
Analysing a Mult is treamed Superscalar
Speculative Instruction Fetch Mechanism

Rafael R. dos Santos ,~ and Ph i l i ppe O. A. Navaux**

Informatics Insti tute
CPGCC/Federa l University of Rio Grande do SUl,

P.O. Box 15064 91501-970 Porto Alegre - RS, Brazil

A b s t r a c t . This work presents a new model for multistream speculative
instruction fetch in superscalar architectures. The performance evalua-
tion of a superscalar architecture with this feature is presented in order
to validate the model and to compare its performance with a real su-
perscalar architecture. This model intends to eliminate the instruction
fetch latency introduced by branch instructions in superscalar pipelines.
Finally, some considerations about the model are presented as well as
suggestions and remarks to future works.

1 I n t r o d u c t i o n

Even using accura t ed branch p red ic t ion mechan i sms , cur rent supe r sca la r archi-
t ec tures offer less pe r fo rmance t h a n an idea l a rchi tec ture .

W h e n a branch is encountered , the branch p red ic to r can p red ic t i t as to be
taken or not taken. In the first case, con t iguous ins t ruc t ions are a l r e a dy in to
the fetch s tage when the p red ic t ion is made , and these ins t ruc t ions do no t t ake
p a r t of the p red ic t ed pa th . For the second case, no th ing occurs if the predic-
t ion is correct . But for bo th cases, we are a s suming t h a t the b ranch p red i c t i on
m e c h a n i s m is efficient.

The p r o b l e m usua l ly is t ha t b ranches are p red ic t ed as to be taken and each
t ime th is occur a flow in t e r rup t ion also occurs. The t ime requiered to refill the
fetch buffer and pu t the correct ins t ruc t ions in to the ins t ruc t ion queue is g rea te r
t han the necessary t ime to execute these ins t ruc t ions . If there are m a n y func-
t iona l un i t s and flow in te r rup t ions occur frequent ly, i t should be expec ted t h a t
the in s t ruc t ion queue will be e m p t y for m a n y cycles.

Th is means t ha t the ins t ruc t ion fetch m e c h a n i s m mus t be des igned to keep
the in s t ruc t ion queue wi th ins t ruc t ions t h a t can be scheduled for execu t ion on
free func t iona l uni ts .

A supe r sca la r a rch i tec ture could not execute ins t ruc t ions fas ter t h a n i t can
fetch ins t ruc t ions f rom the ins t ruc t ion cache. So, des ign an efficient fe tch mech-
an i sm is more i m p o r t a n t t han increase the n u m b e r of resources, because i t is no t

* Ph.D. Student - E-mail: rrsantos~inf.ufrgs.br - UNISC - University of Santa Cruz
do SUl - Santa Cruz - RS - Brazil

** Ph.D. - E-mail: navaux@inf.ufrgs.br - CPGCC/Federa l University of Rio Grande do
Sul

I011

possible to increase the performance only by increasing the number of functional
units.

The question is how many instructions could be fetched per cycle? Where
are these instructions comming from? An alternative approach to branch pre-
diction is instead of predict whether the branch is taken or not taken, is execute
speculatively both the taken and not-taken paths and cancel the execution of
the incorrect path as soon as the branch result is known [3].

2 F e t c h i n g i n s t r u c t i o n s f r o m m u l t i p l e s t r e a m s

Talcott [9] reffers a technique called Fetch Taken and not-Taken Paths to reduce
the branch problem. In [1] was presented a new model based on this scheme. In
this model, both paths of a conditional branch are fetched and put into the fetch
buffer.

When the branch prediction stage transfers instructions, from the fetch buffer
to the instruction queue, and reaches a branch into the fetch buffer, both possible
paths of this branch and its instructions are already into the fetch buffer. In this
case, no delay is introduced when the branch is predicted as taken. The transfer
is redirected to the predicted path whithout delay.

To enable this operation, the fetch stage must detect the branch instruction
just when it is fetched. In the next cycle, it must also start to fetch from both
paths. When the branch is predicted, the instructions transfer to instruction
queue is not interrupted.

In the multistreamed superscalar architecture proposed in [6], the fetch stage
was modified to enable to fetch both paths of a branch instruction.

K][~EUFI-1

r~wF--T---T--1 K][]
L,,,~,;I] ; H ~

!

1,~,;I I H ,

Fig. 1. Fetch Buffer Structure (e.g. fetch depth equal to 4 streams)

The figure 1 suggests a new buffer structure in the mult istream pipeline.
The number of stream buffers defines the fetch depth. Each stream has four
independent elements: Program Counter, Status Bit, Children List and Fetch
Buffer.

In the Fetch Buffer are stored the fetched instructions. The PC is used to
point the instructions that are in the stream. The status bit indicates whether
the stream structure is busy and the Children-List stores the identification of
the children streams.

The Children-List also stores the branch address and the identifier of its
children streams allowing the predict stage to start the transfer of instructions
of the new stream when a branch is predicted, without any delay.

1012

2.1 Mult i s tream Architecture Operation

The Fetch stage fetches instructions to put them into the fetch buffer. When con-
ditional branch instruction is detected, a new s t ream is generated and initialized,
as if there were available resources.

The s t ream generation consist of Children-List updat ing operation with the
branch address and the identification of a new stream structure that will store the
instructions related to the new stream. For each branch detected there are two
possible paths. The instructions that are in the not taken pa th are fetched and
stored into the same s t ream structure where is stored the conditional branch.
But, the taken pa th and their instructions will be stored in this new s t ream
structure.

The s t ream structure initialization consists of the P C initialization with the
target address and the setting of the status bit, to indicate that the structure
was allocated.

The predict stage transfers instructions, from the fetch buffer to the instruc-
tion queue (like conventional superscalar architectures) looking for branch in-
structions. However, when it finds a branch instruction, it also makes a pre-
diction. When the prediction is to be taken, this stage just concatenates the
instructions which are in the children s t ream of this branch, discarding the clos-
est instructions.

When the prediction is not taken, the children s t ream is discarded and the
neightbouring instructions continue to be transfered to the instruction queue.
When a s t ream is discarded, all children s t reams originated by this s t ream are
also discarded, through a recursive operation.

3 E x p e r i m e n t a l F r a m e w o r k

For this work, we used 4 benchmarks from the SPECint95 suite (compress, go,
ijpeg, li). Also~ we used a execution-driven simulator to generate traces. This
simulators acomplish with the SPARCV7 instruction set and simulates the exe-
cution in a scalar pipelined fashion. This is the reference machine.

For the superscalar simulations, we used 2 trace-driven simulators which
executed the choosed benchmarks based on the traces generated by the first
simulator. These 2 simulators are respectively called Real and Mulflux as we will
describe below:

- Real Simulator: Simulates the execution of programs using two-level branch
prediction [4, 5].

- Mulflux Simulator: Simulates the execution of programs using the proposed
speculative instruction fetch mechanism [6].

4 P e r f o r m a n c e A n a l y s i s

In this section, we analize the performance of the mul t is t reamed model based
on the da ta extracted through several simulations. The experiments simulate

1013

different configurations of the real machine and the mul t is t reamed machine.
The tests started with a fetchwidth equal to 2 up to 8 instructions per cycle.

We can point out that in all situations the cycles with no dispatch are less
than for the real machine. The no dispatch decreases with the increase of fetch-
width in the real machine. The percentage decreases from 40.50%, for fetchwidth
equal to 2, to 39.30% in configurations with a fetchwidth equal to 8 instructions,
as showed in the figure 2.

In the Mulflux machine, this percentage increases join to the increase of fetch-
width. This occur because the mispredictions and resources conflict increase too.
Other studies have been developed to research more accurated branch predictors
and the ideal balancing of the architectures resources to support a new and more
powerfull parallelism through the pipeline. The sum of the three components,
which causes no dispatch in both machines, correspond to in the percentage of
cycles with no dispatch.

Fig. 2. No Dispatch in Mulflux with 2 Streams and Real Architecture

The divergency between the components is impor tan t in the Real machine.
The occurency of an empty queue is the critical component that contributed to
the existency of no dispatch cycles. This is not the case for the Mulflux machine.
It is predictable that when there are more instructions ready to dispatch, the
number of functional units becomes the main problem. This is true in the Mulflux
architecture.

The occurency of empty queue in the Real machine decrease from 30.05%,
with fetchwidth equal to 2 to 21.79%, with fetchwith equal to 8 instructions per
cycle. In the Mulflux, the results obtained are 7.73% and 7.80% for the same
configurations perhaps applying multiple streams.

Fig. 3. Components that Causes Emptying Queue in Mulflux with 2 Streams and Real
Architecture

1014

The figure 3 presents the efficiency of the multistream model to reduce the
empty queue occurrency. In the Mulflux, the stream interruptions are up to
5.24%, but in the Real architeeure this percentage reach 27.07%.

The multistreamed model enables a reduction around 74.24% of empty queue
occurrency. The effect of stream interruptions were reduced by 80.64% in the
Mulflux machine. Another important aspect is that resource conflict and spec-
ulation depth must be considered with more attention when the mult is tream
model is used.

4.1 Impact Analysis of Multistream Implementation

Before the implementation of the multistream model, we must consider the im-
pact in the close blocks, and also the fetchwidth, resource conflicts and specula-
tion depth.

In the previous results we did not consider the instruction cache misses. The
use of the multistream model could generate more cache misses and the fetch
latency can be important . So, the potential of the mechanism can be reduced.
Then, we performed some experiments using a instruction cache with the same
delay cycles as those of the Intel Pentium to observe the performance under real
conditions. In this cache, the miss latency is equal to 3 cycles for the L1 cache,
and 13 cycles when the miss causes an access to the L2 cache.

Also, for the last results we consider that the fetchwidth was multiplied by
the number of valid stream structures. If the fetchwidth is equal to 8 instructions
and the number of valid streams (initialized structures) is equal to 4 then the
total and the real fetchwidth is equal to 32 instructions per cycle. This was made
in the last experiments.

To avoid problems with the cache size and its configuration we have proposed
a new strategy called Dynamic Split Fetch - (DSF) which consists in spliting the
total fetchwidth between the valid stream structures [6]. In this case, if there are
4 valid streams and the fetchwidth is equal to 8 instructions per cycle, will be
fetched 2 instructions for each valid stream and the fetchwidth is kept up to 8
instructions.

4.2 O v e r a l l Performance

In this section we discusse the overall performance delivered by the multi-
streamed mechanism and compare it with real architectures performance. Thus,
we could observe the aspects discussed in the last section.

Increasing the number of functional units delivers more speed up for the
multistreamed architecture as show in the figure 4.

However, we can observe that no dispatch cycles increases even when the
number of functional units increases. This is due to the speculation depth that
was kept for all configuration with a single branch unit. The machine considered
has n generic functional units and only one branch unit that could stall the
dispatch of instructions when saturated. This is showed in the graphic 5.

1015

Fig. 4. Multistream Speed up when the Number of Functional Units Increase

Fig. 5. Components of No Dispatch when Functional Units Increases

We made several simulations variating the number of functional units for the
mul t i s t reamed architecture. We wanted to show that the resource conflict is the
main factor in the l imitation of the performance in this machine like in an ideal
machine.

We performed experiments with 5 machines consisting of: a Mult is t ream with
perfect icache, a Mult is tream with normal icache, a Mult is t ream with normal
icache and DSF (Dynamic Split Fecth), a Real machine with perfect icache and
a Real machine with normal icache.

The results that will be presented comes from the same configurations for
each machine [6]. We used 2 streams structures to the mul t i s t ream machines. All
machines have a fetchwidth equal to 8 instructions per cycle, and a fetch buffer
and instruction queue with 16 and 32 entries respectively; a dispatchwidth equal
to 8 instructions; 8 functional units, each one with 8 reservation stations; 1
branch unit with 8 reservation stations; 8 bus results and reorder buffer with 64
entries.

The figure 6 shows the no dispatch cycles expended for each machine. The
best case is the mul t is t ream machine with perfect icache and using a total fetch-
width that consists in multiplying the fetchwidth by the number of valid s t ream
structukes. We could observe that the Mulflux with normal icache has a per-
centage of no dispatch cycles similar to the Mulflux with normal icache using
DSF. The division of the fetchwidth by each valid s t ream do not ha rm the per-
formance of the considered cases. The Real machines expend more cycles with
no dispatch.

The figure 7 shows the components that cause no dispatch cycles in each
machine. In the mulst is t ream machines, the worst component is the resource
conflict (around 45.00% of the no dispatch cycles). In the Real machines the
emptying queue result around 60% of the occurency of no dispatch. In the second

1016

Fig. 6. Percentage of No Dispatch

figure 7, we could notice the reduction of the stream interruptions in mult is tream
machines.

Fig. 7. No Dispatch Components and Emptying Queue Components

5 C o n c l u s i o n s a n d F u t u r e W o r k s

The superscalar speed up is directly proportional to its IPC (Instructions per Cy-
cle). It is desirable to obtain a speed up proportional to the number of functional
units present in the architecture. However, the constant flow interruptions flush
the instruction queue and decrease the number of ready instructions which could
be dispatched. Thus, the IPC is reduced drastically because of the instruction
queue flushing and a desirable speed up could not be achieved.

The multistreamed model allow a reduction around 74.24% of empty queue
occurrency. The effect of stream breaks was reduced by 80.64% in the Mulflux
machine. Another important aspect is that resource conflict (structural hazards)
and speculation depth must be considered carefully when the mult is tream model
is used.

In our experiments, the instruction cache performed similar performance in
both cases: multistream and real architectures. The use of Dynamic Split Fetch
brings a worthwhile strategy that allows to keep the number of icache buses.

Even if we reduce the occurency of empty instruction queue, we have verified
that the decrease of no dispatch cycles do not decrease as we wanted. In the
Mulflux machine the no dispatch cycles is between 28.99% and 33.11%, while in
the Real machine it is between 39.30% and 40.50%. The increase of instructions
flow in the instruction queue generate a major resource conflict like in the ideal
architecture. Increasing the number of functional units but keeping the specu-
lation depth did not allow good results in our experiments. Because of this, we
are looking for resource balancing and ideal speculation depth in multistreamed

1017

architectures. The saturation of branch unit could come late the instructions
execution.

Remarks to the next step could be pointed here. We are looking to intro-
duce new instruction cache mechanisms in our simulations. Such mechanisms
have been proposed and we believe that they will be used in next generations
of superscalar microprocessors. Also, after to get a good configuration of our
architecture we plan to compare it with other alternatives like trace proces-
sors [8], simultaneous multi threading [2], multisealar [7] and other alternatives
which certainly will be suggested.

Such comparison is very important to get an idea about the potential of
such architecture and its complexity of implementat ion. The fourth generation
of microprocessors can not be predicted at the momen t but many new schemes
have been proposed. The question is how to increase the performance of current
microprocessors and how to obtain more machine parallelism using efficiently
the increasingly chip density ?

References

1. Chaves Filho,Eliseu M. et al. A Superscalar Architecture with Multiple Instruction
Streams. In: SBAC-PAD, VIII. Recife, Agosto 1996. P roceed ings SBC/UFPE,
1996, pp 67-77 (in portuguese).

2. Eggers, Susan J. e t a] . Simultaneous Multithreading: A Plataform for Next-
Generation Processors. [EEE Micro, V.17, n.5, Sep/Oct 1997.

3. Fromm; Richard. Branching on Superscalar Machines: Speculative Execution of
Multiple Branch Paths Project Final Report. December 11, 1995. CS 252:Graduate
Computer Architecture.

4. Yeh, Tse-Yu; Patt, Yale N. Two-Level Adaptive Training Branch Prediction. In:
ANNUAL INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 24.,
1991. Proceedings . . . New York: ACM, 199I. p. 51-61.

5. Yeh, Tse-Yu; Patt, Yale N. A Comparison of Dynamic Branch Predictors that use
Two Levels of Branch History. In: ANNUAL INTERNATIONAL SYMPOSIUM
ON COMPUTER ARCHITECTURE, 20, 1993. Proceedings . . . New York: ACM,
1993. p. 257-266.

6. Santos, Rafael R. dos. A Mechanism]or Multistreamed Speculative Instruction Fetch.
Porto Alegre: CPGCC/UFRGS, 1997 (M.Sc. Thesis - in portuguese).

7. Sohi, G. S.; Breach, S. E.; Vijaykumar, T. N. Multiscalar Processors. Computer
Architetcure News, New York, v.23, n.2, p. 414-425, 1995.

8. Smith, James E,; Vajapeyam, Sriram. Trace Processors: Moving to Fourth-
Generation. C o m p u t e r , Los Alamitos, v.30, n.9, p.68-74, Sep. 1997.

9. Talcott, Adam R. Reducing the Impact o] the Branch Problem in Superpipelined
and Superscalar Processors. Santa Barbara: University of California, 1995 (Ph. D.
Thesis).

