
P a r a l l e l S o l v e r s for L a r g e E i g e n v a l u e P r o b l e m s

O r i g i n a t i n g f r o m M a x w e l l ' s E q u a t i o n s

Peter Arbenz I and Roman Geus 1

Swiss Federal Institute of Technology (ETH), Institute of Scientific Computing,
CH-8092 Zurich,

{arbenz, geus}@ inf . ethz. ch

Abs t rac t . We present experiments with two new solvers for large sparse
symmetric matrix eigenvalue problems: (1) the implicitly restarted Lanc-
zos algorithm and (2) the ffacobi-Davidson algorithm. The eigenvalue
problems originate from in the computation of a few of the lowest fre-
quencies of standing electromagnetic waves in cavities that have been
discretized by the finite element method. The experiments have been
conducted on up to 12 processors of an HP Exemplar X-Class multipro-
cessor computer.

1 I n t r o d u c t i o n

Most particle accelerators use standing waves in cavities to produce the high
voltage RF (radio frequency) fields required for the acceleration of the particles.
The mathematical model for these high frequency electromagnetic fields is the
eigenvalue problem solving Maxwell's equations in a bounded volume. Usually,
the eigenfield corresponding to the fundamental mode of the cavity is used as
the accelerating field. Due to higher harmonic components contained in the RF
power fed into the cavity, and, through interactions between the accelerated
particles and the electromagnetic field, an excitation of higher order modes can
occur. The RF engineer designing such an accelerating cavity therefore needs
a tool to compute the fundamental and about ten to twenty of the following
eigenfrequencies together with the corresponding electomagnetic eigenfields.

After separation of variables depending on space and time and after elimina-
tion of the magnetic field terms the variational form of the eigenvalue problem
for the electric field intensity is given by [1]

Find (A,u) E IR x Wo such that u 5s 0 and

(curl u, curl v) = x(,~, v), w ~ w~. (1)

Let L2(/2) be the Hilbert space of square-integrable functions over the 3-dimen-
sional domain Y2 (the cavity) with inner product (u, v) = fn u (x) . v(x) dx and

norm [lu[]0,~ := (u, u) 1/~. In (1), W0 := {v ~ W [div v = 0} with

W := {v E L2(~2) 3 [c u r l y E L~(Y2) 3 , d i v v C L2(X?) , n x v = 0 on OX2}.

772

The difficulty with (1) stems from the condition div v = 0 as it is hard to
find divergence-free finite elements. Therefore, ways have been looked for to get
around the condition div v = 0. In this process care has to be taken in order
not to introduce so-called spurious modes, i.e. eigenmodes that have no physical
meaning [8]. We considered two approaches free of spurious modes, a penalty
method and an approach based on Lagrange multipliers. In the penalty method
approach (1) is replaced by [9, 11]

For fixed s > O, find (A, u) E]It x W such that u ~s 0 and
(curl u, cur l v) + s (div u, div v) = A(u, v), Vv E W. (2)

Here, s is a positive, usually small parameter. The eigenmodes u(x) of (2) cor-
responding to eigenvalues A < pzS are eigenmodes of (1). #1 is the smallest
eigenvalue of the negative Laplace operator --A on [2.

When discretized by ordinary nodal-based finite elements, (2) leads to matrix
eigenvalue problems of the form

Ax =),Mx. (3)

For positive s, both A and M are symmetric positive definite sparse n-by-n
matrices.

In the mixed formulation the divergence-free condition is enforced by means
of Lagrange multipliers [9].

Find (X,u,p) E lR x H0(curl; a) x H01 (~2) such that u 7s 0 and

(a) (cu r lu , c u r l ' I Q + (g r a d p , ~) = A (u , V) , Y~ CH0(curl;~2) (4)
(b) (u, g r a d q) = 0, Vq e H01 (f2)

Here, H0(curl;f~) := {v E L~"(s 3 I c u r l v E L2(I?) a, n x v = 0 on 0D}. The
finite element discretization of (4) yields a matrix eigenvalue problem of the form

;] [;] o ~ [;]
where A and M are n-by-n and C is n-by-re. M is positive definite, A is only
positive semidefinite. It turns out that (5) becomes most convenient to handle if
the finite elements for the vector fields are chosen to be edge elements as proposed
by N~d~lec [12,8] and the Lagrange multipliers are represented by nodal-based
finite elements of the same degree. Then, the columns of M - 1 C form a basis for
the nullspace of A and, in principle, it suffices to compute the eigenvalues of an
eigenproblem formally equal to (3) but with A and M from (5). To get rid of
the high-dimensional eigenspaee associated with the eigenvalue zero Bespalov [4]
proposed to replace (5) by

Ax = AMx, .~ = A + C H C T, (6)

where H is a positive definite matrix chosen such that the zero eigenvMues are
shifted to the right of the desired eigenvalues and do not disturb the computa-
tions.

In this note we consider solvers for Ax = AMx with A and M from the
penalty approach (3) as well as from the mixed element approach (6).

773

2 Algorithms

In this section we briefly survey the numerical methods that we will apply to
the model problem which is a cavity of the form of a rectangular box, $2 =
(0, a) • (0, b) • (0, c). We investigate two algorithms for computing a few of
the smallest (positive) eigenvalues of the matr ix eigenvalue problems originating
from both the penalty method and the mixed method.

For computing a few, say p, eigenvalues of a sparse matr ix eigenvalue problem

A x =)~Mx, A = A T, M = M T > 0, (7)

closest to a nmnber r it is advisable to make a so-cMled shi f t -and- inver t approach
and apply a spectral transformation with a shift cr close to r and solve [7]

1
- (s) (A ~ M) - I M x = # x , # = A - ~"

instead of solving (7). Notice that (A - c ~ M) - I M is M-symmetric, i.e., it is
symmetric with respect to the inner product x T M y . The spectral t ransformation
leaves the eigenvectors unchanged. The eigenvalues of (7) close to the shi f t c,
become the largest absolute of (8). They are relatively well-separated which
improves the speed of convergence. The cost of the improved convergence rate is
the need to solve (at least approximately) systems of equations with the matr ix
A - ~M. In all algorithms the shift cr was chosen to be 48 < A1 ~ 48.4773.

1. T h e I m p l i c i t l y R e s t a r t e d Lanczos a l g o r i t h m (I R L) . Because of the
large memory consumption of the Lanczos algorithm it is often impossible to
proceed until convergence. It is then necessary to restart the iterative process
in some way with as little loss of information as possible. An elegant way to
restart has been proposed by Sorensen for the Arnoldi algorithm [16], see [5]
for the symmetric Lanczos case. Software is publicly available in ARPACK [10].
The algorithm is based on the spectral transformation Lanczos algorithm. The
iteration process is executed until j = p + k, where k is some positive integer,
often k = p. Complete reorthogonalization is done for stability reasons. This is
possible since by assumption p + k is not big.

In the restarting phase a clever application of the QR algorithm [14] reduces
the dimension of the search space to p in such a way that the p new orthogonal
basis vectors still form a Krylov sequence [16,5]. This allows the Lanczos phase
to be resumed smoothly.

Here, we solved the symmetric indefinite system of equations (A - ~ M) x = y
iteratively by SYMMLQ [13, 3]. The accuracy of the solution of the linear system
has to be at least as high as the desired accuracy in the eigenvalue calculation in
order that the coefficients of the Lanczos three-term recurrence are reasonably
accurate [10]. We experimented with various preconditioners. None of them was
satisfactory. We obtained the best results with diagonal preconditioning. In our
implementation we chose p = k = 15. Besides the storage for the matrices A and
M, IRL requires space for two n • (p + k) arrays.

774

2. T h e J a c o b i - D a v i d s o n a l g o r i t h m (J D Q R) . In the Jacobi-Davidson al-
gori thm the eigenpairs of Ax = AMx are computed one by one. As with the
implicitly restarted Lanczos procedure the search space Vj is expanded up to a
certain dimension, say j = jmax. The basis of this space is constructed to be M-
orthogonal but there is no three-term recurrence relation. In the expansion phase
the search space is extended by a vector v orthogonal to the current eigenpair
approximation (A, ~) by means of equation [15]

(I - 6i6tT M) (A - AM)v = - (I - 6i6iT M) r , (I - OOrM)v = v. (9)

(If eigenvectors have already been computed, this process is executed in the
space M-orthogonal to them.) The solution of (9) is only needed approximately.
Therefore, it can be solved iteratively. In [6] the authors propose to use a pre-
conditioner of the form

(I - ~I6iT M)I ' (([-- 61~tT M) (10)

where I (is a good and easily invertible approximation of A - AM. They also
give a generalized inverse of the matr ix in (10). We solved the systems by the
conjugate gradient squared (CGS) method [3]~with K equal to the diagonal of
A - AM. The next approximate eigenvalue ~ and corresponding Ritz vector
0 are obtained by a Ritz step for the subspace VN+I. If the search space has
dimension jmax it is shrunk to dimension jmin by selecting only those Jmin Ritz
vectors corresponding to Ritz values closest to the target value V = 48. In our
experiments we set jmin = P = 15 and jm~• = 2p as suggested in [10].

Thus, besides the storage for the matrices A and M, memory space is needed
for a n • Jmax array and for three n x p arrays.

3 N u m e r i c a l E x p e r i m e n t s

In this section we compare IRL and JDQR for computing the 15 smallest eigen-
values of (1) with /2 = (0, a) x (0, b) x (0, c) where a -= 0.8421, b = 0.5344,
c = 0.2187. We apply penalty as well as mixed methods to this model problem
whose eigenvalues can be computed analytically [1]. The computat ional results
have been obtained with the HP Exemplar X-class system at the ETH Zurich.

1. S e q u e n t i a l r e su l t s . In Figs. 1 and 2 execution times for computing the 15
lowest eigenvalues and associated eigenvectors vs. the accuracy of the computed
solutions relative to the analytic solution are plotted for different mesh sizes.
The largest problems sizes were n = 65t125 and n = 45t226 for the linear and
quadratic edge elements, and n = 28~278 and n = 118~539 for the linear and
quadratic node elements. For all experiments we used a tolerance of 10 - s in
the stopping criterion of the eigensolvers. Loosely speaking, this means that the
eigenvalues are computed to at least 8 significant digits. The execution times
comprise the solution time of the eigensolver but not the time for building the
matrices. For each finite element type (linear/quadratic, node element/edge ele-
ment) the performance of the two algorithms is shown. Fig. 1 shows the results

775

I 0 s

lO ~

10 ~

10 z .,=

10 t

10 o

1(] -1

10 ~

performance compansion of ARPACK and JDQR with nodal elements
. i , i i , �9 " , ' , , , , u

I I 1in node w/arpack
................. ~4 hn node w/Jdqr

~ -* quad node w/arpack
0 ,~ quad node w / jdq r

" \ 1 % . ~

. i i i i ,
10 -5 10 4 10 -~ 10 2 10-~ 10 ~

rel accuracy of k I

Fig. 1. Comparison of IRL and JDQR with node elements: Accuracy of the computed
)~1 relative to the analytic solution vs. computation time

10 s

10 4

10 ~

, ~ 1 0 2

101

10 ~

performance compadsion of ARPACK and JDQR with edge elements
�9 i i i , �9 F

I 4- lin edge w/arpack
J x ~ Un edge w/ [dqr

t I * -~ quad edge w/arpack \'%~>.~>. % ~ quad edge w / jdq r

10-' t , i , , , , , , , ,
1 0 s 10-* 10 =3 I0 -2 10 -I 10 0

rel accuracy of k I

Fig. 2. Comparison of IRL and JDQR with edge elements: Accuracy of the computed
A1 relative to the analytic solution vs. computation time

776

that we obtained with linear and quadratic node elements for A1. The higher
eigenvalues behave similarly but are of course less accurate. Fig. 2 shows the
results for the linear and quadratic edge elements.

For edge elements the convergence is improved by introducing the matr ix
C as given in (6). Experiments to that end are reported in [2]. H in (6) was
heuristically chosen to be a I with a = 100/h, where h is the mesh width.

The comparison of linear with quadratic element types reveals immediately
the inferiority of the former. They give much lower accuracy for a given compu-
tation time. The node elements in turn are to be preferred to the edge elements,
at least in this simplified model problem. For a given computat ional effort, the
eigenvalues obtained with the node elements are about an order of magnitude
more accurate than those obtained with the edge elements. The situation is not
so evident with the linear elements.

With the quadratic elements and linear node elements JDQR is consistently
faster than IRL by about 10 to 30% for the large problem sizes. For linear edge
elements JDQR still is 10 to 20% ahead of IRL for most of the larger problem
sizes. For the smaller problems the situation is not so clear.

We now discuss the behavior of the two algorithms in the case of the quadratic
edge elements where the problem size grows from n = 1408 to 45226. (In the
latter case A and M have each about 1'730'000 nonzero elements.) With both
algorithms the number of outer iteration steps varies only little. It is ~ 65 with
IRL and ~ 210 with JDQR. So, the nmnber of restarts does not depend on the
problem size. Each outer iteration step requires the solution of one system of
equations. We used the solver SYMMLQ with IRL and CGS for JDQR. One
(inner) iteration step of CGS counts for about two iteration steps of CGS. We
applied diagonal preconditioning in all cases. The superiority of JDQR over IRL
for large problem sizes can be explained by the number of inner iteration steps.
The average number of inner iteration steps per outer iteration step grows from
64 to 91 with JDQR but from 423 to 1140 with IRL. In ARPACK each system
of equations is solved to high accuracy. In JDQR the accuracy requirement is
not so stringent and actually varies from (outer) step to step, cf. w This
explains the higher iteration numbers for IRL. The projections in (9) improve
the condition number of the system matrix. Further, the shift ~r is updated in
JDQR while it stays constant with ARPACK. These may be the reasons for
the less pronounced increase of the number of inner iteration steps with JDQR.
Notice that the projections made in each iteration step account for less than
10% of the execution time of JDQR. Similar observations can be made with the
other element types.

2. P a r a l l e l r e su l t s . The parallel experiments were carried out on the 32 pro-
cessor HP Exemplar X-class system at ETH Zurich. This shared-memory CC-
NUMA machine consists of two hypernodes with 16 HP PA-8000 processors and
4 GBytes memory each. The processors and memory-banks within a hypernode
are connected through a crossbar-switch with a bandwidth of 960 MBytes/s per
port. The hypernodes themselves are connected by a slower network with a ring

777

ssc

2SO

~sa

mo

5

s

4

2

mpack ~ d e
=pack edge

)~ ~(idqr node

5 6 �9 B 9 10 I1 12 2 3 4 5 6 i 8 9 10 11 12
numt~r of p ressers number of proces~r s

(a) (b)

Fig. a. Execution times (a) for the large eigenproblem (n = 22323 for node, n = 5798 for
edge elements) and (b) for the small eigenproblem (n =4981 and n = 1408, respectively)

s ~ ~ ~pack node

~ a S .

IS

~packnode ~packedge]

a 4 s e 7 ~ ~ 10 I1 2 a 4 S ~ ~ B 9 10 I1
number of p r~ea~r8 D u ~ f oJ processors

(a) (b)

Fig. 4. Speedups (a) for the large eigenproblem and (b) for the small eigenproblem

topology. The HP PA-8000 processors have a clock rating of 180 MHz and a
peak performance of 720 MFLOPS.

We carried out the parallel experiments for IRL (ARPACK) and JDQR using
both quadratic node and quadratic edge elements and two different problem
sizes. Linear elements are not considered because of the inferior results in the
sequential case. For both edge and node elements we chose two problem sizes: the
larger problems require about 1700 seconds one processor, whereas the smaller
problems require only about 220 seconds. For our experiments we were allowed
to use up to 12 processors.

With ARPACK about 95% of the sequential computation time is spent in
the inner loops forming sparse matrix-vector products with the matrices A, M
and C. JDQR spends about 90% for this task. We therefore parallelized the
sparse matrix-vector product using the so called HP Exemplar advanced shared-
memory programming technique, that is directive-based.

778

The matr ix C and the strictly lower triangles of A and M are stored in the
compressed sparse row format [3]. The diagonals of A and M are stored sepa-
rately. We parallelized the outermost loops with the l o o p _ p a r a l l e l directives.
The necessary privatization of variables was done manually by means of the
l o o p _ p r i v a t e directive. For the product with C and the lower triangular parts
of A and M no special considerations were neeesary. For the product with C T

and the upper triangular parts of A and M the processors store their "local"
result into distinct vectors, that are accumulated into the global result vector
afterwards. To get a well-balanced work load we distributed the triangular ma-
trices in block-cyclic fashion over the processors.

In Fig. 3 the execution times for both problem sizes are plotted. In Fig. 4
the corresponding speedups are found. The best speedups are reached with 10
processors for the large problems. ARPACK's IRL gives speedups of 5.8 for
node elements and of 3.7 for edge elements. With JDQR we get 3.8 and 3.0,
respectively. These numbers are lower for the small problem size.

The reason for the better speedups with ARPACK is, that the implicit classi-
cal Gram-Sehmidt orthogonalization which consumes between 5 and 10% of the
sequential execution time in JDQR doesn't scale well on the HP-Exemplar . The
parallelized BLAS routine DGENV in the HP MLIB library shows no speedup even
though the matrices have more than 100'000 nonzero elements! We are currently
resolving this issue with HP. Using a reasonably parallelizing DGEt4V routine we
expect JDQR to scale as well as ARPACK.

Fig. 4 further shows that in our experiments node elements scale better than
edge elements. Since we chose the problem sizes such that both edge and node
elements require about the same computation time on one processor, and the
linear systems arising from node elements are better conditioned, the matrices
originating from edge elements are smaller. Matrices A and M stemming from
edge elements together have about 7 times fewer non-zero elements than in the
nodal case. So, the relative parallelization overhead is bigger for edge elements.
For IRL the situation is improved because instead of A we store the shifted
matr ix A - aM, which has about twice as many non-zero elements.

Our parallel experiments show the limitations of directive-based shared-
memory programming. Before and after each parallel section (e.g. parallel loops)
of the code, the compiler inserts global synchronization operations to ensure cor-
rect execution. However, in most eases, these global synchronization operations
are unnecessary. That is why our implementation doesn't scale well. In order to
remove unnecessary synchronization points, a different programming paradigm,
such as message-passing or low-level shared-memory programming, has to be
employed.

Our parallel results depend very much on the computer architecture, the
parallel libraries and the programming paradigm we used. They can therefore
not be easily generalized. Nevertheless, our experiments prove that reasonable
parallel performance can be obtained on small processor numbers with only
modest programming effort using directive-based shared-memory programming
on the HP Exemplar.

779

R e f e r e n c e s

1. St. Adam, P. Arbenz, and R. Geus, Eigenvalue solvers for electromagnetic fields in
cavities, Tech. Report 275, ETH Ziirich, Computer Science Department, October
1997, (Available at URL http ://www. inf. ethz. ch/publicat ions/tr, html).

2. P. Arbenz and R. Geus, Eigenvalue solvers/or electromagnetic fields in cavities,
FORTWIHR International Conference on High Performance Scientific and Engi-
neering Computing (F. Durst et al., ed.), Springer-Verlag, 1998, (Lecture Notes in
Computational Science and Engineering).

3. R. Barret, M. Berry, T. F. Chan, J. Demmel, a. Donato, a. Dongarra, V. gi-
jkhout, R. Pozo, Ch. Romine, and H. van der Vorst, Templates/or the solution of
linear systems: Building blocks for iterative methods, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1994, (Available from Netlib at URL
http ://www. net i ib. org/t emplat es/index, html).

4. A. N. Bespalov, Finite element method for the eigenmode problem o/a RF cavity
resonator, Soviet Journal of Numerical Analysis and Mathematical Modelling 3
(1988), 163-178.

5. D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitely restarted Lanczos
method.for large symmetric eigenvalue problems, Electronic Transmissions on Nu-
merical Analysis 2 (1994), 1-21.

6. D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, gacobi-Davidson
style QR and QZ algorithms for the partial reduction of matrix pencils, Preprint
941, revised version, Utrecht University, Department of Mathematics, Utrecht, The
Netherlands, January 1997.

7. R. Grimes, J. G. Lewis, and H. Simon, A shifted block Lanczos algorithm for solv-
ing sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl. 15
(1994), 228-272.

8. J. Jin, The finite element method in electromagnetics, Wiley, New York, 1993.
9. F. Kikuchi, Mixed and penalty formulations]or finite element analysis o/an eigen-

value problem in electromagnetism, Computer Methods in Applied Mechanics and
Engineering 64 (1987), 509-521.

10. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users' guide: Solution
of large scale eigenvalue problems by implicitely restarted Arnoldi methods, De-
partment of Mathematical Sciences, Rice University, Houston TX, October 1997,
(Available at URL h t t p ://uww. caam. r i c e . edu/software/ARPACK/index,html).

11. R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen Medien,
Mathematische Zeitsehrift 106 (1968), 213-224.

12. J. C. Ndd~lee, Mixed finite elements in]R 3, Numerische Mathematik 35 (1980),
315 341.

13. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear
equations, SIAM J. Namer. Anal. 12 (1975), 617-629.

14. B. N. Parlett, The symmetric eigenvalue problem, Prentice Hall, Englewood Cliffs,
N J, 1980.

15. G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst,
aacobi-Davidson type methods for generalized eigenproblems and polynomial eigen-
problems, BIT 36 (1996), 595-633.

16. D. Sorensen, Implicite application of polynomial filters in a k-step A rnoldi method,
SIAM J. Matrix Anal. Appl. 13 (1992), 357-385.

