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Abs t r ac t .  Parallel logic programming (PLP) systems have obtained 
good performance on traditional bus-based shared-memory architectures. 
However, the scalable multiprocessors being developed today pose new 
challenges. Our experience with a sophisticated PLP system, Andorra-I, 
demonstrates that indeed performance suffers greatly on modern archi- 
tectures. In order to improve performance, we perform a detailed analysis 
of the cache behaviour of all Andorra-I data structures via execution- 
driven simulation of a DASH-like multiprocessor. Based on this analysis 
we optimise the Andorra-I code using 5 different techniques. Our results 
show that the techniques provide significant performance improvements, 
leading to the conclusion that PLP systems can and should perform well 
on modern scalable multiprocessors. 

1 I n t r o d u c t i o n  

Parallel computers  can improve performance of both  numerical and symbolic 
applications. Logic programs are good examples of symbolic applications that  
often exhibit large amounts  of implicit parallelism and that  can greatly benefit 
fl'om parallel computers.  Several PLP systems have been developed so far and 
have obtained good performance for tradit ional bus-based shared-memory ar- 
chitectures. However, the scalable multiprocessors being developed today pose 
new challenges, such as the high latency of memory  accesses and the demand 
for scalability. 

The complexity of PLP systems and the large amount  of da ta  they pro- 
cess raise the issue of whether PLP systems can obtain good performance on 
these new parallel architectures. In order to address this issue, we experiment  
with a sophisticated PLP system, Andorra-I  [8], that  exploits both  dependent 
and-parallelism and or-parallelism. Andorra-I  is a particularly interesting exam- 
ple of PLP system, since most of its data  structures are similar to the ones of 
several other PLP systems. Andorra-I  has obtained good performance on the Se- 
quent Symmetry,  but our experience with it running on modern multiprocessors 
demonstrates  indeed tha t  scMability suffers greatly on these architectures [7]. 

This paper addresses the question of whether the poor scalability of Andorra-  
I is inherent to the complex structure of PLP  systems or can be improved through 
careful analysis and tuning. In order to answer this question, we analyse the 
cache behaviour of all Andorra-i  da ta  areas when applied to several different 
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logic programs.  The analysis pinpoints the areas that  are responsible for most  
misses and the main sources of the misses. Based on this analysis we remove the 
main performance limiting factors in Andorra-I  through a small set of opt imisa-  
tions that  did not require a redesign of the system. More specifically, we optimise 
Andorra-I  using 5 different techniques: t r imming of shared variables, da ta  lay- 
out modification, privatisation of shared da ta  structures, lock distribution, and 
elimination of locking in scheduling. 

We present the isolated and combined performance improvements  provided 
by the optimisations on a simulated DASH-like multiprocessor with up to 24 
processors. In isolation, shared variable t r imming and the modification of the 
da ta  layout produced the greatest improvements.  The improvements  achieved 
when all opt imisat ion techniques are combined are substantial.  A few of our 
programs approach linear speedups as a consequence of our modifications. In 
fact, for one program the speedup of the modified Andorra-I  is a factor of 3 
higher than that  of the original version of the system on 24 processors. Our 
main conclusion is then that,  even though PLP systems are indeed complex and 
sometimes irregular, these systems can and should scale well on modern  scalable 
multiprocessors. 

2 Methodology 

In this section we detail the methodology used in our experiments.  The ex- 
periments consisted of the simulation of the parallel execution of Andorra-I  [8, 
10]. The Andorra-I  parallel logic p rogramming  system employs a very interest- 
ing method for exploiting and-parallelism, namely to execute determinate goals 
first and concurrently, where determinate goals are goals that  match  at most  
one clause in a program. The Andorra-I  system also exploits or-parallelism that  
arises from the non-determinate goals. 

Andorra-I  requires access to shared memory  for both  execution and schedul- 
ing of work. In order to study the Andorra-I  execution more fully, we divided 
its shared memory  into ten different areas. Andorra-I  implements  the s tandard 
Prolog work areas. The Code Space includes the compiled code for every pro- 
cedure and is read-only during execution of our benchmarks.  The Heap Space 
stores structured terms and variables. The Goal Frame Space keeps the goals 
yet to be executed. The Choicepoint Stack maintains alternatives for open goals. 
The Trail Stack records any conditional bindings of variables. 

Andorra-I  also requires several new areas for and /or  parallelism. The Or- 
Scheduler Data Structures are used to manage or-parallelism. The da ta  struc- 
tures for and-parallelism are in the Worker area. The Binding Arrays are used 
to implement  the SRI model [5] for or-parallelism, by storing conditional bind- 
ings. A Lock Array was needed in our port  to establish a mapping  between a 
shared memory  position (such as a variable in the heap) and a lock. Finally, the 
Miscellaneous Shared Variables include the remaining da ta  structures. 

To simulate Andorra-I  we ported the system to a detailed on-line, execution- 
driven simulator.  The simulator uses the MINT front-end [9], and a back-end 



2O 

5 

,E ' ' ' 

i~ealised -- i / 
dash . . . . . . .  I ,/ - 

5 i0 15 20 
Number of Processors 

Fig. l. Speedupsfor bt-cluster 

2 0  

915 
! 

5 

833 

i~ealised 
j dash ...... 

5 i0 15 20 
Number of Processors 

Fig. 2. Speedups for t sp  

that  simulates the memory and interconnection systems. We simulate a 24-node, 
DASH-like [4], directly-connected multiprocessor. Each node of the simulated 
machine contains a single scalar processor, a write buffer, a 128-KB direct- 
mapped data  cache with 64-byte cache blocks, local memory, a full-map di- 
rectory, and a network interface. We use the DASH write-invalidate protocol 
with release consistency [3] in order to keep caches coherent. We classify cache 
misses under this protocol using the algorithm presented in [1]. 

g W o r k l o a d  a n d  O r i g i n a l  P e r f o r m a n c e  

The benchmarks we used in this work are applications representing predom- 
inantly and-parallelism, predominantly or-parallelism, and both and- and or- 
parallelism. We next discuss application performance for the original Andorra-I 
(more detailed information on the benchmarks can be found in the extended 
version of this paper [6] and in Dutra's thesis [2]). Note that  our results corre- 
spond to the first run of an application; results would be somewhat better  for 
other runs. 

We use two example And-parallel applications, the clustering algorithm for 
network management from British Telecom, b t - c l u s t e r ,  and a program to 
calculate approximate solutions to the traveling salesman problem, t sp .  To 
obtain best performance, we rewrote the original applications to make them 
determinate-only computations. 

Figure 1 shows the bt-cluster speedups for the simulated architecture as 
compared to an idealised shared-memory machine, where data  items can always 
be found in cache. The i d e a l i s e d  curve shows that  the application has excel- 
lent and-parallelism and can achieve almost linear speedups up to twenty four 
processors. Unfortunately, performance for the DASH-like machine is barely ac- 
ceptable. Figure 2 shows that  the t s p  application achieves worse speedups than 
b t - c l u s t e r  on a modern multiproeessor. The maximum speedup actually de- 
creases for 24 processors, whereas the ideal machine would achieve a speedup of 
20 for 24 processors. Figure 3 illustrates the number and sources of cache misses 
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Fig. 4. Misses by data area for chat80 

per data area in the hi_cluster application running on 16 processors as a rep- 
resentative example. The Figure shows that  the overall miss rate of b t - c l u s t e r  
is dominated by true and false sharing misses from the Worker and Misc areas. 
This suggests that the system could be much improved by reducing false sharing 
and studying activity in the Worker and Misc areas. 

We use two Or-parallel applications. Our first application, chat80,  is an ex- 
ample from the well-known natural language question-answering system cha t -80 ,  
written at the University of Edinburgh by Pereira and Warren. The second appli- 
cation, fp,  is an example query for a knowledge-based system for the automatic  
generation of floor plans. This application should at least in theory have sig- 
nificant or-parallelism. Figure 5 shows the speedups for the cha t80  application 
fl'om 1 to 24 processors. These speedups are very similar to those obtained by 
Andorra-I on the Sequent Symmetry architecture. In contrast, the DASH curve 
reaches a maximum speedup of 4.2 for 16 processors. Figure 6 shows the speedups 
for the fp  application. The theoretical speedup is very good, in fact quite close 
to linear, in sharp contrast to the actual speedup for the DASH-like machine. 
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Fig. 8. Misses by data area for pan2 

Figure 4 shows the number  and source of misses for cha t80  running on 16 pro- 
cessors, again as an example of this type of application. Note that  cha t80  does 
not have enough parallelism to feed 16 processors, suggesting that  most  shar- 
ing misses should result from or-parallel scheduling areas, 0rSch and ChoiceP. 
Indeed, the figure shows that  these areas are responsible for a large number  of 
sharing misses, but the areas causing the most  misses are Worker and Nisc  as 
in the and-parallel applications, indicating again that  these two areas should be 
optimised. 

As an example of And/Or application we used a program to generate naval 
flight allocations, based on a system developed by Software Sciences and the 
University of Leeds for the Royal Navy. Figure 7 shows the speedups for pan2. 
The idealised curve shows that  the application has less parallelism than  all 
other applications; the ideal speedup does not even reach 12 on 24 processors. 
When run on the DASH simulator, pan2 exhibits unacceptable speedups for all 
numbers of processors; speedup starts out at about 1.8 for 2 processors and 
slowly improves to a max imum of only 4.8 for 24 processors. Figure 8 shows 
the distribution of cache misses by the different Andorra-I  da ta  areas for 16 
processors. In this case, the Worker area clearly dominates,  since the contribution 
from the Mist  area is not as significant as in the and-parallel benchmarks.  Note 
tha t  there is more true than false sharing activity in Worker. The true sharing 
probably results from idle processors looking for work. 

4 O p t i m i s a t i o n  T e c h n i q u e s  a n d  P e r f o r m a n c e  

The previous analysis suggests that  relatively high miss rates may  be causing 
the poor scalability of Andorra-I.  It is interesting to note that  most  misses come 
from fixed layout areas, such as Worker and Misc, and not from the execution 
stacks, as one would assume. 

We next discuss how several optimisations can be applied to the system, 
particularly in order to improve the utilisation of the Worker and Mist areas. 
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The first two optimisations were prompted by our simulation-based analysis of 
caching behaviour, and they are the ones that give the best improvement.  The 
other three were based on our original intuitions regarding the system, and were 
the ones we would have performed first without simulation data. We studied 
performance for three applications, b t - c l u s t e r ,  chatS0 and pan2. A detailed 
discussion of our experiments and results can be found in [6]. In the remainder 
of this section, we simply summarise the impact of each of the techniques studied 
when applied in isolation. 

Variable Trimming. In this technique we investigate the areas that  have un- 
exepected sharing, and try to eliminate this sharing if possible. For two of our 
applications, the Nisc area gave a surprisingly significant contribution to the 
number of misses. The area is mostly written at the beginning of the execution 
to set up execution parameters. During execution it is used by the reconfigurer 
and to keep reduction and failure counters. By investigating each component in 
the area, we detected that the counters were the major  source of misses. As they 
are only used for research and debugging purposes, we were able to eliminate 
them from the Andorra-I code. 

The results in [6] show that chatS0 benefits the most from this optimisation. 
This is because the failure counter is never updated by and-parallel applications, 
but often updated by this or-parallel application. The optimisation does not 
impact the and-parallel benchmarks as much, leading to less than 10% speedup 
improvements. 

Data s Modification. All benchmarks but pan2 exhibit a high false shar- 
ing rate, showing a need for this technique. On 16 processors, 15% of the misses 
in pan2 are false sharing misses, whereas in the other applications false sharing 
causes between 40% (chatS0) and 51% ( b t - c l u s t e r )  of all misses. These results 
suggest that  improving false sharing is of paramount  importance. According to 
our detailed analysis of caching behaviour, false sharing misses are concentrated 
in the Worker, OrSch, ChoiceP and BA areas, besides the Misc area optimised 
by the previous technique. 

The Worker and 0rSch data  areas are allocated statically. This indicates that  
we can effectively reduce false sharing. We applied two common techniques to 
tackle false sharing, padding between fields that belonged to different workers or 
that  were logically independent, and field reordering to separate fields that  were 
physically close but logically distinct. Although these are well-known techniques, 
padding required careful analysis, as it increases eviction misses significantly. 
The field reordering technique was not easily applied either, as the relationships 
between fields are quite complex. 

Padding may lead to serious performance degradation for the dynamic data  
areas, such as ChoiceP and BA. This restricted our options for layout modifica- 
tion to just  field reordering for these areas. The BA area was the target of one 
final data  layout modification, since the analysis of cache behaviour surprised 
us with a high number of false sharing misses in this area for chat80.  Further 
investigation showed that this was a memory allocation problem. The engines' 
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top of stacks were being shmalloc'ed separately and appeared as part  of the BA 
area in the analysis. This increased sharing misses in the area and was espe- 
cially bad for the or-parallel applications, as different processor's top of stacks 
would end up in the same cache line. We addressed the problem by moving these 
pointers into the Worker area, where they logically belong. Our results show that  
the b t - c l u s t e r  and chat80 applications benefit the most from this optimisa- 
tion; speedup improvements can be as significant as 60%. In contrast,  the pan2 
application achieves improvements of less than 10% fi'om this optimisation. 

Privatisation of Shared Variables. This technique reduces the number of 
shared memory accesses by making local copies in each node of the machine. In 
the best case, the shared variables are read-only and hence local copies can ac- 
tually be allocated in private memory. The high nmnber of references to Worker 
suggested that  privatisation could be applied there. In fact, Andorra-I did al- 
ready use private copies of the variables in Worker and there was little room 
for improvement.  The Locks and Code data  areas are the major  candidates to 
privatisation in Andorra-I. The Locks area only includes pointers to the actual 
locks, is thus read-only during execution, and can be easily privatised. Another 
area that  is also read-only during parallel execution of our benchmarks is Code. 
Unfortunately, logic programs in general can change the database and, therefore, 
update Code, making privatisation complex. Our results show that  privatisation 
improves speedups by up to 10% at most and that  the impact of this optimisation 
decreases as the number of processors increases. 

Lock Distribution. This technique was considered to reduce contention on 
accesses to logical variables, and-scheduling, or-scheduling, and stack manage- 
ment. The original implementation used a single array of locks to implement 
these operations. In the worst case, several workers would contend for the same 
lock causing contention. To improve scalability, we implemented different lock 
data  structures for different purposes. We expected best results for or-parMlel 
applications, as the optimisation prevents different teams from contending on 
accesses to logical variables. The cost of this optimisation is that ,  if the arrays 
of locks are shared, there will be more expensive remote cache misses. Our re- 
sults show that  the b t - c l u s t e r  and chatS0 applications benefit somewhat from 
this optimisation, but that  the pan2 application already exhibited a significant 
number of misses in the Locks area and suffers a slowdown. 

Elimination of Locking in Scheduling. This technique improves perfor- 
mance in benchmarks with significant and-parallelism by testing whether there 
is available work, before actually locking the work queue. This modification is 
equivalent to replacing a test_and_set lock with a test_and_test_and_set lock. This 
optimisation provides a small speedup improvement for pan2, as it avoids lock- 
ing when there is no and-work. For b t - c l u s t e r  the technique does not improve 
speedups as this application exhibits enough and-work to keep processors busy. 
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5 Combined Performance of Optimisation Techniques 

We next discuss the overall system performance with all optimisat ions com- 
bined. We compare speedups against the i d e a l i s e d  and o r i g i n a l  results. The 
i d e a l i s e d  speedups were recalculated for the new version of Andorra-I,  but,  as 
it is shown in the figures, the optimisations did not have any significant impact  
for the •  machine. Figures 9 and 10 show the speedups for the two 
and-parallel applications running on top of the modified Andorra-I  system. The 
m a x i m u m  speedup for b t - c l u s t e r j u m p e d  from 12 to 20, whereas the m a x i m u m  
speedup for t s p  jumped  from 6.3 to 19. This indicates tha t  the realistic machine 
is now able to exploit the available parallelism more fully. The explanation for 
the bet ter  speedups is a significant decrease in miss rates. For b t - c l u s t e r ,  the 
new version of Andorra-I  exhibits a miss rate of only 0.6% for 16 processors, 
versus the 1.6% of the previous version. In the case of t sp ,  the opt imisat ions 
decreased the miss rate from 3% to 1.2% again on 16 processors. 

Figure 11 shows the number  and source of misses for b t - c l u s t e r  on 16 
processors. Note that  the figure keeps the same Y-axis as in Figure 3 to simplify 
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comparisons against the cache behaviour of the original version of Andorra-I. 
The figure shows that  the number of misses in the Worker area was reduced by a 
factor of 4, while the number of misses in the Misc area was reduced by an order 
of magnitude. The figure also shows that there is still significant true sharing in 
Worker, but false sharing is much less significant. The number of misses from 
Misc is now almost irrelevant. 

The or-parallel benchmarks also show remarkable improvements due to the 
combination of the optimisation techniques we applied. Figure 13 shows the 
speedups for cha t00  and Figure 14 shows the speedups for fp.  The maximum 
speedup for cha t80  almost doubles from one version of the system to the other. 
Note that  speedups for the optimised system still flatten out on 16 processors, 
but at a much better efficiency. The other benchmark, fp,  displays our most im- 
pressive result. The speedup for 24 processors jumps from 6.2 with the original 
Andorra-I system to 20 when all our optimisations are applied. This result rep- 
resents more than a three-fold improvement. Figure 12 shows the distribution of 
misses for cha t80  with 16 processors. The figure demonstrates that  the number 
of misses in the Worker and Misc areas was reduced by an order of magnitude. 
The large number of eviction and cold start misses in the Code area remains 
however. Sharing misses are now concentrated in the 0rSch and ChoiceP areas, 
as they should. 

Figure 15 shows the speedups of the new version of Andorra-I for the pan2 
benchmark. In this case, the improvement resulting from our optimisations 
was quite small. Figure 16 shows the cache miss distribution for the optimised 
Andorra-I. The main source of misses was true sharing originating in the Worker 
region. A more detailed analysis proved that  these misses originate from lack of 
work. Workers are searching each other's queues and generating misses. We are 
investigating more sophisticated scheduling strategies to address this problem. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

Andorra-I is an example of an and/or-parallel system originally designed for 
traditional bus-based shared-memory architectures. We have demonstrated that  

20 

15 

~i0 

idealise6~-- 
dash (optlmised)I--+~: -- 

dash (initial),- ....... 

: : 

i ._..2 ............. i 

. Q  i , , , 

5 I0 15 20 
Number of Processors 

20 

~15 

~i0 

, E , , 

i idealised~ / 
dash (opt~mised) i . . . . .  / . 

dash (initialL ....... / .......... 

i /i I 

I0 15 20 
N~ber of Processors 

Fig. 13. Speedups for chat80 Fig. 14. Speedups for fp 



840 

20 

9 1 5  

idealised~ 
dash (optimised),- ....... 

dash (initial): --a 

I i i 

i Z 

5 i0 15 20 
Number of Processors 

Fig. 15. Speedups for pan2 
Fig. 16. Misses by data area for pan2 

the system can also achieve good performance on scalable shared-memory  sys- 
tems. The key to these results was the extensive da ta  available from detailed 
simulations of Andorra-I.  This information showed tha t  there was no need to 
restructure the system or its schedulers. Instead, performance could be d rama t -  
ically improved by focusing on accesses to shared data.  

We believe there is potential  for improving the performance of PLP systems 
even further. To prove so will require more radical changes to da ta  structures 
within Andorra-I  itself, as the system was simply not designed for such large 
numbers of processors. Last, but not least, we are interested in studying per- 
formance of other parallel logic programming systems, such as the systems tha t  
exploit independent and-parallelism. 
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