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A b s t r a c t  This paper deals with the problem of scheduling a specific 
precedence task graph , namely the Fork graph, under the LogP model. 
LogP is a computational model more sophisticated than the usual ones 
which was introduced to be closer to actual machines. 
We present a scheduling algorithm for this kind of graphs. Our algorithm 
is optimal under some assumptions especially when the messages have 
the same size and when the gap is equal to the overhead. 

1 M o t i v a t i o n  

The last decade was characterized by the huge development of many  kinds of 
parallel computing systems. It is well-known today that  a universal computa-  
tional model can not unify all these varieties. PRAM is probably the most  im- 
por tant  theoretical computat ional  model. I t  was introduced for shared-memory  
parallel computers.  The main drawback of PRAM is that  it does not allow to 
take into account the communicat ions through an interconnection network in a 
d is t r ibuted-memory machine. Practical PRAM implementat ions have often bad 
performances. Many a t tempts  to define s tandard computa t ional  models have 
been proposed. More realistic models such as BSP and LogP [3] appeared re- 
cently. They incorporate some critical parameters  related to communicat ions.  

The LogP model is getting more and more popular.  A LogP machine is 
described by four parameters  L,o,g and P.  Parameter  L is the interconnec- 
tion network latency. Parameter  o is the overhead on processors due to local 
management  of communications.  Parameter  g represents the min imum durat ion 
between two consecutive communicat ion events of the same type. Pa ramete r  P 
corresponds to the number  of processors. Moreover, the model assumes tha t  at 
most  [~]  messages from (resp. to) a processor may  be in transit  at any time. 

We present in this paper  an opt imal  scheduling algori thm under the LogP 
model for a specific task graph, namely the Fork graph. We assume tha t  the 
number  of processors is unbounded. 

In the remainder of this section we give some definitions and notat ions con- 
cerning Fork graphs, then we briefly describe some related work. In Sect. 2, the 
scheduling algorithm is presented. 
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1.1 A b o u t  t h e  F o r k  G r a p h  

A Fork graph is a tree of height one. It  consists of a root task denoted by To 
preceeding n leaf tasks T1 , . . . ,  T~. The root sends, after its completion, a message 
to each leaf task. In the remainder of this paper, symbol F will refer to a Fork 
graph with n leaves. In addition, we denote by wi the execution t ime of task 
2~, i 6 { 0 , . . . ,  n}. The processors are denoted by Pi, i = 0, 1 , . . . .  We assume, 
without loss of generality, that  task To is always scheduled on processor P0. Let 
S be a schedule of F,  then dfi(S) denotes the completion t ime of processor Pi in 
S where i 6 {0, 1 , . . .} .  Furthermore, dr(S) denotes the makespan (length of S) 
and dr* the length of an opt imal  schedule of F.  

The  contents of the messages sent by To must  be considered when dealing 
with scheduling under LogP. Indeed, assume that  To sends the same da ta  to some 
tasks Ti and Tj. Then assigning these tasks to the same processor (say Pi, i # 0) 
saves a communication.  Two extreme situations are generally considered. In the 
first one, it is assumed that  To sends the same da ta  to all the leaves. This is called 
a common data semantics. In the second situation, the messages sent by To are 
assumed to be pairwise different. This is called an independent data semantics 
[4]. 

1.2 R e l a t e d  W o r k  

The problem of scheduling tree structures with communicat ion delays and an 
unbounded number  of processors has received much interest recently. The major  
part  of the available results focused on the extended Rayward-Smith  model.  
Chr@tienne has proposed a polynomial- t ime algori thm for scheduling Fork graphs 
with arbi t rary communicat ion and computa t ion  delays [1]. He has also showed 
that  finding an opt imal  schedule for a tree with a height of at least two is NP- 
Hard [2]. More recently, some results about  scheduling trees under LogP have 
been presented. In [6], Verriet has proved that  finding opt imal  Fork schedules is 
NP-Hard  when a common data  semantics is considered. In [5], the authors have 
presented a polynomial- t ime algorithm that  determines opt imal  linear schedules 
for inverse trees under some assumptions. 

2 An Optimal Scheduling Algorithm 

We present in this section an opt imal  scheduling algorithm of F when the number  
of processors is unbounded (P > n). Furthermore , we assume that:  

- The  messages sent by the root have the same size. 
- The gap is equal to the overhead: 9 = o. This is the case for systems where 

the communicat ion software is a bottleneck. 
- An independent da ta  semantics is considered. 
- wi>wi+1, V/6 {l .... ,n-l}. 

We star t  by presenting some dominant  properties related to Fork schedules. 
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L e m m a  1. Each of the following properties is dominant: 

~rl Each leaf task Ti such that wi <<_ 0 is assigned to Po. 
~r2 Processor Po executes To at first, then it sends the messages to tasks T~ which 

are assigned to other processors. These messages are sent according to de- 
creasing values of w~. Finally, Po executes the tasks that were assigned to it 
in an arbitrary order. 

~v3 Each processor Pi(i 7s O) executes at most one task, as early as possible (just 
after receiving its message). 

Every schedule that  satisfies properties ~'1-~r3 will be called a dominant  schedule. 
Such schedules are completely determined when the subset A* of the leaves tha t  
should be assigned to Po is known. We propose in the sequel an algori thm (called 
CLUSTERFORK)  that  computes this subset. Initially, each task is assigned 
to a distinct processor. The algorithm manages  two variables b and B which 
are a lower bound and an upper bound on dr* respectively. More specifically, 
at any t ime we have b <_ dr* < B. These bounds are refined as the a lgori thm 
proceeds. C L U S T E R F O R K  explores the tasks f rom T] to Tn. For each task 
7~,i E { 1 , . . . , n } ,  one of the following situations may  be encountered. I f  the 
completion t ime of Ti in the current schedule is not less than  B then T/ is 
assigned to Po. If  dfi is not greater than b, then the algorithm does not assign 
this task to Po. Finally, if dfi is in the range ]b, B[, then the algori thm checks 
whether there is a schedule 5: of F such that  df(S) < df~. If  such a schedule 
exists, then T/ is assigned to Po and B is set to dfi, otherwise T/ is not assigned 
to Po and b is set to d]). 

T h e o r e m  1. Let A* be a subset produced by CLUSTERFORK,  then any dora- 
inant schedule S* associated with A* is optimal. 

Finally, it is easy to see that  C L U S T E R F O R K  has a computa t ional  complexi ty 
of O(n2). 

3 C o n c l u d i n g  R e m a r k s  

In this paper  we presented an opt imal  polynomial  t ime scheduling algori thm for 
Fork graphs under the LogP model and using an unbounded number  of proces- 
sors. This problem was solved under some assumptions which hold for a current 
parallel machine namely the IBM-SP. We remark tha t  a slight modification in 
the problem parameters  (for instance when the messages are the same) leads to 
an NP-hardness result. Indeed, in this lat ter  case, scheduling at most  one task 
on each processor Pi, i # 0 is no more a dominant  property and gathering some 
tasks on the same processor may lead to bet ter  schedules. 
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A l g o r i t h m  1 C L U S T E R F O R K  

Begin 
{Initially: df, = wo + (i + 1) �9 o + L + wi, V1 < i < n} 
b := 0;{lower bound on dr*} 
B := M A X V A L ;  {upper bound on dr*} 
for  (i := 1 to  n) d o  

i f  (df~ > B) t h e n  
xi := 1; {7) is assigned to p0} 
U P D A T E _ D F ( i ) ;  

else  i f  (dfl > b) t h e n  
{Look for a schedule such that df < dfi} 
j : = i ;  k : = 0 ;  v : = d f 0 ;  
w h i l e  ( j  ~ n) d o  

i f  (dfj - k �9 o > dfi) t h e n  
{The assignment of Tj to p0 is necessary) 
i f  (v + wj - o > dfi) t h e n  

j := n + 1; 
e l se  

v : = v + w j - o ;  k : = k + l ;  
j : = j + l ;  

i f ( j = n + 2 )  t h e n  
{The looked for schedule does not exist) 
xi := 0; b :-- dfi; 

else {dr* < dr,) 
xi := 1; B := df~; 
U P D A T E _ D F ( i ) ;  {Update processors completion t imes) 

e lse  {dfi < b} 
xi := O; 

End CLUSTERFORK 
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