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Abs t rac t .  We introduce an instance-weighting method to induce cost- 
sensitive trees in this paper. It is a generalization of the standard tree 
induction process where only the initial instance weights determine the 
type of tree to be i n d u c e d - - m i n i m u m  error trees or m i n i m u m  high cost 
error trees. We demonstrate that it can be easily adapted to an existing 
tree learning algorithm. Previous research gave insufficient evidence to 
support the fact that the greedy divide-and-conquer algorithm can effec- 
tively induce a truly cost-sensitive tree directly from the training data. 
We provide this empirical evidence in this paper. The algorithm incor- 
porating the instance-weighting method is found to be better than the 
original algorithm in terms of total misclassification costs, the number 
of high cost errors and tree size in two-class datasets. The instance- 
weighting method is simpler and more effective in implementation than 
a previous method based on altered priors. 

1 I n t r o d u c t i o n  

Cost-sensitive classifications have received much less attention than minimum 
error classifications in empirical learning research. Classifiers that  minimize the 
number of misclassifieation errors are inadequate in problems with variable mis- 
classification costs. Many practical classification problems have different costs 
associated with different types of error. For example, in medical diagnosis, the er- 
rors committed in diagnosing someone as healthy when one has a life-threatening 
disease is usually considered to be far more serious (thus higher costs) than the 
opposite type of er ror- -of  diagnosing someone as ill when one is in fact healthy. 

A line of research in cost-sensitive tree induction employing the greedy divide- 
and-conquer algorithm demands further investigation. Breiman et al. (1984) de- 
scribe two different methods of incorporating variable misclassification costs into 
the process of tree induction. These methods adapt the test selection criterion in 
the tree growing process. Pazzani et al. (1994) reported negative empirical results 
when using one of the Breiman et al.'s formulation to induce cost-sensitive trees. 
They found that  the cost-sensitive trees do not always have lower misclassifica- 
tion costs, when presented with unseen test data, than those trees induced with- 
out cost consideration. Using a post-processing approach, Webb (1996) shows 
that  applying a cost-sensitive specialization technique to a minimum error tree 
can reduce its misclassification costs by about 3% on average. Employing the 
greedy divide-and-conquer algorithm, the research so far does not show convinc- 
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ingly that  a truly cost-sensitive tree can/cannot  be effectively learned directly 
from the training data. We investigate this issue specifically in this paper. 

This paper presents the instance-weighting method to induce cost-sensitive 
trees that  seeks to minimize the number of high cost errors and total misclassifi- 
cation costs. This method is inspired by instance weight modification in boosting 
decision trees by Quinlan (1996). Boosting generates multiple classifiers in se- 
quential steps. At the end of each step, the weight of each instance in the training 
set is adjusted to reflect its importance for the next induction step. These weights 
cause the learner to concentrate on different instances in each step and so lead 
to different classifiers. These classifiers are then combined by voting to form a 
composite classifier. Boosting begins with equal initial weights in the first step. 
The intuition for the cost-sensitive induction in this paper is to have different 
initial weights which reflect the (given) costs of misclassification. This effectively 
influences the learner to focus on instances which have high misclassification 
costs. We demonstrate that  this is a viable method and can be easily adapted to 
an existing learning algorithm. We show convincingly that  a truly cost-sensitive 
tree can be effectively learned using this method- -an  algorithm incorporating 
the instance-weighting method achieves a substantial reduction in misclassifica- 
tion costs, the number of high cost errors and tree size over the same algorithm 
without it in two-class domains. 

The proposed instance-weighting method changes the class distribution such 
that  the tree so induced is in favor of the class with high weight/cost and is 
less likely to commit errors with high cost. This usually reduces the total mis- 
classification costs as a consequence. Smaller trees are a natural product of the 
tree induction procedure when presented with training dataset of skewed class 
distribution, which is a result of weighting instances in dataset with relatively 
balanced class distribution. We present the proposed instance-weighting method 
in the next section. 

2 C o s t - S e n s i t i v e  T r e e  I n d u c t i o n  v i a  I n s t a n c e - W e i g h t i n g  

Let N be the total number of instances from the given training set, and Nj be 
the number of class j instances. Similarly, let N(t )  and Nj (t) be the number of 
instances and class j instances in node t of a decision tree. The probability that  
an instance is in class j given that  it falls into node t is given by the ratio of the 
total number of class j instances to the total  number of instances in this node. 

Nj(t)  (1) 
P(Jlt) -- ~-]~ Ni(t)" 

When node t contains instances that  belong to a mixture of classes, the standard 
greedy divide-and-conquer procedure for inducing trees (e.g., Breiman et al. 
(1984) and Quinlan (1993)) uses a test selection criterion to choose a test at this 
node such that  the training instances which fall into each branch, as a result 
of the split, become more homogeneous. One of the commonly used criterion is 
entropy i.e., - ~-~j p(jl t) log~(jl t)].  At each node, the tree growing process selects 
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a test which has the maximum gain in entropy until the node contains only a 
single-class collection of instances. 

To avoid overfitting, a pruning process is employed to reduce the size of 
the tree such that  the estimated error is minimum. In short, the standard tree 
induction procedure seeks to produce a minimum error tree. 

Our intuition for cost-sensitive tree induction is to modify the weight of an 
instance proportional to the cost of misclassifying the class to which the in- 
stance belonged, leaving the sum of all training instance weights still equal to 
N. The last condition is important  because there is no reason to alter the size of 
the training set, which is equivalent to the sum of all training instance weights, 
while the individual instance weights are adjusted to reflect the relative impor- 
tance of instances for making future prediction with respect to cost-sensitive 
classification. 

Let C(j) be the cost of misclassifying a class j instance, then the weight of 
a class j instance can be computed as 

N 
w(j) = C(j) E~ C(i)N~' (2) 

such that  the sum of all instance weights is ~ j  w(j)Nj = N. For C(j) > 1, w(j) 
N has the smallest value, 0 < ~-]~ C(i)g~ < 1, when C(j) = 1; and the largest value, 

c ( ~ ) ~  N, 
w(j) = ~-~, C(i)N, > 1, when C(j) = maxiC(i). 

Similar to p(jIt), p~(jIt) is defined as the ratio of the total weight of class j 
instances to the total weight in node t. 

p w ( j I t ) -  Wj(t) = w(j)Nj(t) (3) 
w (t) w(i)N (t) " 

The standard greedy divide-and-conquer procedure for inducing minimum error 
trees can then be used without modification, except that  Wj (t) is used instead 
of Nj (t) in the computation of the test selection criterion in the tree growing 
process and the error estimation in the pruning process. Thus, both processes 
are affected due to this change. 

We modified C4.5 (Quinlan, 1993) to create C4.5CS. We only need to initial- 
ize the training instance weights to w(j) since C4.5 has already employed Wj (t) 
for the computation discussed above. 1 

This modification effectively converts the standard tree induction procedure 
that  seeks to minimize the number of errors, regardless of cost, to a procedure 
that  seeks to minimize the number of errors with high weight/cost. Note that  
minimizing the later does not guarantee that  the total misclassification cost is 
minimized. This is because the number of low cost errors is usually increased as 
a result. 

The advantage of this approach is that  the whole process of tree growing and 
tree pruning is the same as that  used to induce minimum error trees. This can 

1 C4.5 uses fractional weights for the treatment of missing values. See Quinlan (1993) 
for details. 
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be viewed as a genera l i za t ion  of  the  s t a n d a r d  t ree  induc t ion  process  where  only 
the initial instance weights determine the type o/ tree to be induced--minimum 
error trees or minimum high cost error trees. 

To classify a new ins tance ,  C4.5CS pred ic t s  the  class which has  t he  m a x i m u m  
weights  a t  a leaf, as in C4.5. 

C o s t  M a t r i x  a n d  C ( j ) .  In  a c lass i f icat ion t a sk  of I classes,  t he  misclas-  
s i f icat ion costs  can be  specified in a cost  m a t r i x  of size I x I .  The  row of the  
m a t r i x  ind ica tes  t he  p r ed i c t ed  class, and  the  column ind ica tes  the  ac tua l  class. 
T h e  off -diagonal  entr ies  con ta in  the  costs  of misclassif icat ions;  and  on the  diag-  
onal  lie the  costs  for correct  c lassif icat ions which are  zero in th is  case since our  
ma in  concern  here is t o t a l  misclass i f ica t ion costs  of an induced  t ree.  2 

Let  cost(i, j)  be the  cost  of misclass i fy ing a class j ins tance  as be long ing  to  
class i. In  all  cases, cost(i,j) = 0.0, for i = j .  A cost  m a t r i x  mus t  be  conver ted  
to  a cost  vec tor  C(j) in o rder  to  use E q u a t i o n  (2) for ins tance-weight ing .  In  th is  
pape r ,  we employ  the  form of conversion sugges ted  by  Bre ima n  et al. (1984): 

I 
C(j) = ~ cost(i, j). (4) 

i 
In our  exper imen t s ,  w i thou t  loss of general i ty ,  we impose  a un i ty  c o n d i t i o n - -  
a t  leas t  one cost(i, j)  = 1.0. T h e  only reason  to  have this  un i ty  cond i t ion  or 
no r ma l i za t i on  3 is to  al low us to  measure  the  number  of high cost errors, which is 
defined as the  n u m b e r  of  misclass i f ica t ion errors  t h a t  have costs  more  t h a n  1.0. 

Note  t h a t  t he  cost  m a t r i x  to  cost  vector  conversion is expec ted  to  work  well 
wi th  the  cos t -sens i t ive  t ree  induct ion ,  as descr ibed  in th is  sect ion,  when the re  
are  only  two classes. But  i t  migh t  be  i n a p p r o p r i a t e  when the re  are  more  t h a n  
two classes because  i t  col lapses  I x I numbers  to  I .  In  o rde r  to  inves t iga te  the  
po t en t i a l  p rob l em due  to  th is  conversion,  we expl ic i t ly  d iv ide  the  e x p e r i m e n t a l  
d a t a s e t s  in to  two groups:  two-class  and  mult i -c lass .  A n y  pe r fo rmance  discrep-  
ancy  be tween  these  two groups  is due to  th is  conversion.  

3 E x p e r i m e n t s  

Four  measures  a re  used to  eva lua te  the  pe r fo rmance  of the  cos t -sens i t ive  t ree  
i nduc t ion  a lgo r i t hm in this  pape r .  They  are  t o t a l  misclass i f ica t ion costs  (i.e., 

~ N '  cost(predicted-class(l), ac tua l -c lass ( l ) ) ,  where  N ~ is the  number  of  ins tances  
in t he  unseen  tes t  set) ,  p r u n e d  t ree  size (i.e., t o t a l  number  of in te rna l  nodes  and  
leaves),  t he  number  of high cost  errors ,  and  the  t o t a l  number  of misc lass i f ica t ion  
er rors  on unseen  da ta .  The  first  and  the  t h i r d  are  the  mos t  i m p o r t a n t  measures .  
T h e  a im of cos t -sens i t ive  classif icat ion is to  min imize  the  n u m b e r  of high cost  er- 
rors  or  misc lass i f ica t ion  costs,  or  bo th .  Eve ry  th ing  be ing  equal ,  a t r ee  induc t ion  
a l g o r i t h m  is b e t t e r  t h a n  the  o the r  if i t  induces  smal ler  t rees.  

2 In general, the costs of correct classifications can be non-zero. Minimizing the costs 
of correct classifications is a different issue outside the scope of this paper. 

3 Note tha t  an arbi t rary cost matr ix  can be normalized to become a cost matr ix  
satisfying this unity condition. 
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We conduct experiments using twenty datasets obtained from the UCI reposi- 
tory of machine learning databases (Merz & Murphy, 1996) and two datasets  with 
specified cost matrices (i.e., Heart_S and German) used in the Statlog project 
(Michie, Spiegelhalter ~ Taylor, 1994). The datasets  are selected to cover a wide 
variety of different domains with respect to dataset  size, the number of classes, 
the number  of at tr ibutes,  and types of attributes.  They consist of twelve two- 
class datasets  and ten multi-class datasets. 

Ten 10-fold cross-validations are carried out in each dataset,  except in the 
Waveform dataset  where randomly generated training da ta  size of 300 and test 
da ta  size of 5000 are used in the 100 trials. 

Random cost assignments with the unity condition are used in all datasets 
except the Heart_S and German datasets. In the later cases, the costs (i.e., 
cost(l, 2) = 1.0 and cost(2, 1) = 5.0) specified in Michie, Spiegelhalter & Taylor 
(1994) are used. In the former cases, a cost matr ix  is randomly generated at the 
beginning of each trial. Each non-diagonal entry in the cost matr ix  is assigned 
an integer randomly generated between 1 to 10. 

We first compare C4.5CS with C4.5 to evaluate whether trees induced by 
C4.5CS are more cost sensitive than those produced by C4.5. Note tha t  the only 
difference between C~.5CS and C~.5 is the initial weight setting. Any perfor- 
mance differences are due to this initial weight setting. 

3.1 C a n  C 4 . 5 C S  induce  cost -sens i t ive  trees effectively? 

Given a training set and a cost matrix,  C4.5CS induces a cost-sensitive tree which 
seeks to minimize the number of high cost errors and total  misclassification costs. 
C4.5 produces a tree which seeks to minimize the total  misclassification errors. 
Both trees are then tested using a separate test set, and the total  misclassification 
costs are measured according to the given cost matrix. 

Table 1 presents averages, over 100 trials, for the misclassification costs, the 
tree size, the number  of high cost errors and the total  errors for both  C4.5CS 
and C4.5 in each dataset.  The ratio (C4.5CS/C4.5) for each of these measures is 
also p resen ted- -a  value less than 1 represents an improvement due to C4.5CS. 
The means of these ratios are given for the twelve two-class datasets  as well as 
the ten multi-class datasets. 

In terms of misclassification costs, C4.5CS achieves a mean reduction of 38% 
as compared to C4.5 in two-class datasets; but a mean reduction of only 2% in 
multi-class datasets.  

In terms of tree size, C4.5CS produces trees 34% smaller than those produced 
by C4.5 in two-class datasets; and only 15% smaller in multi-class datasets.  In 
only two datasets  (Hypothyroid and Euthyroid),  C4.5CS produces trees which 
are larger than  those produced by C4.5. This is because the two datasets  have 
very skewed class distribution (i.e., 95.2% and 90.7% of the total  instances belong 
to one of the two classes in these two datasets, respectively). A high cost C(j) 
assigned to the class which has small number of instances effectively reduces the 
class distribution skewness. This leads to larger trees as a result. Although the 
costs are randomly assigned without reference to the original class distribution, 
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Tab le  1. C4.5CS versus C4.5 in terms of misclassification cost, tree size, number of 
high cost errors and total number of errors. 

Datasets Cost Tree Size 
C4.5CS C4.5 ratio C4.5CS C4.5 ratio 

Echo 7.9 18.2 
Hepa 6.0 12.3 
Heart_S 10.9 17.1 
Heart 14.2 25.2 
Horse 16.4 21.8 
Credit 21.3 36.5 
Breast 9.9 14.4 
Diab. 35.8 69.6 
German 30.3 72.8 
Hypo 9.0 8.7 
Euthyr 20.7 24.2 
Coding 942.2 2058.6 

Mean 
Lympho 17.4 18.2 
Glass 35.8 38.4 
Wave 7119.0 7709.3 
Soybean 33.8 30.4 
Anneal 35.4 35.7 
Vowel 115.1 111.8 
Splice 95.7 95.6 
Abalone 708.7 799.2 
Net(s) 507.9 514.2 
Sat. 475.3 478.5 

Mean 

.44 

.48 

.64 

.56 

.75 

.58 

.69 

.51 

.42 
1.03 

.85 

.46 

6.0 10.8 .56 
9.5 17.0 .56 

16.7 35.6 .47 
18.2 39.5 .46 

8.6 11.6 .74 
10.5 33.2 .32 
14.8 23.8 .62 
18.4 41.9 .44 

2.2 149.3 .01 
24.6 12.2 2.02 
39.8 25.3 1.57 

302.7 2805.6 .11 

No. HC Errors No. Errors* 
C4.5CS C4.5 ratio C4.5CS ratio 

0.5 2.5 .22 
0.4 1.6 .27 
1.0 2.8 .37 
1.1 3.3 .34 
1.1 2.9 .39 
1.5 4.9 .31 
1.0 2.0 .51 
2.O 9.4 .21 
0.1 11.4 .01 
0.9 1.1 .81 
2.1 3.3 .64 

22.2 278.2 .08 

5.4 1.15 
3.9 1.15 
6.8 1.15 
8.7 1.32 

11.6 2.00 
13.7 1.34 

4.9 1.36 
27.5 1.39 
29.9 1.10 

4.0 1.74 
10.1 1.60 

880.8 1.59 
.62 .66 .35 1.41 

19.0 27.4 .69 
39.2 45.5 .86 
42.7 51.0 .84 
91.1 96.4 .95 
76.7 76.6 1.00 

175.2 187.0 .94 
157.1 171.6 .92 
402.1 579.2 .69 

1650.4 2061.6 .80 
472.4 561.2 .84 

2.9 2.9 1.00 
6.0 6.3 .95 

1177.9 1232.4 .96 
5.7 5.2 1.11 
6.4 6.O 1.06 

19.1 18.2 1.05 
16.2 15.3 1.06 

124.6 129.2 .96 
86.0 84.2 1.02 
78.4 78.5 1.00 

.96 

.93 

.92 
1.11 

.99 
1.03 
1.00 
.89 
.99 
.99 

3.3 1.03 
6.9 .97 

1522.1 1.00 
6.2 1.11 
7.3 1.09 

21.1 1.04 
22.7 1.22 

168.4 1.04 
99.6 1.06 
88.1 1.00 

.98 .85 1.02 1.06 
* the column on C4.5 is omitted because of lack of space. 

reduc t ion  in skewness seems to have a larger effect t h a n  increase in skewness in 
these two datasets .  

C4.5CS makes 65% fewer high cost errors t h a n  C4.5 in two-class datasets ;  
bu t  2% more high cost errors in multi-class datasets .  On the other  hand ,  C4.5CS 
has 41% more errors t h a n  C4.5 in two-class datasets ,  bu t  only 6% more errors 
in mult i -class  datasets .  

Hypothyro id  is the only two-class dataset  in which C4.5CS has higher mis- 
classification costs (by 3%) t h a n  C4.5. While  C4.5CS is able to reduce the  num-  
ber  of high cost errors by 19% in this highly skewed class d i s t r ibu t ion  dataset ,  
bu t  the 74% increase in tota l  errors outweighs this reduct ion which results  a net  
increase in tota l  misclassification costs. 

3.2 M i n i m u m  e x p e c t e d  cos t  cr i ter ion  

A simple me thod  to use a m i n i m u m  error t ree for cost-sensit ive classifications 
is to employ the  m i n i m u m  expected cost cr i ter ion in selecting a predicted class 
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during classification (Michie, Spiegelhalter & Taylor, 1994). I t  is interesting to 
find out how the proposed method compared to this simple method. 

The expected misclassification cost for predicting class i with respect to the 
example x is given by: 

EC (x) Wj(t(x))cost(i, j), (5) 
J 

where t(x) is the leaf of the tree where instance x falls into, and Wj(t) 
is the total  weight of class j training instances in node t. 

To classify a new example x using a minimum error tree and the minimum 
expected cost criterion, ECi(x) is computed for every class. The example x 
is assigned to class i with the smallest value for ECi(x). Tha t  is, ECi(x) < 
ECi, (x) for all i '  ~ i. 

A comparison between C4.5CS~nc and C4.5_mc, both  using the minimum 
expected cost criterion, is conducted here. The results in Table 2 show tha t  it 
is still be t ter  to induce a cost-sensitive tree than a minimum error tree for cost- 
sensitive classifications in two-class datasets,  even using the minimum expected 
cost criterion. 

Table  2. Mean ratios for C4.5CS-mc against C4.5_mc. 

Misclassification Cost ratio 
Tree Size ratio 
No. High Cost Errors ratio 
No. Errors ratio 

Two-class Multi-class 
.86 .99 
.66 .85 
.36 1.02 

1.57 1.07 

3.3 Summary 

We summarize the findings so far as follows. 

�9 In terms of misclassification costs and the number of high cost errors, C4.5CS 
performs bet ter  than  C4.5 in two-class datasets but  only comparably in 
multi-class datasets.  

�9 The relative poor  performance of C4.5CS in multi-class datasets  is due to the 
cost matr ix  to cost vector conversion. 

�9 C4.5CS always makes fewer high cost errors than  C4.5 in two-class datasets; 
but  in datasets  with highly skewed class distribution, C4.5CS might have 
higher total  misclassification costs than C4.5. 

�9 C4.5CS produces smaller trees than  C4.5 because instance weighting effec- 
tively increases the skewness of the otherwise more balanced class distribu- 
tion. 

�9 Even using the minimum expected cost criterion, it is bet ter  to induce a cost- 
sensitive tree than to induce a minimum error tree for cost-sensitive classi- 
fications in two-class datasets. 
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4 R e l a t i o n  to  A l t e r e d  P r i o r s  

Breiman et al. (1984) discuss a method of incorporating variable misclassi- 
fication costs via altered priors for cost-sensitive tree induction. Let priors, 
7r(j) = N j / N ,  and C( j )  as defined in Equation (4), then the altered priors 
are given by (Breiman et al., 1984) 

C(j)Tr(j) C ( j ) N j  
7r'(j) - ~-~4 C(i)Tr(i) - ~~i C(i)N~" 

In the instance-weighting method, every instance is weighted proportional to 
C( j ) .  The weight of a class j instance is computed as 

C ( j ) N  _ ~ ' ( j ) N / N j  - ~'(J) 
w( j )  - E~ C( i )N i  ~( j )  " 

Thus, the instance weight is a ratio of the altered prior and the original prior. 
Both methods share the same idea of changing the class distribution according 
to the given misclassification costs, but one implementation is simpler and more 
effective than the other. Implementation using altered priors or by merely mod- 
ifying instance weights will produce the same tree at the end of the tree growing 
process. But, the former would require an equivalent modification in the prun- 
ing process; otherwise, it will perform poorly. This is demonstrated by modifying 
C4.5 accordingly to yield C4.5(~t). Because instance weights are not altered, the 
tree induced by C4.5(~ ~) will be pruned according to unit instance weights. 

The mean ratios (C4.5CS/C4.5(~')) for misclassification cost and the num- 
ber of high cost errors are .70 and .43 respectively. These figures are averaged 
over the twelve two-class datasets in which C4.5CS performs well. C4.5(7d) is 
significantly worse than C4.5CS for the two important  measures in cost-sensitive 
classifications. The poor result of C4.5(~ ~) is due to the inconsistent use of in- 
stance weights from the tree growing process to the tree pruning process. 

5 C o n c l u s i o n s  

We have introduced an instance-weighting method to induce cost-sensitive trees, 
and demonstrated that  it is a viable approach and simple to implement or adapt 
to an existing learning algorithm. It is a generalization of the standard tree in- 
duction process to include both minimum error trees and minimum high cost 
error trees. The instance-weighting method is simpler and more effective in im- 
plementation than a previous method based on altered priors. 

Our empirical results show convincingly that  the greedy divide-and-conquer 
procedure can effectively induce a truly cost-sensitive tree directly from the 
training data. This work refutes an earlier negative result (Pazzani et al., 1994) 
with regard to cost-sensitive tree induction employing the greedy divide-and- 
conquer procedure in two-class datasets. 

The algorithm incorporating the instance-weighting method is found to be 
bet ter  than the original algorithm in two-class datasets in terms of the number of 
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high cost errors, total misclassification costs and tree size. The instance weight- 
ing which changes the class distribution directly contributes to this improved 
performance. 

The current instance-weighting method has two weaknesses: (1) it requires 
the conversion of cost matrix to cost vector which hampers its performance in 
multi-class datasets, and (2) it might not perform well in terms of total mis- 
classification costs in datasets with highly skewed class distribution. We have 
suggested a cost-sensitive version of boosting (Schapire et al., 1997) to address 
these weaknesses, reported in Ting & Zheng (1998). 

6 R e f e r e n c e s  

Breiman, L., J.H. Friedman, R.A. Olshen & C.J. Stone (1984), Classification 
And Regression Trees, Belmont, CA: Wadsworth. 

Knoll, U., Nakhaeizadeh, G., & Tausend, B. (1994), Cost-Sensitive Pruning 
of Decision Trees, in Proceedings of the Eighth European Conference on Machine 
Learning, pp. 383-386, Springer-Verlag. 

Merz, C.J. & Murphy, P.M. (1996), UCI Repository of machine learning 
databases [http://www.ics.uci. edu/mlearn/MLRepository.html]. University of 
California, Dept. of Information and Computer Science. 

Michie, D., D.J. Spiegelhalter & C.C. Taylor (1994), Machine Learning, Neu- 
ral and Statistical Classification, Ellis Horwood Limited. 

Pazzani, M., C. Merz, P. Murphy, K. Ali, T. Hume & C. Brunk (1994), 
Reducing Misclassification Costs, in Proceedings of the Eleventh International 
Conference on Machine Learning, pp. 217-225, Morgan Kaufmann. 

Quinlan, J.R. (1993), C~.5: Program for machine learning, Morgan Kauf- 
mann. 

Quinlan, J.R. (1996), Boosting, Bagging, and C4.5, in Proceedings of the 13th 
National Conference on Artificial Intelligence, pp. 725-730, AAAI Press. 

Schapire, R.E., Y. Freund, P. Bartlett & W.S. Lee (1997), Boosting the mar- 
gin: A new explanation for the effectiveness of voting methods, in Proceedings 
of the Fourteenth International Conference on Machine Learning, pp. 322-330, 
Morgan Kaufmann. 

Turney, P.D. (1995), Cost-Sensitive Classification: Empirical Evaluation of a 
Hybrid Genetic Decision Tree Induction Algorithm, Journal of Artificial Intel- 
ligence Research, 2, pp. 369-409. 

Webb, G.I. (1996) Cost-Sensitive Specialization, in Proceedings of the 1996 
Pacific Rim International Conference on Artificial Intelligence, pp. 23-34. 

Ting, K.M. & Z. Zheng (1998), Boosting Trees for Cost-Sensitive Classifi- 
cations, Proceedings of the Tenth European Conference on Machine Learning, 
Berlin: Springer-Verlag, pp. 190-195. 


