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Abst rac t .  This paper presents an overview of the activities carried out 
within the ESPRIT project OCEANS whose objective is to investigate 
and develop advanced compiler infrastructure for embedded VLIW pro- 
cessors. This combines high and low-level optimisation approaches within 
an iterative framework for compilation. 

1 I n t r o d u c t i o n  

Embedded applications have become increasingly complex during the last few 
years. Although sophisticated hardware solutions, such as those exploiting in- 
struction level parallelism, aim to provide improved performance, they also cre- 
ate a burden for application developers. The traditional task of optimising as- 
sembly code by hand becomes unrealistic due to the high complexity of hard- 
ware/software. Thus the need for sophisticated compiler technology is evident. 

Within the OCEANS project, the consortium intends to design and imple- 
ment an optimising compiler that utilises aggressive analysis techniques and 
integrates source-level restructuring transformations with low-level, machine de- 
pendent, optimisations [1, 14, 16]. A major objective of the project is to provide a 
prototype framework for iterative compilation where feedback from the low-level 
is used to guide the selection of a suitable sequence of source-level transforma- 
tions and vice versa .  Currently, the Philips TriMedia (TM1000) VLIW processor 
[8] is used for the validation of the system. 

In this paper, we present the work that  has been carried out during the 
first 15 months since the project started (September 1996). This has largely 
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Fig. 1. The Compilation Process. 

concentrated on the development of the necessary compiler infrastructure. An 
overall description of the system is given in Section 2. Sections 3 and 4 present 
the high-level and the low-level subsystems respectively, while the steps that  
have been taken towards their integration are highlighted in Section 5. Finally, 
some results from the initial validation of the system are shown in Section 6, 
and the paper is concluded with Section 7. 

2 A n  O v e r v i e w  o f  t h e  O C E A N S  C o m p i l e r  S y s t e m  

The OCEANS compiler is centred around two major components: a high-level 
restructuring system, MT1, and a low-level system for supporting assembly lan- 
guage transformations and optimisations, SALTO, which is coupled with SEA, 
a set of classes that  provides an abstract view of the assembly code, and tools 
for software pipelining (PILo) and register allocation (LoRA). Their  interaction 
is illustrated in Figure 1 which shows the overall organisation of the OCEANS 
compilation process. In particular, a program is compiled in three main steps: 

- First, MT1 performs lexical, syntactical and semantic analysis of a source 
FoRTaAN program ( F i l e .  f ) .  Also, a sequence of source program transfor- 
mations can be applied. 

- The restructured source program is then fed into the code generator which 
generates sequential assembly code that  is annotated with instruction identi- 
fiers used to identify common objects in MT1 and SALTO, and a file written 
in an Interface Language (File. IL) that  provides information on da ta  de- 
pendences and control flow graphs. 
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- Finally, SALTO (coupled with SEA) performs code scheduling and register 
allocation. At this step guarded instructions are created and resource con- 
straints are taken into account. 

The above process is repeated iteratively until a certain level of performance 
is reached. Thus, different optimisations, both at the source-level and the low- 
level, are checked and evMuated. An important  feature of the system is the exis- 
tence of a client-server protocol that  has been implemented in order to provide 
easy access to the compiler over the Internet, for all members of the consortium. 
MT1 and the code generator are located at Leiden, and SALTO, SEA, PILO and 
LoRA are located at Rennes. 

3 H i g h - L e v e l  T r a n s f o r m a t i o n s  

Optimizing and restructuring compilers incorporate a number of program trans- 
formations that  replace program fragments by semantically equivalent fragments 
to obtain more efficient code for a given target architecture. The problem of find- 
ing an opt imum order for applying them is commonly known as the phase order- 
ing problem. Within the MT1 compilation system [5] this problem is solved by 
providing a Transformation Definition Language (TDL) [3] and a Strategy Spec- 
ification Language (SSL) [2]. Transformations and strategies specified in these 
languages can be loaded dynamically into the compiler. 

3.1 Transformation Definition Language 

The TDL is based on pattern matching. The user can specify an input pattern, 
a transformed output pattern and a condition when the transformation can be 
legally and/or  beneficially applied. Patterns may contain expression and state- 
ment variables. When a pattern is matched against the code these variables are 
bound to actual expressions and code fragments, respectively. The expression 
and statement variables can be used in turn in the specification of the output  
pattern and the condition. This mechanism ~llows one to specify a large number 
of transformations, such as loop interchange, loop distribution or loop fusion. 
However, it is not powerful enough to express other important  transformations, 
such as loop unrolling. Therefore, the TDL also allows for user-defined functions 
in the output  pattern. User-defined functions are the interface to the internal 
da ta  structures of the compiler. In this way, any algorithm for transforming and 
testing code can be implemented and made accessible to the TDL. 

3.2 Strategy Specification Language 

The order in which transformations have to be applied is specified using a Strat- 
egy Specification Language (SSL). It allows the specification of an optimising 
strategy at a more abstract level than the source code level. This language 
contains sequential composition of transformations, a choice construct and two 
repetitive constructs. 
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Fig. 2. SEA class hierarchy. Fig. 3. Typical usage of SEA classes. 

An IF statement consists of a transformation that acts as a condition, a 
THEN part  and an optional ELSE part. The transformation in the condition can 
be applied successfully or not. If it is successful, the transformations in the THEN 

part  are to be executed. Optionally, in the ELSE part a list of transformations 
can be given which should be executed in case the transformation matched but 
was not applied successfully due to failing conditions. 

The two repetitive constructs consist of a transformation to be checked and a 
s tatement  list to be executed if the condition is true or false, respectively. They  
consist of a WHILE-ENDWHILE and a REPEAT-UNTIL construct. 

Examples of how to specify strategies in SSL can be found in [2]. 

4 Low-Level Optimisations 

Low-level optimisations are built on the top of SALTO, a retargetable system for 
assembly language transformation and optimisation [15]. To facilitate the im- 
plementation of optimisations, a set of classes has been designed, SEA (SALTO 
Enhanced Abstraction), that provides an abstract view of the assembly code 
which is more pertinent to the code scheduling and register allocation problems. 
The most important  features of SEA are that  it allows the evaluation of various 
code transformations before producing the final code, and that  it separates the 
implementation of the global low-level optimisation strategy from the implemen- 
tat ion of individual optimisation sequences. 

The SEA model contains two kinds of objects: 

c o d e  f r a g m e n t s  The following objects can be used. seaINST: an instruction 
object; seaCF, an unstructured set of code fragments; seaSCF, a structured 
subset of control flow graph with a unique entry point; seaSBk, a superblock; 
seaBBk, a basic block; and finally, seaLoop, a structured piece of code that  
has loop properties. Figure 2 illustrates the corresponding class hierarchy. 

t r a n s f o r m a t i o n s  to be applied to subgraphs. All transformations are charac- 
terized by the following main methods: preCond()  returns the set of control 
flow subgraphs that  qualifies for the transformation; a p p l y ( )  applies the 
transformation to a given subgraph, and finally, g e t S t a t u s  () that  returns 
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the status of the transformation after application (success or failure) and 
the reason for the failure. 

The usage of the SEA objects is shown in Figure 3. A transformation is tried on 
a cloned piece of code, then according to performance or size criteria one of the 
solutions found is chosen and propagated to the low-level program representation 
using the r ebu•  () method. 

The optimisations currently available within SEA are :  register renaming, su- 
perblock construction [12], guard insertion [11], loop unrolling (also available at 
the high-level), local/superblock scheduling [12], software pipeline, and register al- 
location. The implementation of software pipeline is based on the tools PILO [17] 
and LORA [9] which generate a modulo scheduling of the loop body. 

5 I n t e g r a t i o n  

5.1 T h e  I n t e r f a c e  L a n g u a g e  

In order to transmit  information between the various components of the com- 
piler, an Interface Language (IL) was designed. This allows the propagation of 
information, such as data dependences and loop control data, from MT1 to 
SALTO, as well as feedback information from the scheduled code back to MT1. 

An IL description consists of three sections: a list of keywords that  specifies 
the list of attributes that  can apply to an object; a default level setting that  
indicates the type of code the objects belong to; and a list of object references 
which specify the nature, contents and attributes of an object. More details on 
the IL can be found in [7]. 

5.2 I n f o r m a t i o n  F o r w a r d e d  a n d  F e e d b a c k  

Data dependence information is propagated from MT1 to SALTO and is used 
for memory disambiguation. The feedback from SEA to MT1 (file R e p o r t .  IL in 
Figure 1) contains information on the code structure, the basic blocks, as well 
as a record of the transformations that  were applied. Data related to each basic 
block include the total number of assembly instructions, the critical path for 
scheduling the code, the number of cycles of the scheduled code, and a grouping 
depending on the nature of the instructions. Examples can be found in [7]. 

MT1 uses the feedback from SALTO in order to build an internal da ta  struc- 
ture that  can be accessed by the TDL and the SSL by means of user-defined 
functions in the condition that  can check for the identity of a code fragment and 
suggestions made by SALTO. When such a transformation is used as the condi- 
tion for an iF construct in the SSL, we are able to select the transformations we 
want to apply to this fragment. 

Initially, MT1 compiles the program without performing any restructuring 
and the compiled program is scheduled by SALTO. SALTO identifies the code frag- 
ments that  can be improved. It reports its diagnostics to a cost model that  makes 
a decision on what kind of restructuring could be performed next. Then, MT1 
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reads the suggestions for restructuring and performs these. It is intended that  a 
transformation sequence for a given program fragment is selected by following a 
systematic approach for searching through a domain of possible transformations. 
First, each different transformation is applied once and then the same follows 
for each branch of the tree. The search space is minimised by using a threshold 
condition for terminating branches that are not likely to yield an opt imum result 
in their descendants. Some preliminary experiments using this strategy can be 
found in [10]; further work is in progress. 

6 V a l i d a t i o n  o f  t h e  I n i t i a l  S y s t e m  

In order to validate the compiler, four public domain multimedia codes have been 
selected [4]. These are a low bit-rate encoder/deeoder for H.263 bitstreams, an 
MPEG2 eneoder/decoder, an implementation of the CCITT G.711, G.721 and 
G.723 voice compression standards, and the Persistence of Vision Ray-Tracer for 
creating 3D graphics. 

At the high-level, initial experimentation aimed at identifying those trans- 
formations that  appear to be the most crucial in optimising code scheduling. In- 
spection of the benchmarks revealed that they contain many imperfectly nested 
~louble or triple loops with much overhead due to branch delays. In order to deal 

'ith such loops, a transformation that  converts the imperfectly nested loop into 
single loop has been suggested [13]. 

At the low-level, the initial validation of the system has been carried out by 
applying four different optimisation sequences: 

- So is the simplest sequence. First, the code is scheduled locally and then 
register allocation is performed. 

- Sl(U) is based on unrolling the loop body u times. The unrolled body is 
transformed into a superblock by guarding instructions. As in S0, register 
allocation is performed after local scheduling. 

- $2 (u) is similar to $1 (u) except that  register allocation is performed before 
scheduling. This usually requires less registers, allowing this sequence to 
succeed when $1 (u) fails due to a lack of registers. 

- $3 consists in applying a software pipelining algorithm. 

The above optimisation sequences were validated and indicative results, us- 
ing the most-time consuming loops of H263, are illustrated in Figure 4. Every 
optimisation sequence has been applied to each of the six selected loops and the 
size of the resulting VLIW code and the speed of the loop, i.e. the number of 
cycles per iteration, were computed. From the table, a well-known result is ob- 
served: the more we unroll a loop, the faster it runs - -  cf. columns $1 (2), $1 (3), 
$1 (4) - -  but at the expense of a larger code size. As expected $2 (2) yields too 
poor performance and large code because of the presence of false dependences. 
Finally, software pipelining (Sa) gives the best performance but  at the expense 
of a very large increase in code size. Note that  this transformation failed with 
the last loop, due to a lack of registers. 
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Opt imisa t ion  sequences 
So S1(2) S1(3) $1(4) S2(2) S3 

speed 8 6 5 5 7 3 
size 8 12 16 20 13 75 

speed 9 7 6 6 10 5 
size 9 13 18 22 19 55 

speed 12 8 8 7 12 6 
size 12 16 24 28 24 121 

speed 15 10 9 9 16 6 
size 15 20 28 34 31 172 

speed I 15 l0  10 8 17 7 
size 15 19 29 33 33 179 

C code 

for (i=xa;i<xb; i++) 
{ d[i]=s[i]*om[i]; 
} 

for (i=xa; i<xb; i++) 
{ d[i]+=s[i]*om[i]; 
} 

for (i=xa; i<xb; i++) 
{ dp[i]+=(((unsigned int) (sp[i] 

+sp2[i]+l)) >>l)*om[i] ; 
} 

for (i=xa; i<xb; i++) 
{ dp [i] += ( ( (unsigned int) (sp [i] + 

sp[i+l]+l))>>l)*OM[r [j] [i] ; 
} 

for (i=xa; i<xb; i++) 
{dp [i] += ( ((uint) (sp [i] +sp2 [i] + 

sp [ i + l ]  +sp2 [ i + l ]  +2) ) >>2) *ore [ i ]  ; 
} 

speed 19 13 12 11 30 - f o r  (k=0; k<5; k++) 
size 19 25 36 44 59 - { x i n t [ k ] = n x [ k ] > > l ;  x h [ k ] = n x [ k ]  ~ 1; 

y i n t [ k ] = n y [ k ] > > l ;  y h [ k ] = n y [ k ]  ge 1; 
s [k] = s r c + l x 2 *  ( y + y i n t  [k] ) +x+x in t  [k] ; 

} 

F i g .  4. T ime  consuming loops ext rac ted  from H263. 

In most embedded applications, it is necessary to answer globally questions 
such as: "Given a maximum code size, what is the highest performance that  
can be achieved?", or "Given a performance goal, what is the smallest code 
size that  can be achieved?". Within the OCEANS compiler this trade-off is 
evaluated quantitatively by applying a novel compiler strategy. Thus, the choice 
of the most suitable optimisation is made a poster iori ,  when the impact of each 
possible transformation is known. More details can be found in [6]. 

7 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The previous sections outlined the current status of the OCEANS compiler. 
Although the results obtained so far, using the initial prototype, are satisfactory 
(comparing with a production compiler), the implementation work still continues 
on both the high and low levels. A major part of the work during the next months 
and until the end of the project is devoted to the integration of the two levels, 
the development of a prototype framework for iterative compilation, and its 
experimentM evaluation and tuning. Finally, it is intended that  the system be 
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made publically available in due time (at the moment SALTO is available on 
request). 
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