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Abs t rac t .  We present experiments with two new solvers for large sparse 
symmetric matrix eigenvalue problems: (1) the implicitly restarted Lanc- 
zos algorithm and (2) the ffacobi-Davidson algorithm. The eigenvalue 
problems originate from in the computation of a few of the lowest fre- 
quencies of standing electromagnetic waves in cavities that have been 
discretized by the finite element method. The experiments have been 
conducted on up to 12 processors of an HP Exemplar X-Class multipro- 
cessor computer. 

1 I n t r o d u c t i o n  

Most particle accelerators use standing waves in cavities to produce the high 
voltage RF (radio frequency) fields required for the acceleration of the particles. 
The mathematical  model for these high frequency electromagnetic fields is the 
eigenvalue problem solving Maxwell's equations in a bounded volume. Usually, 
the eigenfield corresponding to the fundamental mode of the cavity is used as 
the accelerating field. Due to higher harmonic components contained in the RF 
power fed into the cavity, and, through interactions between the accelerated 
particles and the electromagnetic field, an excitation of higher order modes can 
occur. The RF engineer designing such an accelerating cavity therefore needs 
a tool to compute the fundamental and about ten to twenty of the following 
eigenfrequencies together with the corresponding electomagnetic eigenfields. 

After separation of variables depending on space and time and after elimina- 
tion of the magnetic field terms the variational form of the eigenvalue problem 
for the electric field intensity is given by [1] 

Find  (A,u) E IR x Wo such that u 5s 0 and 

(curl u, curl v) = x(,~, v), w ~ w~. (1) 

Let L2(/2) be the Hilbert space of square-integrable functions over the 3-dimen- 
sional domain Y2 (the cavity) with inner product (u, v) = fn  u ( x ) .  v(x)  dx and 

norm [lu[]0,~ := (u, u) 1/~. In (1), W0 := {v ~ W [div v = 0} with 

W := {v E L2(~2) 3 [ c u r l y  E L~(Y2) 3 , d i v v  C L2(X?) , n x v = 0 on OX2}. 
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The difficulty with (1) stems from the condition div v = 0 as it is hard to 
find divergence-free finite elements. Therefore, ways have been looked for to get 
around the condition div v = 0. In this process care has to be taken in order 
not to introduce so-called spurious modes, i.e. eigenmodes that have no physical 
meaning [8]. We considered two approaches free of spurious modes, a penalty 
method and an approach based on Lagrange multipliers. In the penalty method 
approach (1) is replaced by [9, 11] 

For fixed s > O, find (A, u) E ]It x W such that u ~s 0 and 
(curl  u, cur l  v) + s (div u, div v) = A(u, v), Vv E W. (2) 

Here, s is a positive, usually small parameter. The eigenmodes u(x) of (2) cor- 
responding to eigenvalues A < pzS are eigenmodes of (1). #1 is the smallest 
eigenvalue of the negative Laplace operator --A on [2. 

When discretized by ordinary nodal-based finite elements, (2) leads to matrix 
eigenvalue problems of the form 

Ax = ),Mx. (3) 

For positive s, both A and M are symmetric positive definite sparse n-by-n 
matrices. 

In the mixed formulation the divergence-free condition is enforced by means 
of Lagrange multipliers [9]. 

Find (X,u,p) E lR x H0(curl; a )  x H01 (~2) such that u 7s 0 and 

(a) ( cu r lu ,  c u r l ' I Q + ( g r a d p , ~ ) = A ( u , V ) ,  Y~ CH0(curl;~2) (4) 
(b) (u, g r a d  q) = 0, Vq e H01 (f2) 

Here, H0(curl;f~) := {v E L~"(s 3 I c u r l v  E L2(I?) a, n x v = 0 on 0D}. The 
finite element discretization of (4) yields a matrix eigenvalue problem of the form 

;] [;] o ~ [;] 
where A and M are n-by-n and C is n-by-re. M is positive definite, A is only 
positive semidefinite. It turns out that  (5) becomes most convenient to handle if 
the finite elements for the vector fields are chosen to be edge elements as proposed 
by N~d~lec [12,8] and the Lagrange multipliers are represented by nodal-based 
finite elements of the same degree. Then, the columns of M - 1 C  form a basis for 
the nullspace of A and, in principle, it suffices to compute the eigenvalues of an 
eigenproblem formally equal to (3) but with A and M from (5). To get rid of 
the high-dimensional eigenspaee associated with the eigenvalue zero Bespalov [4] 
proposed to replace (5) by 

Ax = AMx, .~ = A + C H C  T, (6) 

where H is a positive definite matrix chosen such that  the zero eigenvMues are 
shifted to the right of the desired eigenvalues and do not disturb the computa- 
tions. 

In this note we consider solvers for Ax = AMx with A and M from the 
penalty approach (3) as well as from the mixed element approach (6). 
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2 Algorithms 

In this section we briefly survey the numerical methods that  we will apply to 
the model problem which is a cavity of the form of a rectangular box, $2 = 
(0, a) • (0, b) • (0, c). We investigate two algorithms for computing a few of 
the smallest (positive) eigenvalues of the matr ix  eigenvalue problems originating 
from both the penalty method and the mixed method. 

For computing a few, say p, eigenvalues of a sparse matr ix  eigenvalue problem 

A x  = )~Mx, A = A T,  M = M T > 0, (7) 

closest to a nmnber r it is advisable to make a so-cMled shi f t -and- inver t  approach 
and apply a spectral transformation with a shift cr close to r and solve [7] 

1 
- ( s )  (A ~ M ) - I M x  = # x ,  # = A -  ~" 

instead of solving (7). Notice that (A - c ~ M ) - I M  is M-symmetric,  i.e., it is 
symmetric with respect to the inner product x T M y .  The spectral t ransformation 
leaves the eigenvectors unchanged. The eigenvalues of (7) close to the shi f t  c, 
become the largest absolute of (8). They are relatively well-separated which 
improves the speed of convergence. The cost of the improved convergence rate is 
the need to solve (at least approximately) systems of equations with the matr ix  
A - ~M. In all algorithms the shift cr was chosen to be 48 < A1 ~ 48.4773. 

1. T h e  I m p l i c i t l y  R e s t a r t e d  Lanczos  a l g o r i t h m  ( I R L ) .  Because of the 
large memory consumption of the Lanczos algorithm it is often impossible to 
proceed until convergence. It is then necessary to restart  the iterative process 
in some way with as little loss of information as possible. An elegant way to 
restart has been proposed by Sorensen for the Arnoldi algorithm [16], see [5] 
for the symmetric Lanczos case. Software is publicly available in ARPACK [10]. 
The algorithm is based on the spectral transformation Lanczos algorithm. The 
iteration process is executed until j = p + k, where k is some positive integer, 
often k = p. Complete reorthogonalization is done for stability reasons. This is 
possible since by assumption p + k is not big. 

In the restarting phase a clever application of the QR algorithm [14] reduces 
the dimension of the search space to p in such a way that  the p new orthogonal 
basis vectors still form a Krylov sequence [16,5]. This allows the Lanczos phase 
to be resumed smoothly. 

Here, we solved the symmetric indefinite system of equations ( A -  ~ M ) x  = y 
iteratively by SYMMLQ [13, 3]. The accuracy of the solution of the linear system 
has to be at least as high as the desired accuracy in the eigenvalue calculation in 
order that  the coefficients of the Lanczos three-term recurrence are reasonably 
accurate [10]. We experimented with various preconditioners. None of them was 
satisfactory. We obtained the best results with diagonal preconditioning. In our 
implementation we chose p = k = 15. Besides the storage for the matrices A and 
M, IRL requires space for two n • (p + k) arrays. 
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2. T h e  J a c o b i - D a v i d s o n  a l g o r i t h m  ( J D Q R ) .  In the Jacobi-Davidson al- 
gori thm the eigenpairs of Ax = AMx are computed one by one. As with the 
implicitly restarted Lanczos procedure the search space Vj is expanded up to a 
certain dimension, say j = jmax. The basis of this space is constructed to be M- 
orthogonal but there is no three-term recurrence relation. In the expansion phase 
the search space is extended by a vector v orthogonal to the current eigenpair 
approximation (A, ~) by means of equation [15] 

( I  - 6i6tT M ) ( A  - AM)v = - ( I  - 6i6iT M ) r ,  ( I -  OOrM)v  = v. (9) 

(If eigenvectors have already been computed, this process is executed in the 
space M-orthogonal  to them.) The solution of (9) is only needed approximately. 
Therefore, it can be solved iteratively. In [6] the authors propose to use a pre- 
conditioner of the form 

(I  - ~I6iT M)I ' (  ([ -- 61~tT M)  (10) 

where I (  is a good and easily invertible approximation of A - AM. They also 
give a generalized inverse of the matr ix  in (10). We solved the systems by the 
conjugate gradient squared (CGS) method [3]~with K equal to the diagonal of 
A - AM. The next approximate eigenvalue ~ and corresponding Ritz vector 
0 are obtained by a Ritz step for the subspace VN+I. If the search space has 
dimension jmax it is shrunk to dimension jmin by selecting only those Jmin Ritz 
vectors corresponding to Ritz values closest to the target value V = 48. In our 
experiments we set jmin = P = 15 and jm~• = 2p as suggested in [10]. 

Thus, besides the storage for the matrices A and M, memory space is needed 
for a n • Jmax array and for three n x p arrays. 

3 N u m e r i c a l  E x p e r i m e n t s  

In this section we compare IRL and JDQR for computing the 15 smallest eigen- 
values of (1) with /2 = (0, a) x (0, b) x (0, c) where a -= 0.8421, b = 0.5344, 
c = 0.2187. We apply penalty as well as mixed methods to this model problem 
whose eigenvalues can be computed analytically [1]. The computat ional  results 
have been obtained with the HP Exemplar X-class system at the ETH Zurich. 

1. S e q u e n t i a l  r e su l t s .  In Figs. 1 and 2 execution times for computing the 15 
lowest eigenvalues and associated eigenvectors vs. the accuracy of the computed 
solutions relative to the analytic solution are plotted for different mesh sizes. 
The largest problems sizes were n = 65t125 and n = 45t226 for the linear and 
quadratic edge elements, and n = 28~278 and n = 118~539 for the linear and 
quadratic node elements. For all experiments we used a tolerance of 10 - s  in 
the stopping criterion of the eigensolvers. Loosely speaking, this means that  the 
eigenvalues are computed to at least 8 significant digits. The execution times 
comprise the solution time of the eigensolver but not the time for building the 
matrices. For each finite element type (linear/quadratic,  node element/edge ele- 
ment) the performance of the two algorithms is shown. Fig. 1 shows the results 
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that  we obtained with linear and quadratic node elements for A1. The higher 
eigenvalues behave similarly but are of course less accurate. Fig. 2 shows the 
results for the linear and quadratic edge elements. 

For edge elements the convergence is improved by introducing the matr ix  
C as given in (6). Experiments to that end are reported in [2]. H in (6) was 
heuristically chosen to be a I  with a = 100/h, where h is the mesh width. 

The comparison of linear with quadratic element types reveals immediately 
the inferiority of the former. They give much lower accuracy for a given compu- 
tation time. The node elements in turn are to be preferred to the edge elements, 
at least in this simplified model problem. For a given computat ional  effort, the 
eigenvalues obtained with the node elements are about an order of magnitude 
more accurate than those obtained with the edge elements. The situation is not 
so evident with the linear elements. 

With the quadratic elements and linear node elements JDQR is consistently 
faster than IRL by about 10 to 30% for the large problem sizes. For linear edge 
elements JDQR still is 10 to 20% ahead of IRL for most of the larger problem 
sizes. For the smaller problems the situation is not so clear. 

We now discuss the behavior of the two algorithms in the case of the quadratic 
edge elements where the problem size grows from n = 1408 to 45226. (In the 
latter case A and M have each about 1'730'000 nonzero elements.) With both 
algorithms the number of outer iteration steps varies only little. It is ~ 65 with 
IRL and ~ 210 with JDQR. So, the nmnber of restarts does not depend on the 
problem size. Each outer iteration step requires the solution of one system of 
equations. We used the solver SYMMLQ with IRL and CGS for JDQR. One 
(inner) iteration step of CGS counts for about two iteration steps of CGS. We 
applied diagonal preconditioning in all cases. The superiority of JDQR over IRL 
for large problem sizes can be explained by the number of inner iteration steps. 
The average number of inner iteration steps per outer iteration step grows from 
64 to 91 with JDQR but from 423 to 1140 with IRL. In ARPACK each system 
of equations is solved to high accuracy. In JDQR the accuracy requirement is 
not so stringent and actually varies from (outer) step to step, cf. w This 
explains the higher iteration numbers for IRL. The projections in (9) improve 
the condition number of the system matrix. Further, the shift ~r is updated in 
JDQR while it stays constant with ARPACK. These may be the reasons for 
the less pronounced increase of the number of inner iteration steps with JDQR. 
Notice that the projections made in each iteration step account for less than 
10% of the execution time of JDQR. Similar observations can be made with the 
other element types. 

2. P a r a l l e l  r e su l t s .  The parallel experiments were carried out on the 32 pro- 
cessor HP Exemplar X-class system at ETH Zurich. This shared-memory CC- 
NUMA machine consists of two hypernodes with 16 HP PA-8000 processors and 
4 GBytes memory each. The processors and memory-banks within a hypernode 
are connected through a crossbar-switch with a bandwidth of 960 MBytes/s  per 
port. The hypernodes themselves are connected by a slower network with a ring 
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Fig. 4. Speedups (a) for the large eigenproblem and (b) for the small eigenproblem 

topology. The HP PA-8000 processors have a clock rating of 180 MHz and a 
peak performance of 720 MFLOPS. 

We carried out the parallel experiments for IRL (ARPACK) and JDQR using 
both quadratic node and quadratic edge elements and two different problem 
sizes. Linear elements are not considered because of the inferior results in the 
sequential case. For both edge and node elements we chose two problem sizes: the 
larger problems require about 1700 seconds one processor, whereas the smaller 
problems require only about 220 seconds. For our experiments we were allowed 
to use up to 12 processors. 

With ARPACK about 95% of the sequential computation time is spent in 
the inner loops forming sparse matrix-vector products with the matrices A, M 
and C. JDQR spends about 90% for this task. We therefore parallelized the 
sparse matrix-vector product using the so called HP Exemplar advanced shared- 
memory programming technique, that is directive-based. 
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The matr ix  C and the strictly lower triangles of A and M are stored in the 
compressed sparse row format [3]. The diagonals of A and M are stored sepa- 
rately. We parallelized the outermost loops with the l o o p _ p a r a l l e l  directives. 
The necessary privatization of variables was done manually by means of the 
l o o p _ p r i v a t e  directive. For the product with C and the lower triangular parts 
of A and M no special considerations were neeesary. For the product  with C T 

and the upper triangular parts of A and M the processors store their "local" 
result into distinct vectors, that  are accumulated into the global result vector 
afterwards. To get a well-balanced work load we distributed the triangular ma- 
trices in block-cyclic fashion over the processors. 

In Fig. 3 the execution times for both problem sizes are plotted. In Fig. 4 
the corresponding speedups are found. The best speedups are reached with 10 
processors for the large problems. ARPACK's IRL gives speedups of 5.8 for 
node elements and of 3.7 for edge elements. With JDQR we get 3.8 and 3.0, 
respectively. These numbers are lower for the small problem size. 

The reason for the better speedups with ARPACK is, that  the implicit classi- 
cal Gram-Sehmidt orthogonalization which consumes between 5 and 10% of the 
sequential execution time in JDQR doesn't scale well on the HP-Exemplar .  The 
parallelized BLAS routine DGENV in the HP MLIB library shows no speedup even 
though the matrices have more than 100'000 nonzero elements! We are currently 
resolving this issue with HP. Using a reasonably parallelizing DGEt4V routine we 
expect JDQR to scale as well as ARPACK. 

Fig. 4 further shows that in our experiments node elements scale better  than 
edge elements. Since we chose the problem sizes such that  both edge and node 
elements require about the same computation time on one processor, and the 
linear systems arising from node elements are better conditioned, the matrices 
originating from edge elements are smaller. Matrices A and M stemming from 
edge elements together have about 7 times fewer non-zero elements than in the 
nodal case. So, the relative parallelization overhead is bigger for edge elements. 
For IRL the situation is improved because instead of A we store the shifted 
matr ix  A - aM,  which has about twice as many non-zero elements. 

Our parallel experiments show the limitations of directive-based shared- 
memory programming. Before and after each parallel section (e.g. parallel loops) 
of the code, the compiler inserts global synchronization operations to ensure cor- 
rect execution. However, in most eases, these global synchronization operations 
are unnecessary. That  is why our implementation doesn't scale well. In order to 
remove unnecessary synchronization points, a different programming paradigm, 
such as message-passing or low-level shared-memory programming, has to be 
employed. 

Our parallel results depend very much on the computer architecture, the 
parallel libraries and the programming paradigm we used. They can therefore 
not be easily generalized. Nevertheless, our experiments prove that  reasonable 
parallel performance can be obtained on small processor numbers with only 
modest programming effort using directive-based shared-memory programming 
on the HP Exemplar. 
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