
A D a t a Layout Strategy for Parallel Web
Servers*

J6rg Jensch, Reinhard Lifting, and Norbert Sensen

Department of Mathematics and Computer Science
University of Paderborn, Germany

{jaglay, r l , sensen}~uni-paderborn.de

A b s t r a c t . In this paper a new mechanism for mapping data items onto
the storage devices of a parallel web server is presented. The method is
based on careful observation of the effects that limit the performance
of parallel web servers, and by studying the access patterns for these
s e r v e r s .

On the basis of these observations, a graph theoretic concept is devel-
oped, and partitioning algorithms are used to allocate the data items.
The resulting strategy is investigated and compared to other methods
using experiments based on typical access patterns from web servers that
are in daily use.

1 I n t r o d u c t i o n

Because of the exponential growth in terms of number of users of the World
Wide Web, the traffic on popular web sites increases dramatically. To resolve
capacity requirements on the server systems hosting popular web sites, one way
to strengthen the capability of a server system is to use parallel server systems
that contain a number of disks attached to different processors which are con-
nected by a single bus or a scalable communication network. The same solution
can be applied for very large web sites which cannot be stored on one disk but
use a number of disks connected to a single processor system.

The problem that shows up if a number of disks are used to store the overall
amount of data is to balance the number of requests issued to the disks as evenly
as possible in order to achieve the largest overall throughput from the disks. The
requests that have to be served by one disk are strictly dependent on the data
layout of the server system, i.e. the mapping of the files stored on the server onto
the different storage subsystems (disks). The investigation of a new concept for
the data layout of parallel web servers is the focal point of this paper.

The problem is of major relevance for the performance of web servers and can
be assumed to become even more important if the current technological trends
concerning the bandwidth offered by storage devices, processors and wide area

* This work was partly supported by the MWF Project "Die Virtuelle Wissensfab-
rik", the EU project SICMA, and the DFG Sonderforschungsbereich 1511 "Massive
Parallelits Algorithmen, Entwurfsmethoden, Anwendungen".

945

communicat ion networks are regarded: Whereas the performance of processors
and external communicat ion networks (ATM, Gigabit Ethernet) has been dra-
matical ly increased over the last years, the read/wri te performance of storage
devices shows only little increase over the last years. Thus, the performance of a
server system can only be increased by the use of a larger number of disks tha t
delivers da ta elements in parallel to the external communicat ion network.

Different approaches can be found in the literature in order to increase
the performance of web servers: NCSA [7] and SWEB [4] have built a multi-
workstation H T T P server based on round-robin domain name resolution(DNS)
to assign requests to a set of workstations. In [5] this DNS-strategy is extended,
the time-to-live (TTL) periods are used to distribute the load more evenly. In the
past different researchers tried to identify the workload behavior with empha-
sis on the development of a caching strategy. NCSA developers analyzed user
access pat terns for system configurations to characterize the W W W traffic in
terms of request count, request da ta volume, and requested resources [9]. Arli t t
and Williamsion [3] studied workloads of different Internet Web servers. Their
emphasis placed on finding universal invariants characterizing Web servers work-
loads. Bestavros et. al [2] tried to characterize the degree of temporal and spatial
locality in typical Web server reference streams. A general survey on file alloca-
tion is given in [13]. In [9] the problem of declustering is solved by t ransforming
the problem onto a MAX-CUT problem.

The da ta layout method that is presented in this paper is based on the
following idea: The goal of the layout is to minimize the number of i tems tha t
resides on the same disk and are requested often simultaneously. So we examine
the access pat tern of the past and place those items on different disks. Since the
i tems which are often simultaneously requested are roughly the same at following
days, this s t rategy leads to a good da ta layout.

The model of our parallel web server is presented in section 2. In section 3 we
show that typical access patterns remain constant over some time, and collisions
are typical pat terns of a web server. In section 4 the da ta layout s t ra tegy is
presented and the strategy is studied in detail, compared with other methods
and limits of the strategy are shown. The paper finishes on some concluding
remarks in section 5.

2 M o d e l

This section presents the model of the parallel web server that is used to describe
the da ta layout algorithm in the next sections. Thus, in our model we concentrate
on the aspects that are impor tant for the presentation in the rest of the paper.

A parallel web server is built by the following entities: A number of processing
modules tha t are connected by some kind of network or bus architecture, a
number of communicat ion devices tha t connect the processing modules to the
external clients accessing the server and requesting information, and a number
of storage devices (disks) that are connected to the processing modules.

946

The parallel web server stores d a t a i tems (files) on the disks and works as
follows:

- The server is able to accept one or more requests arr iving via the communi -
cat ion devices f rom the external clients per t ime step.

- The server forwards a request to the disk holding the requested i tem. We
assume here, tha t each i tem is only stored once on the whole disk pool.

- Every disk can accept only one request per t ime step. If more than one
request is sent to a disk per t ime step, these requests queue up.

- The processing t ime for each request on the disk is constant and takes one
t ime unit , so one disk can process only one request in one t ime unit .

- All disks are independent , so tha t the server can process a m a x i m u m of n
requests per t ime step if n is the number of disks.

In case tha t two requests are forwarded to the same disk in one t ime step,
one request can be served and the other request has to wait for one t ime unit .
This conflict resolution can be done arbitrarily, i.e. we do not assume a specific
protocol here. In case tha t two (or more) requests access the same storage device
(disk) we say, tha t these requests are colliding, i.e. these requests are in collision.
We say tha t two requests collide if they arrive on the web server within a t ime
interval of t ime a. We have chosen a to be one second.

The aim of our work is now to develop a da t a layout s t ra tegy in order to
m a p the d a t a i tems in a way onto the disks, tha t the requests t ha t arrive at the
server lead to a minimal number of collisions and therefore to a min imal la tency
in answering the da t a requests issued by the external clients.

3 M o n i t o r i n g t h e a c c e s s t o w e b s e r v e r s

In order to increase the overall per formance of a parallel web server it is no t
impor t an t to balance the overall number of requests issued to the disks as evenly
as possible, but to avoid tha t a larger number of requests are submi t t ed to a
single disk. This means tha t in each small t ime interval the load has to be
dis t r ibuted as evenly as possible minimizing the la tency t ime for a request this
way. Thus, the aim is to minimize the number of collisions on the disks.

In order to get an impression of the collisions tha t occur we have taken the log
files f rom the web server of the University of Paderborn (www.uni-paderborn .de)
for November and December 1997. We built all tuples (i, j) of files i and j s tored
on the web server in Paderborn and measured the number of collisions, i.e. the
number of hits tha t we made on files i and j in a t ime interval a. Figure 1 shows
the number of collisions for all pairs of files for two consecutive days sorted by
the collisions of the first day. The x-axis lists all tuples (i, j) of files according
to the collisions on the first day, and the y-axis lists the number of collisions
for each pair of files. Now it is interesting to observe tha t the collisions are very
similar on the two consecutive days.

So if we develop an algori thm, tha t minimizes the collisions for a typical
access pa t te rn of the web server moni tored at one day, these collisions will also

947

Fig. 1. Distribution of collisions

be eliminated on the next day. Thus, we can take the similarity of access patterns
into account for the construction of our data layout strategy. This is the basic
observation and the foundation of our data layout principle.

4 D a t a l a y o u t s t r a t e g i e s

As described above the data layout strategy aims at minimizing the number of
collisions for a typical access pattern. The mapping that is computed in this way
can be assumed to also avoid a large number of collisions in the future as the
distribution of collisions is very similar on consecutive days.

In the following we will firstly explain the algorithm used to compute the
data layout, and secondly evaluate the performance of this algorithm in detail.

4.1 A l g o r i t h m

Throughout the rest of the paper we define F to be the set of data items (flies)
and {(tl, f l) , (t2, f 2) , . . . , (trn, f rn) , . . -} be an access pattern for a web server
with ti being the time when the request for data item (file) fi E F arrives on the
server. Then c(i, j) =[{{(t, i), (t', j)} l i t - t ']_< 5} l is defined as the number of
collisions of files i and j for the given access pattern.

Our strategy is to distribute the objects stored on the web server onto the
given disks in such a way so that collisions are minimized. For a given access
pattern this leads to the following algorithmic problem:
g iven: A set of data items F, the access pattern, and a given number of storage

devices n.
q u e s t i o n : Determine mapping 7r, ~r = mint:F-~(1 } ~,jeF,~(q=~(j) c(i, j) .
It is easy to map this problem to the MAX-CUT-problem. The MAX-CUT-
problem is defined as follows:
g iven: A graph G = (V, E), weights w(e) E 1N and a number of partit ions n.
q u e s t i o n : Determine a partit ion of V into n subsets, such that the sum of the

weights for the edges having the endpoints in different subsets is maximal.

948

The mapping is done in a way that the da ta items (files) are the nodes of the
graph that has to be partitioned, and the number of collisions c(i, j) determines
the weight of edge {i, j}. The MAX-CUT problem is known to be NP-hard [6].
However, there are good polynomial approximat ion algorithms which deliver
good solutions. In our experiments we make use of the PARTY-Library [12]
containing an efficient implementat ion of an extension from the part i t ioning
algorithm described in [8].

4.2 Co l l i s i on R e s o l v i n g i f access p a t t e r n a r e k n o w n in a d v a n c e

In a first step we examine the gain of our algori thm if the access pa t te rn and
therefore the collisions are known in advance. Therefor we take the access statis-
tics of one day and determine the number of collisions of each pair of da ta items.
On the base of these statistics, we build the graph, part i t ion the graph, and look
how many collisions have remained and how many have been resolved.

In the following we compare the results of our algori thm with the r andom
mapping strategy for a number of access patterns. Each access pat terns exactly
represents all requests tha t were issued to the server during one day. We compare
the number of collisions induced by the access pat tern (ka) with the number of
remaining collisions that occur when applying the mapping algori thm described
above (kr). The factor f describes the ratio between the number of remain-
ing collisions for the random mapping (which is ~) and the mapping that is
determined by the algorithm (kr).

Table 1. Results for a number of access patterns, each representing one day

day
sun 11/23/97

mon 11/24/97
tue 11/25/97

wed 11/26/97
thu 11/27/97
fri 11/28/97

sat 11/29/97
sun 11/30/97

lodes eagesl ka
5533 151481 75334
8877 481361239365
7932 437201228870
8206 411721215825
7464 446561231364
6976 309191174120
5065 90591 37702
4798 86571 42544

results, n = 8

3152 4.18 2.99
12100 5.06 2.50
11367 4.9712.52
10800 5.00t2.50
12021 5.2012.40
8671 4.9812.51
1305 3.4613.61
1579 3.7113.37

In Table 1 the statistics and results of the part i t ion of one week are shown.
The table shows that all collisions up to 4 - 5 percent can be resolved and tha t
the algorithm has about 2 to 3 times the performance of the random mapping.

4.3 R e a l i s t i c optimization

In this section we examine how many collisions can be resolved if we use the
access-statistics of the past. This approach can only be successful if the collisions

949

of successive days have some similarity. We already examined this similari ty in
section 3.

Table 2 presents the average results for a number of days where the mapp ing
was determined by the access pat tern of day i - 1 and this mapping was used
for collision avoiding of day i. The table shows the factor fpd comparing the per-
formance of the random mapping method with the algori thm presented above
in respect to the number of disks n. It also shows the percentage of remain-

collisions k~,~d[%] that could not be resolved. . It is shown that the number ing
of remaining collisions with this mapping is clearly lower than with a r andom
mapping. The advantage of our mapping increases with the number of available
disks.

Table 2. Comparison of random placement and algorithm using access pattern of the
previous day and algorithm using access pattern of the same day

n k~--~r%l f;d k a I. " J

2 45.2 1.11
3 27.4 1.22
4 18.7 1.34
5 13.7 1.47
6 10.5 1.61
7 8.2 1.76
8 6.7 1.87

43.1/1.161 o.7o
24.911.341 0.70
16.3 1.541 0.72
11.3 1.78 0.72
8.212.051 0.73
6.012.41l 0.73
4.712.73[0.74

The table also shows the loss which occurs from the fact tha t the access
pat tern of successive days are not identical. To see this the according percentage
of remaining collisions ~ d [%] and the factor f,d are given which could be
achieved if the access pat tern of each day would be known in advance.

The value of the term ~ -k r , p , shows the relative performance difference

of the random mapping and the da ta layout determined by the algori thm pre-
sented above, for the case that the algorithm knows the exact access pat tern
or only knows the access pat tern of the day before. The results show tha t the
performance of our method decreases by about 30 percent if the da ta layout is
computed on the basis of the access pat tern from day i - 1 instead of day i if
the access pat tern of day i is applied. This loss seems to be nearly independent
from the number of disks but becomes smaller for larger number of disks.

In general the results show, that the da ta layout that is based on the access
pat tern of a previous day leads to a large reduction of the collisions later on.

4.4 U s i n g a n u m b e r o f access p a t t e r n s to d e t e r m i n e t h e data layout

Up to now we only used the access pat tern of one day to compute the da ta
layout. Here we will present results for the case tha t a number of access pat terns

950

Table 3. Results of using larger access patterns for determination of data layout

days
1
2
3
4
5
6
7
8
9
10
11
12
13
14

2 partitions
avg I max min

44.65144.9 c 43.95
44.49144.92 43.60
44.35144.91 43.26
44.38J44.85 43.43
44.48145.21 43.47
44.48145.15 43.66
44.48145.24 43.51
44.42144.94 43.73
44.46145.37 43.63
44.39145.22 43.32
44.46145.45 43.36
44.38145.07 43.40
44.40J45.30 43.47
44.37144.91 43.43

8 partitions
avgl max min

6.5817.08 5.96
5.4016.9(] 5.80
6.3316.6~ 5.71
5.35J 6.93 5.78
5.28[6.83 5.63
5.2616.85 5.64
3.30] 6.88 5.53
3.2616.88 5.68
3.2416.86 5.58
3.2516.71 5.58
~.~, j5.80 5.63
3.28r 5.75 !5.64
L3315.83 5.73
~.29l 7.00 5.67

were used to de termined this layout. All collisions f rom these pa t te rns were taken
into account to determine the da ta layout.

The results in Table 3 were determined using m previous days of a fixed date
i and determining the da t a layout using all the collisions tha t occur in these m
previous days. The experiments were made for different s tar t dates i, so average,
m a x i m u m and m i n i m u m could be studied. The table presents the percentage of
the collisions tha t could not resolved for the access pa t te rn of date i using the
different da t a layouts. It is shown, tha t the best results were achieved with a
d a t a layout t ha t is de termined using only a few days of access pat terns . A larger
number of access pat terns does not increase the overall per formance of the d a t a
layout method.

4 .5 U p d a t e f r e q u e n c y f o r d a t a l a y o u t

Using the results of the previous sections we know tha t the d a t a layout m e t h o d
presented here provides reasonable per formance improvements to r andomiza t ion
strategies when it considers the access pat tern. The results also show tha t a
typical access pa t te rn which is used to determine the da t a layout should contain
the access informat ion of only a few days. No bet ter results could be made with
more information. The question is now, if the da t a layout is de te rmined on a
day i taking the access pa t te rn of day i - 1, i - 2, ... i - x into account (small
x) how will the per formance be on a day i + d, thus d days in the future. This
will answer the question how often the da t a layout has to be upda ted to achieve
the best results.

The following experiment was done to answer this question: A d a t a layout
was de termined taking the access pa t te rn of da t a i into account. Then the access
pa t te rns of the days i + d, was applied to this da t a layout and the number of

=
o

a)

"6

9.5 " . T : "" : : ' "

i ; ; ' l . ' ~ n i n - c 3 - -
9 : - - r % . ~ " : -

8.5

7 ' ~ . - 6 " " ' :

i . .~ ', / "~? ~ ' ! i

5.5 i i - r i i ~ i i i
2 4 6 8 10 12 14 16 18 20

days a f te r las t pa r t i t i on ing

Fig. 2. Influence of time since last update of data layout on performance

951

collisions that had not been resolved was measured. For different values (x-axis)
the results are shown in Figure 2. As the results were gained for different s tart ing
days i, average values, m ax i m um and min imum could be determined for every d.
The results show, that the number of unresolved collisions is steadily increasing,
thus the data layout should be updated as often as possible (taking the last
access pat tern into account) to achieve the best results.

5 C o n c l u s i o n s

This paper presents a new strategy for allocating da ta items onto the storage
devices of a parallel or sequential web server that contains a number of disks
to store this data. The method is based on the observation that requests tha t
often arise in parallel on the web server should be forwarded to different storage
devices. Using this observation a graph-theoretic formulation is developed and
the problem is reduced to a MAX-CUT problem that is solved using heuristics.

The results show that the performance improvements of the s trategy are
considerable compared to randomization strategies that are usually used and
that the performance improvement scales up with the number of disks used in
the parallel server. The various investigations presented in the paper show tha t
it makes no sense to observe the access to the parallel web server for a long
t ime to determine a typical access pat tern which then builds the basis for the
determination of a da ta layout and that the data layout has to be updated from
t ime to t ime as for a fixed da ta layout the number of resolved collisions decreases
steadily.

Future work will focus on the investigation of an extended method tha t deter-
mines the number of duplicates for da ta items considering different restrictions
(in terms of disk capacity, or number of copies) into account.

952

R e f e r e n c e s

1. M. Adler, S. Chakrabarti , M. Mitzenmacher, L. Rasmussen: Parallel Randomized
Load Balancing. Proc. 27th Annual ACM Symp. on Theory of Computing (STOC
'95), 1995.

2. Virgilio Almeida, Azer Bestavros, Mark Crovella and Adriana de Oliveira: Char-
acterizing Reference Locality in the WWW. Proceedings of PDIS'96: The IEEE
Conference on Parallel and Distributed Information Systems, December 1996.

3. Martin Arli t t and Carey Williamson: Web server workload characterization: The
search for invariants. Proceedings of ACM SIGMETRICS'96,1996.

4. D. Andresen, T. Yang, V. Holmedahl and O. Ibarra: SWEB: Towards a Scalable
W W W Server on MultiComputers, Proceedings of the lOth International Parallel
Processing Symposium (IPPS'96), April 1996.

5. M. Colajanni and P.S. Yu: Adaptive TTL schemes for Load Balancing of Dis-
t r ibuted Web Servers, ACM SIGMETRICS Perfermance Evaluation Review, 1997,
volume 25,2

6. R. M. Karp: Reducibility among combinatorial problems, in R. E. Miller and J.
W. Thatcher, Complexity of Computer Computations, pages 85-103, 1972

7. Eric Dean Katz, Michelle Butler and Robert McGrath: A scalable H T T P server:
The NCSA prototype. Computer Networks and ISDN Systems, volume 27, pages
155-164, 1994.

8. B.W. Kernighan and S.Lin. An effective heristic procedure for part i t ioning graphs.
The Bell Systems Technical Journal, pages 192-308, Feb 1970.

9. Kwan, T.T. , R.E. McGrath and D.A. Reed: NCSA World Wide Web Server: Design
and Performance. IEEE Computer, November 1995, 28(11), pages 68-74.

10. Y.H. Liu and P. Dantzig and C.E. Wu and J. Challenger and L.M. Ni, A distr ibuted
{Web} server and its performance analysis on multiple platforms. Proceedings of
the 16th International Conference on Distributed Computing Systems, IEEE, 1996

11. D.R. Liu and S. Shekhar. Partit ioning Similarity Graphs: A Framework for Declus-
tering Problems, Information Systems, 1996, volume 21,6, pages 475-496

12. R. Preis and R. Diekmann. The PARTY Partit ioning - Library User Guide. Tech-
nical Report tr-rsfb-96-024, University of Paderborn.

13. Benjamin W. Wah., File placement on distr ibuted computer systems. Computer
Magazine of the Computer Group News of the IEEE Computer Group Society,
17(1), January 1984.

