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The representation of partial order semantics as an equivalence relation on interleaving sequences
extends the expressive power of interleaving semantics. A specification formalism called
existential specification is introduced: a formula is interpreted over equivalence classes of
sequences by asserting that some (at least one but not necessarily all) sequences from each
equivalence class satisfy a given property. It differs from the more common universal
specification, which is interpreted over all sequences in all classes. Its advantage over other
formalisms that deal with partial order executions lies in its simplicity: any syntax that is defined
over interleaving sequences, €.g., linear temporal logic, can be adopted. It is shown how under
an appropriate semantical construction, an exact existential specification of a program (i.e., each
property of the program expressed using the formalism is a consequence of this specification) can
be given. Moreover, under such a construction, no information about the program is lost by
choosing exact existential specification rather than exact universal specification; it is possible to
generalise by means of a proof rule an exact existential specification into an exact universal
specification. Deducing an exact existential specification from an exact universal specification is
also possible. This provides a relatively complete proof system for existential specification.
Applications of these results to compositionality are discussed.
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1 Introduction

There has been a long lasting debate about the use of partial order semantics versus using interleaving
semantics to model concurrent programs. Supporters of interleaving semantics often claim that this model
includes all the information needed to be expressed about a program, and that partial order semantics adds
no important extra information. Supporters of the partial order model show how certain properties are better
described and proved using partial order semantics.

Representing partial order execution as an equivalence class of interleaving sequences (or equivalently,
traces) provides a way to connect the two models. Using this model, there is acommon paradigm of properties
that requires that at least one interleaving sequence from each equivalence class satisfies some conditions.
We shall call this existential specification, as opposed to the more common universal specification. Using
existential specification is sometimes more convenient than asserting over all the interleaving sequences, as
some interleaving sequences represent the desired property better than others.

One example is serializability of database programs [23], where each execution sequence is supposed
to be equivalent to a sequence in which the transitions are executed one after the other. Other examples
include specifying algorithms such as Chandy and Lamport’s global snapshot algorithm [5], recovery from
faults based on this algorithm [24], and layering of concurrent programs [8]. Program verification methods
can exploit this paradigm by allowing proofs of the properties of programs using intermediate assertions
that apply only to the states of these representatives [16, 29], while in model checking it is used to reduce
the size of the checked structure [30, 11]. Since existential specification covers a wide range of properties
and can use a simple formalism such as linear temporal logic (LTL), it can be considered as an alternative
to more powerful specification languages for partial order semantics [27, 15, 26].

Expressing properties of representatives rather than all the execution sequences was recognised in [15].
There, it was described as a class of properties embedded in the more powerful logic ISTL" . In this paper,
an alternative representation of this class of properties using a simpler framework that uses the syntax of
LTL is suggested, and is further studied.

This paper deals with some basic questions about representing properties using existential specification,
and its interrelation with the more familiar universal specification. The ability to specify exactly all the
executions of a given program using existential specification is studied. Such a specification is desirable
as all the properties of the program that are expressible in this formalism are consequences of it. An exact
specification is often used for completeness proofs [19] and is especially important for compositional proof
methods [4]. Itis shown that provided that the semantical construction satisfy certain requirements, an exact
existential specification can be given.

We prove that it is possible to conclude from an existential specification properties of all the sequences:
this arises when one wants to generalise or conclude from an existential property a universal property of the
program. It is shown that under an appropriate construction, if an exact existential specification of a program
is given, it is possible to conclude from it an exact universal specification. This is especially beneficial for
proof rules that exploits existential specification in some intermittent stages to achieve compositionality.
Another motivation is that often the property or the program specified is best presented or proved using
existential specification, but universal properties of the program ought to be provable from it.

In Section 2, some preliminary definitions concerning modeling and asserting about programs are
reviewed. Then, existential satisfaction is formally presented. In Section 3 some examples of using
existential specification for compositional verification are given. In Section 4, exact existential specification
of a program is defined and shown to be sensitive to the choice of representing the states. Section 5
provides conditions for semantical constructions that allow exact existential specifications of programs. A
construction of such structures is also presented. In Section 6, proof rules are given for generalising from an
existential specification into a universal specification. It is shown that using these rules, an exact existential



specification can be generalised into an exact universal specification.

2 Universal and Existential Satisfaction

2.1 Interleaving Semantics and Linear Temporal Logic

A program P is a finite set of named operations T', a finite set of variables V, and an initial condition © (a first
order predicate). Each operation 7 is a triple (/. ,en,,f,) such that [, C V is the set of 7’s local variables,
i.e., the only variables that 7 can examine and change, en. is its enabling condition, i.e., a first order predicate
with free variables from /. which determines when 7 can be executed, and f, is a transformation on 7’s local
variables (which is naturally extended to transform the entire set of program variables V' by not changing
the variables which are not in /). An operation 7 will be denoted by en, — I, := f.(I,). The assignment
will not mention explicitly variables from [, that are not changed, e.g., writingz = y — z 1= z + 1
instead of z =y — (z, y) :=(z + 1, y).

A state is an assignment (interpretation) of values to the variables. In program verification, the states
are usually interpretations of the set of program variables. However, by adding auxiliary variables [7] to
the program one can add additional information to each state such as the sequence of operations executed
so far. An interleaving sequence is a finite or infinite sequence of states. A program P generates a set of
interleaving sequences ¢ = & €1 &, . .. such that § satisfies ©, and for each 0 < ¢ <| ¢ | (| ¢ |= w if the
sequence is infinite), there exists some operation o; € T such that §;_; satisfies eng,;, and & = f,,(€i-1).
This sequence is finite iff its last state &, does not satisfy en, for any 7 € T. The sequence of operations
ay oy . .. corresponding to £ is called the generating sequence of &.

Let I C T x T be a symmetric and irreflexive relation called the independence relation, satisfying that
(a, B) € I'iff I, Nlg = ¢. (Notice that I, N Iz = ¢ is usually a necessary condition for o and S to be
independent but not always a sufficient condition. However, one can always force any two such operations
to be dependent by adding to both sets I, and Ig a fresh common dummy variable.) If (71, 72) € I, we say
that 7, and 7, are independent, otherwise they are dependent. The independence relation I identifies when
it is possible to commute operations.

Requirements from execution sequences called ‘justice’ and ‘fairness’ [22] are often imposed, so that
only those interleaving sequences that satisfy them are considered as representing the executions of a
program. We choose the following constraint:

Definition 2.1 The execution sequences of a program P are exactly the interleaving sequences whose states
are interpretations of P’s variables and satisfy the following justice property: if from some state in the
Sequence, an operation « is enabled, then an operation that is dependent on « (possibly « itself) will occur
eventually in the sequence. The set of execution sequences of P is denoted € [P].

Linear temporal logic [28] is a formalism that can be used to specify concurrent programs. As usual in
LTL, O% means that ¢ holds in every future state in a sequence, O% means that ¢ will hold in some future
state, /¥ means that ¢ will continue to hold until ¥ holds, ¥ U% means that if either ¢ holds in every
future state or until ¥ holds, and (¥ means that ¢ holds starting with the next state. Past temporal modals
that correspond to the above future modals also exist. For example, ¥S% (which is the past version of ¢U/¥)
means that ¥ holds continuously since a state in the past in which ¥ held. The connectives ‘—’, ‘V’, ‘A,
‘=7, ‘>’ and the (rigid, i.e., state-independent) quantifiers ‘V’ and ‘3’ are also used. The predicate T holds
always, while F never holds for every state or sequence.

In [4], a binary modal operator C called chop was added to LTL. The formula ¥C¥ is satisfied by an
interleaving sequence if it can be partitioned into a prefix satisfying ¥ and a suffix satisfying ¥ or if the



entire sequence satisfies ¢. An LTL formula ¥ is interpret over a pair of an interleaving sequence ¢ and an
index 7 that designate the starting state in the sequence from which the formula needs to be satisfied. This is
denoted (&, 7) = . An interleaving sequence ¢ satisfies an LTL formula ¢ iff (¢, 0) |= ®. This is denoted
also as ¢ = ¢. An LTL formula is valid if it holds for each sequence of states. A past temporal formula
¥ is a formula that does not contain future modals. It is said to be end-satisfied [6] by a finite interleaving
sequence if it holds in its last state, i.e., (£, |£] —1) E ¥.

2.2 Trace Semantics

Partial order semantics can be represented in various ways. One of the most simple representations is
Mazurkiewicz’s trace semantics [21].

A history of a program P is a pair b = (Jp, v) where Jp is a state called the initial interpretation of
h, and v € T* satisfies that there exists a finite prefix of an execution sequence { = Jy J ... Jy, such that
v = qoay ...y IS its generating sequence. For each history h = (J, v), let the n** state J, in the above
sequence (which is a function of Jy and v) be denoted by fin,. This is called the final interpretation of h.

Two histories k = (J, v) and k' = (J, w) are equivalent (denoted h = h') if it is possible to obtain
w from v by repeatedly commuting adjacent independent operations. That is, if there exists a sequence
of histories (J, v1),(J, v2), ...,(J, va) With vy = v and v, = w, and for each 1 < 7 < n there
exist u,@ € T*, (o, 8) € I such that v; = uafi, viy1 = ufod. For example, if T = {a, 8, 7}
and I = {(e, f), (B, @), (7, B), (B, 1)}, then (J, aaBByy) = (J, afayBy) = (J, Bacyyp), but

. {J, aaByy) # (J, yyBaa). A trace is an equivalence class of histories, denoted by [J, w], where J is the

common initial interpretation and (J, w) is a member of the equivalence class.

Obviously, if A = (J, uaa) is a history of P, and (e, f) € I, then k' = (J, ufai) is also a history of
P. Moreover, fin, = fin,. Therefore, the final interpretations of all the histories in a trace are identical.
This permits defining fin, as fin, for any h € o. Concatenation between two traces o, = [J;, v] and
o2 = [J2, w], denoted 007, is defined when fin, = Ja, and is given by [J;, vw]. The relation ‘C’ between
traces is defined as o1 C o, iff there exists some o3 such that oj03 = o5. Itis then said that o) is subsumed
by o, or that oy is a prefix of 0. If, in addition, o3 contains a single operation, o3 is an immediate successor
of o 1-

An accessible trace of a program P is any trace obtained as the equivalence class of some of the histories
of P with an initial interpretation satisfying ©. The traces generated by a program P are traces o such that
for some p, po is an accessible trace of P. In the sequel we consider only traces generated by programs.

Two traces oy, o, are consistent, denoted o) {} o3, iff there exists o3 such that oy C o3 and 0 T 0'3.7

A run (partial order execution) IT of P is a maximal set of pairwise consistent accessible traces. The set
of all runs of a program P is denoted Rp. A set of traces Il is directed if for each two traces o, p € I, a
trace subsuming both traces exists in I'l. It is not difficult to show that each run I is also prefix closed and
maximal consistent.

For each run I, an interleaving sequence of traces is a sequence whose states are traces og oy 03 ... of
I, such that oo = [J, €] (an empty trace) for some J |= ©, and for each i > 0, 0; Cim Tit1.

Definition 2.2 An observation of Il is an interleaving sequence where for each o € 11, there exists some
o;, 1 > 0 such that o C o;.

The set of observations of IT is denoted obs(IT). Denote the fact that o, o' are both in o0bs(IT) for some
I1 € Rp by o = o'. This is obviously an equivalence relation on the observations of each program P.
Denote Ap = Uner, I, ie., the set of all the traces of the program P. If X is a set of traces, denote
1Z={c|3peZ(cCp)}(.e., all the traces subsumed by traces of X).
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It is shown in [17, 25] that the set of observations of a program are exactly the interleaving sequences
of traces satisfying the justice condition of Definition 2.1. Another important characterisation of the
observations of P is given by the following Lemma.

Lemma 2.3 An interleaving sequence of traces £ = o0y 0, ... of P is an observation iff for each trace
o € Ap, there exists some trace o; on &, such that either o C o; or o; ¥ o. In particular, this holds for
% = Ap. Moreover, this still holds if Ap is replaced by any set of traces X. such that | = Ap.

Proof. Follows from the definition of runs and observations. o

In order to reason about sequences of traces using temporal logic, it is necessary to map traces into states,
such that state predicates and functions symbols on state variables can be used to assert about traces, and
temporal operators can then be added to formalise sequence assertions. These state predicates and functions
can refer to information extracted from traces. For example, in specification and verification of concurrent
programs, often only the value of the program variables according to fin, (i.e., the values of the variables
after executing operations according to any history in o) are of interest.

Definition 2.4 A representation of traces is a mapping f : T — R from a class of traces T to a set of
elements (the domain of the representation) R. The function f is naturally generalised to sequences and
sets of sequences. Sequences of R-elements will be called R-sequences.

For trace semantics, £[P] = {f(obs(IT)) | IT € Rp} represents not only the set of observations of P,
but also the grouping of them into sets. Hence, if f maps traces into interpretations of program variables,
then £[P] = Upe rp E[P]. That is, E[P] is a single set containing all the sequences of £ [P] (but not the
partitioning). Denote by { & E[P] the fact that £ € Upegr, E[P].

2.3 Universal and Existential Satisfaction

Definition 2.5 An LTL formula ¥ is universally satisfied by a set of sequences M, denoted by M = @, iff for
each sequence { € M, { |= . This is extended to a set of sets of sequences A, denoting A |= ¢ iff M |= ¢
Jor each M € A. (Notice that the meaning of the relation ‘=" depends on the type of its first argument.)

Definition 2.6 An LTL formula ¥ is existentially satisfied by a set of sequences M, denoted by M I:SSO, iff
there exists some sequence £ € M such that £ = . This is extended to a set of sets of sequences A,
denoting A|=3<P iff M léso for each M € A.

Thus, £[P]E means that ¢ is satisfied by at least one representative observation from any equivalence
class of £[P], while £[P] k= ¥ ignores the equivalence relation by requiring that a formula is satisfied
by all the (representations of the) observations of P (i.e., all the sequences ¢ & E[[P] satisfy the formula
¥). Existential satisfaction is weaker than universal satisfaction with respect to the same formula, because
it demands that only representatives of the equivalence classes satisfy a formula, rather than all of them.
Denote by P I p the fact that one can prove using some proof system that £[P] |= u. Similarly, PR
means that E[P]Ey is provable.

The same LTL formula can be interpreted in both universal and existential ways. Henceforth, we will
mention explicitly the way a formula is interpreted over the semantic models. The expressive power [9, 18]
of existential and universal satisfaction is incomparable. This follows from the fact that if N and M are
two sets of sequences such that N C M, then there exists no formula which is satisfied existentially by N
but not by M (even in the cases where there exists such a universally satisfied formula), and no formula
which is satisfied universally by M but not by IV (even in the cases where there exists such an existentially
satisfied formula).



3 Applicability of Existential Specification

Existential specification is more appropriate than universal specification when some execution sequences of
a program correspond better than others to the property under consideration. In these cases, it is preferable
to specify the behaviour of at least one sequence out of each equivalence class.

Composing a program out of smaller segments often results in a program whose behaviour is best
described existentially. The reason for this is that by composing, concurrency is enhanced and the executions
of the segments are interleaved. However, some of the concurrent activities of different parts are independent
of each other. Thus, sequences in which a pair of activities are considered to execute separately one after
the other in one of either orders are equivalent to all the sequences in which occurrences of operations from
both activities are interleaved (and thus can be chosen as representatives to this larger set of sequences).

In order to achieve compositionality, we use program segments rather than programs. A program
segment differs from a program by not having its own initial condition. The pair (P, ©p) of a program
segment and a state predicate Op is treated similarly to a program with an initial condition ©p, except that
Op is not restricted to be satisfied by representations of empty traces. Thus, the execution of such a pair can
be modeled by runs that can start with a non-empty trace.

A trivial example is the composition of two terminating processes (segments) P and @ which do not
interact, i.e., all the operations from P are independent of all the operations of ). Then, E[(P || @, Opq)]
includes all the interleavings of the execution sequences from P and from (). However, each execution
sequence of (P || @, ®pg) is equivalent to an execution sequence that consists of some (finite) execution
sequence of E[(P, ©pq)] followed by an execution sequence of E[(Q, Bg)]. If (P, @pq)R ¥ AO(8p AOF)
(i.e., ¥ holds when P is executed, and P terminates with a state satisfying the state predicate 6p) and
(Q, ©g)R¥, and p — O (i.e., the condition O allows executing @ from any state in which the execution
of the segment P can terminate), then (P || Q, @pg )R ¥C%. This can be formalised as a proof rule:

(P, ®pg)R ¥ A O(8p A OF)
(@, O)FY y
8p — O (1)

(P | Q, ©pq)FeCy

The existential ‘P’ in the antecedents of this proof rule can be replaced with a universal ‘-, but not in the
consequence.

Although the above example may be considered simple and untypical, the following are examples of
general cases to which similar verification techniques can be applied. First, consider the composition
of CSP processes in the partial correctness proof rules of [2]. There, it is observed that composing the
segment S;; «; S, in one process with S3; @; S in the second, where « and @ are matching send and receive
communication commands and S . . . Sy are local segments, behaves as Sy; S3; a || & S2; Ss. The soundness
of the proof rules in [2] relies on the fact the set of executions in which the segments are executed in this
order contains enough representatives equivalent to all other executions, and that if at least one sequence
from each equivalence class satisfies the partial correctness property, then all the other sequences also satisfy
it.

Another way to compose programs is sequentially as communication closed layers [8]. There, two layers
S=1[S1||.--|| Sn]and M = [M; || ... || M,] are composed into a program S; M = [S;; My || ... ||
Sy M,]. If there is no possible communication between any .S; and M; for 1 < 2, 7 < n, the following



compositional proof rule can be formulated:

(S, @s)fan A 0(95 A OF)

(M, ©p)R 6

95 - @M (2)
(S; M, ©5)RnCS

This rule reflects the fact that for each equivalence class of (S; M, Og), there exists a representative sequence
in which M is executed entirely after S [15]. Itis interesting to observe that although the layered composition
and the concurrent composition are rather different, the structure of their proof rules is identical. Here as
before, the existential ‘P’ in the antecedents of the proof rule can be replaced with a universal ‘+’, but not
in the consequence. This simple compositional proof rule (compare [4]) allows one to compose provably
correct programs from layers. This rule does not restrict the formulas n and § (but it requires that S will
terminate and that the layers are compatible to execute one after the other). This extends proof rules for
layered programs that deal only with partial correctness [8] and total correctness [16]. Moreover, using the
results of Section 6, compositional completeness [31] of the rules (1) and (2) can be shown, i.e., that every
universal property of the program can be deduced from properties of S and M using this rule and pure
temporal logic reasoning.

The last example is to consider transforming a program which was designed to operate in a fault-
free environment into a fault-tolerant program that is able to recover from some expected faults [32]. A
transformation exists that adds recovery handlers to each such basic program. These handlers are based upon
taking snapshots [5] of the global state of the program from time to time and retracting upon the occurrence
of a failure to the last snapshot taken. For such a program transformation, a specification transformation
can be formalised, converting properties of the basic program into properties of its fault-tolerant version.
Thus, verification of the fault-tolerant version can be done compositionally, by proving properties of the
basic program, applying the specification transformation and doing some pure temporal verification. There
is no need to actually verify that the property is satisfied by using the code of the fault-tolerant version of
the program directly. Moreover, the verification of the specification transformation is done only once for all
possible programs [24]. The snapshot taken in some execution sequence does not necessarily correspond
to a global state that occurred in the past of the same sequence. However, there always exists an equivalent
sequence in which this is true. Thus, the outcome of the formula transformation can be conveniently given
by an existentially satisfied formula.

4 Exact Universal and Existential Specification of Programs

4.1 Exact Specification of a Program

Our aim is to determine the ability of a specification formalism to describe the structures (be it execution
sequences or equivalence classes of them) modeling the behaviour of each given program P. This means
that for any program P, there exists a formula ¥ such that

e all the structures modeling P satisfy ¢, and
e all the structures that satisfy ¥ represent executions of P.

We call such a formula ¥ an exact specification of P (with respect to the class of structures used to model
P) [19]. An exact specification ¢ of a program P in some formalism £ has the property that every formula
¥ € L that holds for P is a consequent of ¢, i.e., each structure that satisfies ¥ satisfies also ¥. This is
denoted ¥ = ¥.



This is especially important for achieving completeness of compositional verification methods [4, 31],
i.e., proofs in which segments of a program are verified separately and then the proofs are combined (instead
of proving each property with respect to the entire program). Completeness proofs of compositional methods
often use the following conditions:

1. It is known that for each pair of programs (or program segments) P; and P, there exist exact
specifications, say, ¥ and (¥, respectively.

2. It is possible to verify from ¢; and ¥, using some compositional proof rule [4] that ¥ holds for the
program P that is combined from P; and P,.

3. 1 is an exact specification of P (i.e., the composition of thc specifications preserves exactness).

Given the above conditions, the compositional proof method under discussion is compositional complete
relative to verification in £: since every property n of the combined program P is a consequence of Y, it
can be proved that P satisfies n by properties of P, and P, as follows:

(i) P ¥ (with ¥ an exact specification of P) is proved using the compositional proof rule from exact
specifications of P, and P,.

(ii) ¥ — nis proved in L.

Then, P + 5 follows by a simple deduction rule from (i) and (ii).
For universal specification we define exact specification over sets of sequences by ignoring the parti-
< tioning into sets.

“ Definition 4.1 A formula ®p is an exact universal specification of a program P if for each interleaving
“ sequence &, £ = ®p iff ¢ & E[P].

It was shown in [19] that for interleaving semantics, for each program P, there exists a temporal formula
“ that is satisfied exactly by its set of executions (i.e., universal satisfaction).

{ 4.2 Exact Existential Specification

For existential specification, similarly to exact universal specification, for each program P, there should
exist a formula that is satisfied exactly by equivalence classes of sequences of P. However, this is not as
straightforward to achieve as in the universal case. Consider the following definition:

{ | Definition 4.2 (first attempt) A formula Y p is an exact existential specification of a program P iff for each
set of sequences M, MEYp iff M € E[P].

L According to this definition, exact existential specification does not exist for any program This is
because one can add arbltxary new sequences to any set of sequences M such that M I:Tp, obtaining
M' ¢ E[P] such that M’ }=Tp (by Definition 2.6, since M’ C M). Thus, there is a need to limit the sets of
sequences under consideration.

Definition 4.3 (second attempt) A formula Yp is an exact existential specification of a program P iff for

each set of sequences M obtained as an equivalence class of sequences of some program, M }:Tp iff
M € E[P].




Again, it can be shown that it is not true that under all representations for each program there exists an
exact existential specification.

Example. Consider the most obvious representation, where each trace ¢ is represented by the values of the
program variables in fin,. We will show that there is a program P; for which there is no exact existential
specification. Consider the following two programs P; and P,: The program P; has two interdependent
operationsa:z =y — z:=z+ 1,and §: 2 > y — y := y + 1. The program P, has two independent
operations « : true — z := z + 1, and § : true — y := y + 1. Both programs are initiated with z = 0
and y = 0.

The programs have a mutual interleaving sequence, namely (z = 0, y = 0) — (z = 1, y = 0) 2,
(z=1,y=1)S (z=2,y=1) £, ..., denoted according to its generating sequence as (a3)*, where
u* means u occurring infinitely many times. That is, z and y are incremented in turn, one after the other.

However, for Pj, there is only one interleaving sequence, while for P, the operations can be selected to
repeat arbitrarily and all the sequences (3*aa*3)“ are equivalent. Hence, any formula such as

(A0 <z —y <1)AVz(Oz > 2) A
OVzVi((z=2zAy=t) = O((z=z+1Ay=t)V(z=2zAy=t+1))),

that is satisfied exactly by the the single interleaving sequence of Py, is not an exact existential specification
of P,. This follows from the fact that P,’s executions constitute a single equivalence class that properly
contains P;’s single interleaving sequence, and thus also existentially satisfies any such formula. -

Another problem of the attempted Definition 4.3 is that the phrase “set of sequences M obtained
as the equivalence class of sequences of some program” refers to either adding some program-dependent
information to the sequences, or the ability of showing that a set of sequences is obtainable as an equivalence
class of some program (by axiomatising the properties of such classes). Both of these are undesirable: adding
additional information about the program defies the very idea of giving the exact specification of a program
by a formula; alternatively, proving that an equivalence class corresponds to some program would require
additional effort.

Instead, using some appropriate representation, it should be possible to define a condition on sets of
representations sequences that limits their scope. Such a condition will later help to guarantee that if one of
the sequences in a set is obtained as the representation of an execution sequence of some program, the rest
of the sequences are exactly all the representations of sequences equivalent to it.

Definition 4.4 Let B be a condition (expressed in some predefined formalism) on sets of R-sequences. Such
a condition is called a bounding condition. Each set of R-sequences satisfying B is called a B-set.

A bounding condition B can be seen as a program-independent restriction, limiting the scope of sets
of possible R-sequences. (It may allow B-sets that contain sequences that do not represent execution
sequences of programs.) It is now possible to redefine exact existential specification using a bounding
condition.

Definition 4.5 A formula Y p is an exact existential specification of a program P with respect to a bounding

condition B if for each B-set M, MEYp iff M € E[P].

5 Obtaining Exact Existential Specification

In this section, we define some general conditions which guarantee the existence of a bounding condition
that facilitates exact existential specification. Then we construct a representation of traces that satisfies these
conditions. The following goals are considered:



e No additional information about the modeled program is needed other than the existential specification
(e.g., the independence relation).

e The construction should be obtainable using a syntactical transformation of the program, and then
applying a simple familiar semantical construction (such as in [21] or [17]). Such a transformation
should be as simple as adding to the program a set of appropriate auxiliary variables [7]. This will
allow existing verification methods to be adopted.

e Generalisation, i.e., inferring a universal specification from an existential specification, must be
possible. This is useful for the cases where an exact specification of a program (e.g., a result of
superimposing programs) is best given in existential form, but some interesting properties of the
superimposed program are of universal form.

5.1 Requirements from the Representation

We consider now some requirements that are imposed on any domain R of elements that represent a class
of traces.

R1 The relations ‘C’ and ‘C;»’ between traces must be isomorphically definable on the representations.
That is, for each pair of traces oy, o, of a program P, o1 C 03 & subsumed(f(01), f(o2)), where
subsumed(s, t) s the corresponding relation defined among representations. Similarly, o1 Cim 02 &
im_subsumed(f(a1), f(o2)).

. Thus, arepresentation function f that identifies all the traces with the same final interpretation by assigning
... them to the same R-element is inappropriate, as a triple o1 C 03 C 03, 01 # 03, with 01 and o3 having the

. same representation must not exist.

Since no additional information about the program need to be given together with an existential specifi-
+ cation we require:

R2 The predicates subsumed and tm_subsumed, defined over the representation elements, must be
program-independent. That is, if subsumed(s, t), then for every program P with traces o and p such
that f(c) = sand f(p) = t itmust be that o C p. (Notice that ‘C’ is program-dependent.) Moreover,
when subsumed(s, t) holds for some ¢ = f(c), where o € Ap, then s = f(p) for some p C o.
The same must hold for the relation ‘C;y,’ and the corresponding relation im_subsumed(s, t) among
R-elements.

If X is a set of R-elements, denote | X = {s | 3t € X A subsumed(s, t)}. Observe that by R2, for
any set of traces =, f(|Z) =| f(X). Denote by (()) the set of elements that appear on the sequence §.

In the sequel, we will fix B as the following condition on sets of R-sequences M: let { be some R-
sequence of M. Then, B is the condition that M includes exactly all the sequences of the form sps1 ;...
that satisfy the following conditions:

B1 —3s (subsumed(s,so) A (s # so) ) (i.e., so represents an empty trace),

B2 foreach 0 <1 <|¢&'|, si €L (),

B3 foreach 0 < i <|¢'|, im_subsumed(si_1, s;), and

B4 for each s € ((£)), there exists some 0 < i <|¢'| such that subsumed(s, s;).

Notice that B already contains an appropriate restriction on adjacent elements.

Lemma 5.1 If M is a B-set that contains an R-sequence £ = f(o) for some observation o of P, then M is
exactly the set of R-sequences {€' | &' = f(0') Ao = o'} (i.e, M is the set of R-sequences representing all
the observations of the same run as o).



Proof. Let £ be an R-sequence representing some observation o of some run I1 € Rp. Then, it is easy
to check that by R1 and R2, f(| (o)) =] (&) = f(II). Thus by B1—B4 and using the definition of
observations 2.2, the sequences in M are exactly the R-sequences representing the observations of I (i.e.,
the observations that are equivalent to o). 4

For convenience, we fix some variable c to refer to the ‘current state’ when appearing in a temporal
formula. The following notation will be used in the sequel:

o consistent(s, t) — holds iff 3r (subsumed(s, r) A subsumed(t, r)). Notice that if o1 {} o for some
program P, then consistent(f(o1), f(o2) ).

o [] — the set of elements satisfying ¥.

e Subsumedyp — a predicate transformer returning a predicate that is satisfied by exactly the elements
subsumed by elements satisfying ¢, i.e., [Subsumedp] =] [#]. Both ¢ and Subsumed,, are state
predicates (i.e., do not contain temporal modals). Subsumedy can be defined as 3t (subsumed(s, t)A
®(t) ) (where s is its free variables that stands for an R-element, i.e., Subsumedp(s) is a predicate
of s).

e Mazimal — The temporal formula

OVs (im_subsumed(c, s) — O(subsumed(s, c) V ~consistent(s, c) ).

The requirements R1 and R2 assures that the relations C, T, between traces are correspondingly
definable among their representations. The third requirement allows defining maximal sets of R-elements
that correspond to the runs of programs. It is not true that this is already guaranteed by the requirements R1
and R2: although the relation subsumed between representations corresponds to ‘C’ (and the maximality
of the runs is based upon the relation ‘C"), the representations of the traces Ap of a single run are embedded
in R with representations of other runs.

R3IfI1 € Rp for some program P, then the set of R-elements f(IT) satisfies that any representation which
immediately subsumes an element that belongs to f(II), is either itself in f(IT) or is inconsistent with
some element of f(IT). This is formally written as:

Vi ((t & f(IT) A Ir (im_subsumed(r, t) Ar € f(IT))) — s € f(II) ~consistent(t, s) ).

Lemma 5.2 A sequence of elements £ = so sy . ..from f(Ap) suchthatVi, 0 < i <|{|, subsumed(s;, siy1)
is a representation of an observation of P (i.e., £ = f(o) for some o € obs(I), I1 € Rp) iff = Mazimal.

Proof. Assume first that £ = f(o) for some observation o of I1. Lett € ((¢)) be an element satisfying
im_subsumed(t, s). If s = f(o) for o € II then by Definition 2.2, there exists a trace p € ((o)) that
subsumes o, and thus f(o) € ((¢)), and subsumed(s, f(p)). Otherwise, by R3 there exists some element
p € Il such that ~consistent(t, f(p)). Since o is an observation, there exists a trace p’ € {(0)) that subsumes
p. Ttis easy to see that since —consistent(t, f(p)) A subsumed(f(p), f(p’)), then ~consistent(t, f(p') ).

To prove the other direction, assume that § = Mazimal. Suppose that some operations ¢ is enabled
in P after some trace o of (o). Then, o[a] € Ap. According to Mazimal, there exists some element
t = f(p), p € {(€)) such thateither subsumned(f(c[c]), t) or ~consistent(f(o[al), t), and thus in the latter
case, ofa] ff p. From properties of traces it can be shown that both cases correspond to the fact that an
operation that is dependent on « (including « itself, in the former case) is executed in £ (and is contained in
f(p)). This condition on interleaving sequences of traces of P was shown in [17, 25] to be equivalent to the
definition of observations. Thus, £ represents an observation. "

The following theorem provides a useful form of exact existential specification:
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Theorem 5.3 If [¢] C f(Ap), and E[P] EMazimal A O9, then Mazimal A O% is an exact existential
specification of P with respect to B.

Proof. Let n = Maximal A Op. Let M be an arbitrary B-set such that M En. Then there exists an
R-sequence ¢ € M satisfying 7. Since [¢] C f(Ap), all the elements in ((£)) are R-elements representing
traces of P. From B3, for each adjacent elements s;, s;+1 € {((£)), im_subsumed(s;, si+1). Thus, from
Lemma 5.2 it follows that ¢ is an observation of P. It follows from Lemma 5.1 that all the sequences in M
represent observations of P as well. a2

For each program P, a predicate ¥p that includes exactly the elements of f(Ap) is obtainable by a
standard construction (it is used as a strongest invariant of a program in standard completeness proofs,
e.g., [20]). This predicate satisfies the conditions of Theorem 5.3. Thus, an exact existential specification
always exists. However, this predicate ¥p is not necessarily the best choice (or the only one) to be used for
exact existential specification, as for this choice of ¥p, M azimal A Opp is both an exact existential and an
exact universal specification for P.

In addition to the above requirements, it is also required that the representations must contain in a
retrievable form any information that is needed for formulating the intended program properties. (In
particular, the initial condition of the program must be interpretable over the representations.) For example,
if the assertion language specifies properties of a program by asserting on its variables, then the value of
these variables must be retrievable from the trace representation such that relation and functions on these
values can be defined. Alternatively, one might be interested only in formulating properties of the sequences
of operations occurred [13].

52 A Coristruction of a Representation

A construction of representations for traces that satisfy the requirements R1, R2 and R3 will now be
presented. Its main purpose is to demonstrate that these conditions are satisfiable. There is no claim that
this is the best or most efficient choice of representation for any other purpose.

It is sometimes convenient to represent a trace by denoting one of its histories. This is followed here,
when histories, rather than traces, are actually the objects that are represented directly. Predicates on
history representations, such as subsumed and consistent, can treat R-elements as traces, by using in their
definition an equivalence relation between R-elements which is defined for this purpose. Hence, there can
exist multiple representations for each trace and observation. This can be easily avoided by assigning unique
weights to the R-elements, and then representing each trace by the minimal R-element corresponding to a
history of a given trace.

A snapshot is finite set of pairs (v, a), where v is a variable and a is a value. It represents a valuation of
a set of variables. An event is an occurrence of some operation 7 € T'. It is represented as a pair containing
an operation name 7 and a snapshot that includes a pair (v, a), for each v € I,. For each such pair, a is the
value of v just after executing 7. (Notice that the name of the variable can be represented by a string or an
integer.)

An R-element is then a triple < J, E, U >, where J is a snapshot, E is a finite sequence of events
(underlined for convenience of reading), and U is a set of pairs, each one containing the name 7 of the
operation that is enabled after the occurrence of the events in F and its set of variables /.. The following
restrictions guarantee that each element in R represents a history of some program: (1) the set of variables
of the snapshot J must include at least all the variables that appear in the events E, and (2) each two events
with the same name have snapshots of the same variables. This agreement on the variables must also hold
for any event and an element of U with the same name of operation.

11



As an example, the program P, that appear in the example of Section 4 has an R-element

< {(2,0), (3,00}, {e {(z, 1), (1, 00}) (B, {(2,1), (3, )}) {e {(2,2), (3, D}), {(B: {z.3})} >, (3)
while P, has

<{(2,0), (v, 0} (o {(=z, D}) (B, {(, D} (e {(z, D}), {{ov, {z}), (B, w1} >.  (4)

Both R-elements correspond to the execution of three events: executing «, 3 and then « again.

The independence between pairs of operations can be easily translated using this representation into
a corresponding independence of their events: Two events are independent iff they have no variable in
common. For example, the occurrences of « and S in (3) are dependent, as they both have in common the
variables z and y, while the occurrences of « and 3 in (4) are independent.

It is thus possible to define the relations subsumed and im_subsumed using only the information
that is in the R-elements without additional information about the programs they represent. The third
component U, of an R-element s = f(o) is the set of operations enabled immediately after o. The relation
im_subsumed (and similarly subsumed) must reflect this fact by allowing im_subsumed(s, t) only if ¢
is obtained from s (or an element equivalent to s up to repeatedly commuting independent events) by the
occurrence of an additional event with the same operation name and the same set of variables as a member
of U,. This use of the third component is essential to guarantee that the requirement R3 holds.

6 Generalisation of Existential Specification

In this section, we show how under an appropriate representation of traces that satisfy the requirements R1,
R2 and R3 of Section 5 (such as the one given in Section 5.2), it is possible to generalise from an existential
specification into a universal specification. The proof system presented in this section also guarantees that
one can infer an exact universal specification of a program P from an exact existential specification of P.
This provides a framework that augment compositional proof rules such as (1) and (2) in Section 3 and
guarantees compositional completeness.

Lemma 6.1 If ¥ is a temporal property, then there exists a past temporal formula 7 that end-satisfies a
finite sequence £ iff € is a prefix of an interleaving sequence that satisfies ¢.

Proof. It is possible to construct for every property ¢ that is expressible in LTL an equivalent formula of
the form Safep A Livep, where Safey is of the form On, with n satisfying the above requirements. This
is the well known separation into safety and liveness [1]. The proof of this is very similar to [6, Section
4.11], where a related property is proved. This is based on using Gabbay’s separation theorem [10]. 4

We next assume that the first order logic we use for state formulas allows encoding finite sequences [3, 12].
Specifically, we assume that the following functions and predicate can be expressed:

Pref(x, t) the prefix of length : of .
Len(x) the length of x.
Seq(x, t, s) holds when s is the ¢** element in the sequence x (and 0 < i < Len(x)).

Lemma 6.2 If ¥ is a temporal property, then there exists a first order formula S tates(p(s) that holds exactly
for the R-elements s that appear in interleaving sequences that satisfy ¢.
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Proof. Let 7 be the formula constructed from ¢ in Lemma 6.1. Then define a translation 7 («, x) that
transforms a temporal formula « into a first order formula that is applied to the encoded sequence x. The
translation can be defined inductively on the structure of . For example, if £ = k1 Sk, then

T(x,x) =3 (0<:< Len(x) A T(ka, Pref(x,2))AVj (i <j < Len(x) — T (1, Pref(x.7))))
The details of how to translate other past modals are omitted. Then Statesy(s) can be defined as

Indx (Len(x) =n AT(n, x) A Seq(x,n — 1, 3)).

Consider now the following simple deduction rule for existential specification.

-
PPy (5)
PRy
and the following rule for generalisation, where  is a state formula
PR Op ’
P Mazimal A OSubsumed, (6)

The soundness of (6) is guaranteed by the following lemma:

Lemma 6.3 If M is a B-set that contains a representation of an observation of some run I1 and M ED L
such that p is a state formula, then M |= Mazimal A OSubsumed,,.

Proof. From Lemma 5.1, if M contains an observation of some run I1 € Rp, then all the sequences of M
are exactly f(obs(IT) ). Since M l:aD u, there exists a sequence £ in M such that ¢ = f(o), where o € o0bs(II)
and ¢ | Op. Thus, {(€)) C [x]. Consider now any other sequence &' of M. According the conditions of
B, {(¢')) C [Subsumed,] and therefore ¢’ |= OSubsumed,. Each sequence in M, is a representation of an
observation of I, and thus from Lemma 5.2, it satisfies Mazimal. a

The above rules can be used to infer a universal property of P from an existential property ¥.

1. Prove in LTL that ¥ — Oy for some state formula . .
2. Use the proof rule (5) to infer that Oy is an existential specification of P.
3. Use the rule (6) to infer that M azimal A OSubsumed,, is a universal specification of P.

Furthermore, if ¥ is an exact existential specification of P, then an exact universal specification of P
can be obtained from it. This is done by choosing p as Statesp. By Lemma 6.2, ¥ — OStatesyp is
valid, and thus can be proved in LTL. The rule (5) can be used to prove that PE OStatesy. Then (6) can
be used to prove that PR Mazimal A DSubsumedsmes@. Since ¥ is an exact existential specification,
HSUbsumedStatesso]] =| [Statesy] = f(Ap) (| [Statesyp] C f(Ap) since each sequence satisfying ¥ is a
representation of an observation of P, and | [Statese] D f(Ap) since for each run there exists at least one
representation of an observation that satisfies ). Thus, by Lemma 5.2, Mazimal A DSubsumeds:ates(P is
satisfied exactly by all the representations of observations of P.

Recall that, as was shown in Section 4.1, any universal property of P can be deduced from an exact
universal specification such as Mazimal A OS ubsumedsmes(p relative to proving assertions in LTL.
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7 Conclusions and Further Research

Representing properties of concurrent programs using existential specification was introduced. It was shown
that given an appropriate representation, an exact existential specification Y'p of a program P can be given
such that all the properties of P that are expressed within this formalism are consequences of Yp. Moreover,
itis possible to transform such an exact existential specification to an exact universal specification efficiently
using a proof system.

A representation of trace-semantics that allows exact existential specification and generalisation was
demonstrated. Alternative constructions, based on a direct representation of partially ordered sets of events
can be given under the same requirements. Moreover, when the class of programs dealt with is more
constraint, simpler constructions can be made. In particular, the requirement R1 of Section 5 does not
allow a finite representation of finite state programs. It is interesting to check if weakening R1 is possible
or is possible only in some limited cases. The results of this paper are not confined to the temporal logic
formalism and can also be adapted to other formalisms such as Biichi automata.

It was shown that existential specification is convenient for compositionality which involves composing
concurrent and layered segments. The ability to generalise exact existential specifications is important for
achieving completeness of such compositional methods. Thus, existential specification is suggested for
compositional program construction, complementing algebraic methods such as [14].

Finally, notice that the generalising proof rule (6) is not optimal in the following sense: it does not
guarantee that the strongest universal property ¥ that holds for a program that satisfies a given existential
property ¥ can be inferred from ¢ (however, it does guarantee this when ¢ is exact). Thus, although useful
for achieving compositional completeness of proof rules such as those presented in Section 3, additional
proof rules for generalising existential properties are sought.
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