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Abstract This paper deals with the problem of scheduling a specific
precedence task graph , namely the Fork graph, under the LogP model.
LogP is a computational model more sophisticated than the usual ones
which was mmtroduced to be closer to actual machines.

We present a scheduling algorithm for this kind of graphs. Our algorithm
is optimal under some assumptions especially when the messages have
the same size and when the gap is equal to the overhead.

1 Motivation

The last decade was characterized by the huge development of many kinds of
parallel computing systems. It is well-known today that a universal computa-
tional model can not unify all these varieties. PRAM is probably the most im-
portant theoretical computational model. It was introduced for shared-memory
parallel computers. The main drawback of PRAM is that it does not allow to
take into account the communications through an interconnection network in a
distributed-memory machine. Practical PRAM implementations have often bad
performances. Many attempts to define standard computational models have
been proposed. More realistic models such as BSP and LogP [3] appeared re-
cently. They incorporate some critical parameters related to communications.

The LogP model is getting more and more popular. A LogP machine is
described by four parameters L,0,¢9 and P. Parameter L is the interconnec-
tion network latency. Parameter o is the overhead on processors due to local
management of communications. Parameter g represents the minimum duration
between two consecutive communication events of the same type. Parameter P
corresponds to the number of processors. Moreover, the model assumes that at
most [I;] messages from (resp. to) a processor may be in transit at any time.

We present in this paper an optimal scheduling algorithm under the LogP
model for a specific task graph, namely the Fork graph. We assume that the
number of processors is unbounded.

In the remainder of this section we give some definitions and notations con-
cerning Fork graphs, then we briefly describe some related work. In Sect. 2, the
scheduling algorithm is presented.
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1.1 About the Fork Graph

A Fork graph is a tree of height one. It consists of a root task denoted by Tg
preceeding n leaf tasks 71, . . ., Tj,. The root sends, after its completion, a message
to each leaf task. In the remainder of this paper, symbol F will refer to a Fork
graph with n leaves. In addition, we denote by w; the execution time of task
T;, 1€ {0,...,n}. The processors are denoted by p;,i =0,1,.... We assume,
without loss of generality, that task T} is always scheduled on processor pg. Let
S be a schedule of F, then df;(S) denotes the completion time of processor p; in
S where i € {0,1,...}. Purthermore, df(S) denotes the makespan (length of S)
and df* the length of an optimal schedule of F'.

The contents of the messages sent by Ty must be considered when dealing
with scheduling under LogP. Indeed, assume that Ty sends the same data to some
tasks 7; and Tj;. Then assigning these tasks to the same processor (say p;, ¢ # 0)
saves a communication. Two extreme situations are generally considered. In the
first one, it is assumed that Tj sends the same data to all the leaves. This is called
a common data semantics. In the second situation, the messages sent by 7Ty are
assumed to be pairwise different. This is called an independent data semantics

[4].

1.2 Related Work

The problem of scheduling tree structures with communication delays and an
unbounded number of processors has received much interest recently. The major
part of the available results focused on the extended Rayward-Smith model.
Chrétienne has proposed a polynomial-time algorithm for scheduling Fork graphs
with arbitrary communication and computation delays [1]. He has also showed
that finding an optimal schedule for a tree with a height of at least two is NP-
Hard [2]. More recently, some results about scheduling trees under LogP have
been presented. In [6], Verriet has proved that finding optimal Fork schedules is
NP-Hard when a common data semantics is considered. In [5], the authors have
presented a polynomial-time algorithm that determines optimal linear schedules
for inverse trees under some assumptions.

2 An Optimal Scheduling Algorithm

We present in this section an optimal scheduling algorithm of /' when the number
of processors is unbounded (P > n). Furthermore , we assume that:

— The messages sent by the root have the same size.

The gap is equal to the overhead: g = 0. This is the case for systems where
the communication software is a bottleneck.

An independent data semantics is considered.

- w; > wipy, Vi€ {l,...,n—1}.

!

!

We start by presenting some dominant properties related to Fork schedules.
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Lemma 1. Each of the following properties is dominant:

w1 Fach leaf task T; such that w; < o is assigned to pg.

wo Processor pg executes Ty at first, then it sends the messages to tasks T; which
are assigned to other processors. These messages are sent according to de-
creasing values of w;. Finally, py executes the tasks that were assigned to it
in an arbitrary order.

w3 Bach processor p;(i # 0) executes at most one task, as early as possible (just
after receiving its message).

Every schedule that satisfies properties ;1 —m3 will be called a dominant schedule.
Such schedules are completely determined when the subset A* of the leaves that
should be assigned to pp is known. We propose in the sequel an algorithm (called
CLUSTERFORK) that computes this subset. Initially, each task is assigned
to a distinct processor. The algorithm manages two variables b and B which
are a lower bound and an upper bound on df* respectively. More specifically,
at any time we have b < df* < B. These bounds are refined as the algorithm
proceeds. CLUSTERFORK explores the tasks from Ty to T,. For each task
T;,i € {1,...,n}, one of the following situations may be encountered. If the
completion time of 7} in the current schedule is not less than B then T; is
assigned to po. If df; is not greater than b, then the algorithm does not assign
this task to po. Finally, if df; is in the range }b, B[, then the algorithm checks
whether there is a schedule S of F such that df(S) < df;. If such a schedule
exists, then T; is assigned to pg and B is set to df;, otherwise 1} is not assigned
to po and b is set to df;.

Theorem 1. Let A* be a subset produced by CLUSTERFORK, then any dom-
wnant schedule S* associated with A* is optimal.

Finally, it is easy to see that CLUSTERFORK has a computational complexity
of O(n?).

3 Concluding Remarks

In this paper we presented an optimal polynomial time scheduling algorithm for
Fork graphs under the LogP model and using an unbounded number of proces-
sors. This problem was solved under some assumptions which hold for a current
parallel machine namely the IBM-SP. We remark that a slight modification in
the problem parameters (for instance when the messages are the same) leads to
an NP-hardness result. Indeed, in this latter case, scheduling at most one task
on each processor p;, 7 # 0 is no more a dominant property and gathering some
tasks on the same processor may lead to better schedules.
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Algorithm 1 CLUSTERFORK
Begin
{Initially: df, = wo + (1 + 1) xo + L +w;, V1 <1 < n}
b := 0;{lower bound on df*}
B := MAXV AL; {upper bound on df*}
for (i:=1 to n) do
if (df; > B) then
z; := 1; {1} is assigned to po}
UPDATE_DF(i);
else if (df; > b) then
{Look for a schedule such that df < df;}
Ji=1t k:=0; v:=dfs;
while (j < n) do
if (df; — k x o > dfi) then
{The assignment of T} to po is necessary}
if (v+ w; — 0 > df:) then

Ji=n4+1;
else
vi=v+w;—o k:i=k41;
3=+ 1

if (j =n+2) then
{The looked for schedule does not exist}

z; :=0; b:=df;;
else {df* < df.}
z; = 1; B :=df;;

UPDATE_DF(i); {Update processors completion times}
else {df; < b}
z; =0
End CLUSTERFORK
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