
BSP, LogP, and Oblivious Programs 

J6rn Eisenbiegler Welf L6we Wolf Z immermann  

Institut f/Jr Programmstrukturen und Datenorganisation, Universits Karlsruhe, 
76128 Karlsruhe, Germany, 

{eisenlloewelzimmer}@ipd. inIo.  un i -kar l s ruhe  .de 

A b s t r a c t .  We compare the BSP and the LogP model from a practi- 
cal point of view. Using compilation instead of interpretation improves 
the (best known) simulations of BSP programs on LogP machines by 
a factor of O(log P) for oblivious programs. We show that the runtime 
decreases for classes of oblivious BSP programs if they are compiled into 
LogP programs instead of executed directly using a BSP runtime library. 
Measurements support the statements above. 

1 I n t r o d u c t i o n  

Parallel programming suffers from the lack of a uniform and commonly  accepted 
machine model providing abstract  programming of parallel machines and de- 
scribing their costs adequately. Two candidates, the BSP model (Valiant [9]) 
and the LogP model (Culler et al. [4]), have been considered in an increasing 
number  of papers. The comparison of the two models in [2] determines the de- 
lays for a simulation of LogP programs on the BSP machine and vice versa. 
For our observations we make two additional assumptions: we only consider 
oblivious programs and message passing architectures. A program is oblivious if 
source and destination processors of communicat ions are statically determined 1. 
The target  machines are processor-memory-nodes connected by a communica-  
tion network. We explicitly exclude shared memory  machines. Virtual shared 
memory  architectures are covered since they implicitly require communicat ion  
via the interconnection network for remote memory  operations. We only mention 
send and receive communications and deliberately ignore remote store and load 
operations. 

The first part  of our paper shows that  oblivious BSP programs can be com- 
piled to the LogP machine. We further show, that  compilat ion reduces the delay 
of the simulation of oblivious BSP programs on the LogP machine by a factor of 
O(log(P))  compared to the result in [2], i.e., there is asymptot ical ly  no delay for 
the compiled LogP program compared to the BSP program. Even better,  it turns 
out that  the compiled LogP program could outperform a direct execution of the 
BSP program on the same architecture. To sharpen this observation, we consider 
three classes of oblivious programs: first we s tudy Mult iple-Program-Mult iple-  
Data  (MPMD) solutions. Those programs are in general hard to part i t ion into 

1 Many algorithms, especially those in scientific computing are oblivious, e.g. Matrix 
Multiplication, Discrete Simulation, Fast Fourier Transform, etc. 
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supersteps, i.e. in global phases of receive-, compute-,  and send-operations. As 
an example,  we discuss the opt imal  broadcast  problem. The second s third 
classes of problems allow Single-Program-Mult iple-Data (SPMD) solutions and 
there is a natural  part i t ion into supersteps. They differ in the da ta  dependencies 
between the phases: in the second class there are sparse dependencies between 
the phases in third class these dependencies are dense. We call a da ta  depen- 
dency sparse iff the BSP communicat ion of each superstep last longer than  the 
corresponding communicat ion in the compiled LogP program. As representa- 
tives of the second class of problems, we discuss a numeric wave simulation. The 
fast Fourier t ransform is a representative of the third class. Measurement of the 
parameters  and run t ime results for an opt imal  broadcast,  the simulation and 
the F F T  support  our theoretical results. 

2 T h e  M a c h i n e  M o d e l s  

This section describes the two machine models a little more in detail. In order 
to distinguish between the parameters  of both  models, we use capital  letters for 
the parameters  of the LogP model and small letters for the parameters  of the 
BSP model. 

2.1 T h e  L o g P  M o d e l  

The LogP model assumes a finite number  P of processors with local memory,  
which are connected by a da ta  network. It abstracts  from the network topology, 
presuming tha t  the position of the processor in the network has no effect on 
communicat ion costs. Each processor has its own clock, synchronization and 
communicat ion is done via message passing. All send and receive operations 
are initiated by the processor which sends or receives, respectively. From the 
programmers  point of view, the network has no direct connection to the local 
memory.  All communicat ion is done via the processor. 

In the LogP model, communicat ion costs are determined by the parameters  
L, O, and G. Sending a message costs t ime O (overhead) on the processor. The 
t ime the network connection of this processor is busy with sending the message 
into the network is bound by G (gap). A processor can not send or receive two 
messages within t ime G, but if a processor returns from a send or receive routine, 
the difference between gap and overhead can be used for computat ion.  The t ime 
between the end of sending a message and the s tar t  of receiving this message is 
defined as latency L. There are most [L/G] messages in transit  f rom any or to 
any processor at any time, otherwise, the communicat ion stalls. We only consider 
programs satisfying this capacity constraint. If  the sending processor is still busy 
with sending the last bytes of a message while the receiving processor is already 
busy with receiving, the send and the receive overhead for this message overlap. 
In this case the latency is negative. This happens on many  systems especially for 
long messages or if the communicat ion protocol is too complicated. L, O, and 
G have been determined for quite a number  of machines; all works confirmed 
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runt ime predictions based on the parameters  by measurements.  In contrast  to [1] 
and [5], we assume the LogP parameters  to be constants (as proposed in the early 
LogP works [4]). This assumption is admissible if the message size does not vary 
in a single program. 

2.2 T h e  B S P  M o d e l  

The BSP (bulk synchronous parallel) machine was defined by Valiant [9]. We 
refer to its modification by McColl in [8,6]. Like the LogP model,  the BSP 
model assumes a finite number  of processors P with local memory,  local clock, 
and a network connection to an arbi t rary network. It also abstracts  from the 
network topology. In contrast to the LogP model, the BSP machine can explicitly 
(barrier) synchronize all processors. The synchronization barriers subdivides the 
calculation into supers teps .  All send operations in a superstep i are guaranteed 
to be completed before superstep i +  1. In the BSP model as invented by Valiant, 
processor communicate  via remote memory  access. For oblivions programs we 
may  focus on a message based communication:  Consider the remote memory  
accesses at one superstep. If  processor rri reads f rom processor rrj, then rri should 
send a request to rrj and rrj sends its answer for the general case. However, for 
oblivious algorithms, it is already known that  rri reads f rom the memory  of rcj. 
Thus, the request can be saved in the case of oblivious algorithms: it is sufficient 
to send the result of the read request from 7rj to rri. A write of processor rri to 
the memory  of processor rrj, is equivalent to sending a message from processor 
rri to rrj containing the memory  address and the value to be written. 

The cost model uses two parameters:  the t ime for the barrier synchronization 
l, and the reciprocal of the network bandwidth g. With theses parameters ,  the 
t ime for one superstep is bounded by l + 2h �9 g + w,  where h is the maximal  
number  of messages sent or received by one processors and w is the maximal  
computa t ion  t ime needed by one processor in this superstep. A BSP machine 
is able to route a [ l /g ] - re la t ion  in a superstep which is a capacity constraint  
analogous to the LogP model. The total  computa t ion  t ime is the sum of the 
t ime for all supersteps. Like for the LogP model, we assume the parameters  to 
be constant.  

3 B S P  v s .  L o g P  f o r  O b l i v i o u s  A l g o r i t h m s  

In this section, we discuss the compilation of oblivious BSP programs to the 
LogP machine. First, we discuss how the communicat ion between subsequent 
supersteps can be mapped  onto the LogP machine without exceeding the LogP 
capacity constraints. Second, we define the actual compilation and prove exe- 
cution t ime bounds for the compiled LogP programs.  Third, we compare  the 
direct execution of a BSP program on a target  machine with the execution of 
the (compiled) LogP program. Therefore, we conclude this section by determin- 
ing lower bounds for the BSP and LogP parameters ,  respectively, for the same 
target  machine. 
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3.1 C o m m u n i c a t i o n  o f  a S u p e r s t e p  on  t h e  L o g P  M a c h i n e  

For simplicity, we assume that a h-relation is implemented, i.e. each processor 
sends and receives exactly h messages. It is well known that  a "pipelined" com- 
munication can be computed using edge coloring on a bipartite graph (U, V, E) 
where U and V are the set of processors and (u, v) E E, iff u communicates 
with v. Each color, represented by an integer j E { 0 , . . . ,  k - 1) where k is the 
number of required colors, defines set of non-conflicting communications that  
can be started simultaneously. A send(v) on processor u is scheduled at t ime 
j - m a x ( O ,  G) and recv(u) on processor v at t ime L d- O + j .  max(O, G). 

Since we consider oblivious BSP algorithms, the edge coloring of the commu- 
nication graph for each superstep (and therefore the communication phase itself) 
can be computed prior to execution of the BSP algorithm. Thus, the t ime for 
edge coloring (O(]E I log(IV I + ]U]) due to [3]) can be ignored when considering 
the execution time of the BSP algorithm. 

It is easy to see that  the schedule obtained from the above algorithm does 
not violate the capacity LogP constraints if L > (h - 1) - max(O, G). If follows 

L e m m a  1. I f  L > (h - 1) max(O, G), then every fixed h-relation can be im- 
plemented on the LogP machine such that its execution time is L + 2 0  + (h - 
1) max(O, G). 

If L < (h - 1) max(O, G) the scheduling algorithm must be modified to avoid 
stalling. First we discuss the simplified model where each channel is allowed to 
contain an arbitrary number of messages. In this case, the first receive operation 
is performed after the last send operation. The same approach as above then 
yields execution time 2 0 + 2 ( h - 1 )  max(O, G) since the first receive operation can 
be performed at time O + ( h - 1 ) m a x ( O ,  G) instead o f O + L  < ( h - l )  max(O, G). 
If the number of messages is bounded, the message is received greedily, i.e. as 
soon as possible after a send operation on the processor is finished at the time 
when the message arrives. This does not increase the overall execution t ime of 
a communication phase since no new gaps are introduced. Thus, the following 
lemma holds: 

L e m m a  2. I f  L < ( h -  1)max(O, G), then every fixed h-relation can be im- 
plemented on the LogP machine such that its execution time is 2 0  + 2(h - 
1) max(O, G). 

3.2 E x e c u t i o n  T i m e  B o u n d s  for  t h e  C o m p i l e d  L o g P  P r o g r a m s  

The actual compilation of an oblivious BSP algorithms to the LogP machine is 
now straightforward: Each BSP processor corresponds one to one to a LogP pro- 
cessor. Beginning with the first superstep we map the tasks of BSP processor to 
a corresponding LogP processor in the same order. Communication is mapped as 
described in the previous subsection. Since a processor can proceed its execution 
when it received all its messages of the preceding superstep, there is no need for 
a barrier synchronization. Together with Lemmas 1 and 2, this observation leads 
to the 
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T h e o r e m  1 ( S i m u l a t i o n  o f  B S P  o n  LogP).  Every superstep of an obliv- 
ious B S P  algorithm with work w and h remote memory accesses can be imple- 
mented on the LogP Machine in time w + 20  + ( h - 1) m ~x( O , G) + max(L, (h - 

m a x ( O ,  c ) ) .  

I f  we choose g = max(O,  G) and 1 = m a x ( L ,  (h -  )max(O, a ) )  + 2 0  - 
max(G - O, 0) then, the execution time of a BSP algorithm in the BSP model 
and the compiled BSP algorithms in the LogP model is the same. Especially, 
the bound for the simulation in [2] is improved by a factor of log P for oblivious 
BSP programs. 

3.3 I n t e r p r e t a t i o n  vs .  C o m p i l a t i o n  

For the comparision of a direct execution of a BSP program with the com- 
piled LogP program, the parameters for the BSP machine and LogP machine, 
respectively, cannot be chosen arbitrarily. They are determined by the target 
architecture, for comparable runtime predictions we must choose the smallest 
admissible values for the respective model. 

A superstep implementing a h-relation costs in the BSP-model w + l + h �9 g. 
According to Theorem 1, it can be executed in time w + 20 + (h-1)  max(O, G)+ 
max(L, ( h -  1)max(O,G)) on the LogP machine. The speedup is the ratio of 
these two numbers. Easy calculations prove the following 

Corol la ry  1 ( In te rp re t ing  vs. Compil ing) .  Let M be a parallel computer 
with BSP  parameters l ,g,  and P and LogP parameters L , O , G ,  and P.  Let .A 
an oblivious BSP algorithm where each superstep executes at most h remote 
memory accesses. If  1 > 0 + max(L, (h - 1) max(O, C)) and g > max(O, G) 
then the execution time of the compiled BSP algorithm on the LogP model is 
not slower than the execution time of the BSP algorithm on the BSP model. If  
one of these inequalities is strict, then the execution time of the compiled B S P  
algorithm is faster. 

3.4 L o w e r  B o u n d s  for  t h e  P a r a m e t e r s  

Let g* and l* (resp. max*(O,G) and L*) be the smallest values of the BSP 
parameters (resp. LogP parameters) admissible on a certain architecture. Our 
simulation implies that g* = C9(max*(O, G)) and l* = O(L*). Together with 
the simulation result of [2] that proves a constant delay in simulation of LogP 
algorithms on the BSP machine, we obtain 

T h e o r e m  2 (BSP and  LogP paramete r s ) .  For the smallest values of the 
BSP parameters g* and l* (resp. LogP parameters max* (0 ,  G) and L*) achiev- 
able on any given topology, it holds that 

g* = O(max(O*,a*)) and l* = O(L*), 

provided that both machines run oblivious programs. 



870 

So far we only considered the worst case behavior of the two models. They 
are equivalent for oblivious programs in the sense that  bi-simulations are pos- 
sible with constant delay. We now consider the t ime for implementing a barrier 
synchronization and a packed router on topology networks. 

T h e o r e m  3. Let d be the diameter of a point-to-point network with P proces- 
sors. Let d 9 be the degree of the processors of the network. Each processor may 
route up to d9 messages in a single time step but it receives and sends only one 
message at each time step 2. On any topology, the time l* of its B S P  model is 

l* = / 2 ( m a x ( d ( P ) ,  log P)) .  

Proof. A lower bound for synchronization is broadcasting. Hence, d(P)  is obvi- 
ously a lower bound for l*. Assume an opt imal  broadcast tree [7] could be em- 
bedded optimally on the given topology. Its depth for P processors is O( logP) ,  
a message could be broadcasted in t ime O( logP) .  Hence, synchronization takes 
at least t ime X2(log P) .  

Remark 1. Actually a'2(P l/a) is a physical lower bound for l* and L* under the 
assumption that  the processors must  be layouted (in 3-dimensions) and signals 
have a run duration. Then the minimal average distance is X?(P1/3). Due to the 
small constant factors of this bound, we may  abstract  from the layout and model 
signal delay by discrete hops from one processor to its neighbors. 

For many  packet routing problems (specific h-relations) and topologies, the 
latency is considerable smaller than l* which could lead to a speed up of the LogP 
programs compared to oblivious BSP programs. This hypothesis is addressed by 
the next section. 

4 S u b c l a s s e s  o f  O b l i v i o u s  P r o g r a m s  

In general, there is a higher effort in designing LogP programs instead of BSP 
programs.  E.g., the proof that  the BSP capacity constraints are guaranteed 
reduces to simply counting the number  of messages sent in a superstep. Due to 
the asynchronous execution model, the same guarantee is not easy to prove for 
the LogP machine. BSP programs cannot deadlock, LogP programs can. Hence, 
for all considered classes, we will have to evaluate whether: 

- the additional effort in programming directly a LogP program pays out in 
efficiency, or 

- compilat ion of BSP programs to LogP programs speeds up the p rogram ' s  
execution, or 

- such a compilation cannot guarantee a speedup. 

For our practical runtime comparisons, we determine the parameters  of the two 
machine models for the IBM RS6000/SP with 16 processors 3. 

2 This behavior lead to the LogP model where only receiving and sending a message 
takes processor time while routing is done by the communication network. 

3 The IBM RS6000/SP is a IBM SP, but uses other processors. Therefore, we compiled 
the BSP tools without processor specific optimizations. 
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Table  1, LogP vs. BSP parameters (IBM RS6000/SP), message size <: 16 Bytes. 

IBSP iLogP 

= 502ps IL = 17.1ps 
- -  I0 = 9.0ps 
g = 30.1ps G = 9.8ps 

4,1 T h e  P a r a m e t e r s  

We use the native message passing library for the LogP model and the Oxford 
BSP tools 4 for the BSP model. The results are shown in Table 1. For all mea- 
surements in this and the following sections we used compiler option -O3 -qstrict 
and for the BSP library option -flibrary-level 2. 

4 . 2  M P M D - P r o g r a m s  

If  an efficient parallel solution for a problem is hard to part i t ion in supersteps, 
the BSP model is not appropriate.  For those programs the LogP model seems 
preferable. Due to its asynchronous execution model, it avoids unnecessary de- 
pendencies of processors by synchronization. However, if the problem is low 
level, as our example broadcast is, the solution may be hidden in a library. It  
is not hard to extend the BSP model by a set of such l ibrary functions. Their  
implementat ion could be tuned using the LogP model. 
O p t i m a l  B r o a d c a s t :  A basic algorithm on distributed memory  machines is 
the opt imal  broadcast  of data  from one processor to all others, which is used in 
many  applications. For the LogP model, an opt imal  solution is given by Karp  at 
M. in [7]. Each processor that  received the i tem immediate ly  initiates a repeated 
sending to processors which have not received the i tem until there is no such 
processors. We achieve the opt imal  BSP broadcast  for our machine if the first 
processor sends messages to all others in one superstep. After synchronization the 
other processors receive their message. This is opt imal  for our target  machine, 
since all other implementat ions would need at least two synchronization steps, 
which alone cost more than  the algori thm given above. The measured runt ime 
of broadcast  for LogP and BSP on our machine can be seen in Table 2. 

R e m a r k  2. In the measurements  for the BSP parameters ,  we used raged mes- 
sages where the tag identifies the sender. For an opt imal  broadcast ,  this iden- 
tification of the sender is not necessary. This explains the difference between 
est imation and measurements.  In contrast  to the LogP model, it is not possible 
on the IBM RS6000/SP to receive a message and send a it immediate ly  without  
a gap. The LogP est imation ignore this property and are therefore too small. 

However, even if we assume m a x ( O , G )  = g, L = I then the opt imal  LogP 
broadcast  is a lower bound for the opt imal  BSP broadcast.  The lat ter  requires 

4 see http://www.BSP-worldwide.org 
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Table  2. Predictions vs. runtimes of broadcast, wave simulation, and FFT. 

broadcast 
simulation (n=l,000) 
simulation (n=100,000) 
FFT (n=1024) 
IFFT (n=16384) 

BSP 
measurement l estimation 

822 ps 980 ps 
6.84 s 6.35 s 
20.6 s 19.4 s 

3.16 ms 3.51 ms 
34.8 ms 35.6 ms 

LogP 
measurement I estimation 

101 ps 99.6 ps 
1.50 s 1.56 s 
14.9 s 14.24 s 

2.65 Ins 2.67 Ins 
39.3 ms 35.2 ms 

global synchronization barriers between subsequent send and receive operations. 
These synchronizations lead to delays on other processors if the LogP broadcast  
tree is not balanced by chance. For each send and receive pair all processors 
have to be synchronized instead of two. 

4.3 SPMD-Programs with Sparse Dependencies 

Assume tha t  a BSP process sends at most  h messages to the subsequent super- 
steps. The dependencies in the BSP program are sparse for M if the for LogP 
and BSP parameters  for M it holds that  

+ 2h .g > 2 0  + (h - 1) max(O,  G) + max(L,  (h - 1) max(O,  G)) (1) 

If a BSP programs communicates at most  an h-relation f rom one superstep to 
the next, these communication costs are bounded by the right hand side of 
inequation (1) in the compiled LogP program (due to Theorem 1). Then we 
expect a speed up if the BSP program is compiled instead of directly executed. 

However, if the problem size n is large compared to P,  computa t ion  costs 
could dominate  communication costs. Hence, if the problem scales arbitrarily, 
the speed-up gained by compilation could approach zero for increasing n. 
W a v e  S i i n u l a t i o n :  For simulating a one-dimensional wave, a new value for 
every simulated point is recalculated in every t ime step according to the current 
value of this point(y0), its two neighbors (Y-I,Y+I), and the value of this point 
one t ime step before (y~). This update  is performed by the function 

2 
= 2 . yo  - V'o + A,/A  . 2 �9 - 2 �9 y o  + > 1 ) .  

Since recalculation of one node needs the values of direct neighbors only, it is 
optimM to distribute the da ta  balanced and block by block on the processors. 
Figure 1 sketches two successive computat ional  steps and the required commu-  
nication. The two programs for the LogP and BSP model only differ in the 
communicat ion phase of each computat ion step. In both  models, the processes 
communicate  with their neighbors, i.e, the communicat ion phase must  route a 2- 
relation. The BSP additionally performs a synchronization of all processors. For 
our target  machine, the data  dependencies are sparse i.e., each communicat ions 
phase is faster on the LogP machine than  on the BSP, cf Table 2. 
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Fig. 1. h communication phase of the Wave Simulation. 

4.4 SPMD-Programs  with Dense Dependencies  

We call da ta  dependencies of a BSP program dense for a target  machine if they 
are not sparse. Obviously for those programs compilat ion does not pay as the 
following example show. 
Fas t  F o u r i e r  T r a n s f o r m :  We consider an one-dimensional parallel F F T  and 
assume the input vector v to be of size n = 2 k, k E N. Furthermore,  let n ___ 
2 x P.  Then the following algorithm requires only one communicat ion phase: 
v is initially distribute block-by-block and we may perform the first log(n/P) 
operations locally. Then v is redistributed in a cyclic way, which requires an 
all-to-all communication.  The remaining operations can be executed also locally. 
The computa t ion  is balanced and a barrier synchronization is done implicitly 
on the LogP machine with the communication.  Hence, we expect no noteworthy 
differences in the runtimes. The measurements in Table 2 confirm this hypothesis. 

Remark 3. For the redistribution of data  from block-wise to cyclic, we used a 
LogP- l ibrary  routine, which gathers da ta  by memcopy calls with variable da ta  
length. For the BSP, such a routine does not exist and was therefore implemented  
by hand. This implementat ion allowed the compiler to use more efficient copying 
routines and explains the difference of the LogP runt ime to its est imation and 
to the BSP runtime. 

5 C o n c l u s i o n s  

We show how to compile of oblivious BSP algorithms to LogP machines. This 
approach improves the best known simulation delay of BSP programs on the 
LogP machine [2] by a factor of O(log(P)) .  It turns out, that  the both  models 
are asymptot ical ly equivalent for oblivious programs.  We identified a subclass 
of oblivious programs that  are potentially more efficient if directly designed for 
the LogP machine. Due to a more comfortable programming,  other programs 
are preferably designed for the BSP machine. However, among those we could 
identify another subclass that  are more efficient if compiled to the LogP machine 
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instead of executed directly. Others are not. Our measurements determine the 
parameters for a LogP and a BSP abstraction of a IBM RS6000/SP with 16 
processors. They compare broadcast, wave simulation, and FFT  programs as 
representative of the described subclasses of oblivious programs. Predictions and 
measurements of the programs in both models confirm our observations. 

Further work could combine the best parts of both worlds. We could use the 
same classification to identify parts of BSP programs that are executed directly, 
namely the non-oblivious parts and those which do not profit from compilation, 
and compile the other parts. Low level programs from the first class, like the 
broadcast, could be designed and tuned for the LogP machine and inserted to 
BSP programs as black boxes. 
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