
\

\
x

x
\

x

, , L 2'0 5 10 15
number of processors

25

Fig. 1. Actual and estimated times for equation (2). Results for two different matrix
sizes performance on the Paragon are shown.

To conclude, we compare the performance of the parallel DSE with PAR-
PACK [7], a parallel implementation of ARPACK 1 Figure 2 presents the total
running times for both algorithms for the problem described above, For these
runs, DSE used our parallel implementation of the ADI as its preconditioner.

1 ARPACK implements an Implicitly Restarted Arnoldi Method (IRAM) which in the
symmetric case corresponds to the Implicitly Restarted Lanczos algorithm. We used
the regular mode when running PARPACK.

769

The problem was solved by using 4, 8, and 16 processors to obtain relative resid-
uals]]Au-Aull/l[ul] of order less than 10 -5. We show our theoretical analysis for
the parallel algori thm in [2]. Other numerical results for the sequential DSE algo-
r i thm, including examples showing the behavior of the algorithm for eigenvalues
with multiplicity greater than one, were presented in [10].

6C

5C

-ff
~4o

30

20

l0

w

10 ~

DSE (ADO and PAFtPACK for three distinct problem s i z e s
. , ?

, i

- DSE (ADI) / /
/

- - PARPAGK / /

)~ 4 processors / / / / /

+ 8 processors /
/

/ / /
/ / j / �9

/ / / /
/ / /

/ / / ~ / /

104
log: problem size

Fig. 2. Running times for DSE and PARPACK using 4, 8, and 16 processors on the
Paragon.

R e f e r e n c e s

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouehov, and D. Sorensen. LAPACK User's
Guide. SIAM, Philadelphia, 1992.

2. L. Borges and S. Oliveira. A parallel Davidson-type algorithm for several eigen-
values. Journal o] Computational Physics. To appear.

3. G. Cisneros, M. Berrondo, and C. F. Brunge. DVDSON: A subroutine to evaluate
selected sets of eigenvalues and eigenvectors of large symmetric matrices. Compu.
Chem., 10:281-291, 1986.

4. G. Cisneros and C. F. Brunge. An improved computer program for eigenvector
and eigenvalues of large configuration iteraction matrices using the algorithm of
[)avidson. Compu. Chem., 8:157-160, 1984.

5. M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson method. SIAM J. Sci.
Comput., 15(1):62-76, 1994.

6. E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and cor-
responding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17:87
94, 1975.

770

7. K. Maschhoff and D. Sorensen. A portable implementation of ARPACK for dis-
t r ibuted memory parallel architectures. In Proceedings of Copper Mountain Con-
ference on Iterative Methods, April 9-13 1996.

8. D. P. O'Leary and G. W. Stewart. Computing the eigenvalues and eigenvectors of
symmetric arrowhead matrices. J. Comp. Phys., 90:497-505, 1990.

9. S. Oliveira. On the convergence rate of a preconditioned algorithm for eigenvalue
problems. Submitted.

10. S. Oliveira. A convergence proof of an iterative subspace method for eigenval-
ues problem. In F. Cucker and M. Shub, editors, Foundations of Computational
Mathematics Selected Papers, pages 316-325. Springer, January 1997. (selected).

11. S. Oliveira. A new parallel chasing algorithm for transforming arrowhead matrices
to tridiagonal form. Mathematics of Computation, 67(221):221-235, January 1998.

12. B. T. Smith, J. M. Boyle, a. J. Dongarra, B. S. Garbow, Y. lkebe, V. C. E:lema, and
C. B. Moler. Matrix eigensystem routines: EISPACK guide. Number 6 in Lecture
Notes Comput. Sci. Springer-Verlag, Berlin, Heidelberg, New York, second edition,
1976.

13. A. Stathopoulos and C. F. Fischer. A Davidson program for finding a few selected
extreme eigeinpairs of a large, sparse, real, symmetric matrix. Comp. Phys. Comm.,
79:268-290, 1994.

14. A. Stathopoulos, Y. Saad, and C. F. Fisher. Robust preconditioning of large,
sparse, symmetric eigenvalue problems. J. Comp. and Appl. Mathematics, 64:197-
215, 1995.

15. V. M. Umar and C. F. Fischer. Multitasking the Davidson algorithm for the large,
sparse eigenvalue problem. Int. J. Supercomput. Appl., 3:28 53, 1989.

16. R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, 1963.
17. J. Weber, R. Lacroix, and G. Wanner. The eigenvalue problem in configuration

iteration calculations: A computer program based on a new derivation of the algo-
rithm of Davidson. Compu. Chem., 4:55-60, 1980.

18. J. R. Westlake. A handbook of numerical matrix inversion and solution of linear
equations. Wiley, 1968.

19. D. M. Young. Iterative Solution of LaTye Linear Systems. Academic Press, 1971.

