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Abst rac t .  In this paper, we present an approach, called PSP, for min- 
ing sequential patterns embedded in a database. Close to the pIoblem 
of discovering association rules, mining sequential patterns requires han- 
dling time constraints. Originally introduced in [3], the issue is addressed 
by the GSP approach [10]. Our proposal resumes the general principles 
of GSP but it makes use of a different intermediary data structure which 
is proved to be more efficient than in GSP. 

1 I n t r o d u c t i o n  

Motivated by decision support problems, data  mining, also known as knowledge 
discovery in databases, has been extensively addressed in the few past years 
(e.g. [5]). Among takled issues, the problem of mining association rules, initially 
introduced in [1], has recently received a great deal of attention [1, 2, 4, 5, 9, 11]. 
The problem of mining association rules is often referred to as the "market- 
basket" problem, because purchase transaction data collected by retail stores 
offers a typical application groundwork for discovering knowledge. 
The concept of sequential pat tern is introduced to capture typical behaviours 
over time, i.e. behaviours sufficiently repeated by individuals to be relevant for 
the decision maker [3].The GSP algorithm, proposed in [10], is intended for min- 
ing Generalized Sequential Pattern.  It extends previous proposal by handling 
time constraints and taxonomies (is-a hierarchies). 
In this paper we present an approach for discovering sequential patterns. It is 
widely inspired from the GSP algorithm, but it introduces some improvements 
which makes it possible to perform retrieval optimizations. 
This paper is organized as follows. In section 2, the problem is stated and il- 
lustrated. An outline of GSP is given in section 3. Our proposal is detailed in 
section 4, and compared with GSP. 

2 M i n i n g  m a x i m a l  s e q u e n t i a l  p a t t e r n  

This section widely resumes the formal description of the "market-basket" prob- 
lem, introduced in [10]. 
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First of all, we assume tha t  we are given a database D of customers '  transactions, 
each of which having the following characteristics: sequence-id or customer-id, 
t ransact ion-t ime and the items involved in the transaction. Such a database is 
called a base of da ta  sequences (Cf. Fig. 1). 

D e f i n i t i o n  1 Let I -- {il, i2, ..., ira} be a set ofl i terals called i t ems .  An i t e m s e t  
is a non-empty set of items. A sequence s is a set of itemsets ordered according 
to their t ime-stamp. It  is denoted by < sls2.. .sn > where sj is an itemset. A 
k-sequence  is a sequence of k-items (or of length k). A sequence < SlS2...Sn > 

I I I is a sub-sequence of another sequence < SlS2...Sm > if there exist integers il < 
i2 < ... < in such that  sl C s~l , s2 C s~2 , ...sn C s~n. 

For aiding efficiently decision making, the aim is discarding non typical be- 
haviours according to user 's  viewpoint. Performing such a task requires provid- 
ing da ta  sub-sequence s in the DB with a support  value (supp(s))  giving its 
number  of actual occurrences in the DB. In order to decide whether a sequence 
is frequent or not, a minimum support  value (a) is specified by user, and the 
sequence s is said frequent if the condition supp(s)  > a holds. 
From the problem statement  presented so far, discovering sequential pat terns  
resembles closely to mining association rules. However, elements of handled se- 
quences are itemsets and not items, and a main difference is introduced with 
t ime concerns. 
The user can decide that  it does not mat te r  if items were purchased separately 
as long as their occurrences enfold within a given t ime window, thus itemsets in 
the da ta  sequence d could be grouped together with respect to the sliding win- 
dow. Moreover when exhibiting from d, sub-sequences possibly matching with 
the supposed pat tern,  non adjacent itemsets in d could be picked up succes- 
sively. Minimum and maximum t ime gaps are introduced to constrain such a 
construction. Window size and t ime constraints as well as the minimum support  
condition are parametr ized by user as defined in [10]. 

E x a m p l e  1 Let us consider the base D given in figure 1, reporting facts about  a 
population merely reduced to four customers. Let us assume that  the minimum 
support  value is 50%, thus to be considered as frequent a sequence must  be 
observed for at least two customers. The only frequent sequences, embedded in 
the DB are the following: < (20) (90) >,  < (30) (90) > and < (30) (40, 70) >. By 
introducing a sliding window of 2 days, a new frequent sequence < (20 30) (90) > 
is discovered because it matches with the first t ransaction of C4 while being 
detected for C1, within a couple of transactions respecting the window size. 

3 R e l a t e d  W o r k  

This section is devoted for setting the groundwork of our proposal and not offer- 
ing an overview of the whole domain. The interested reader could refer to [1, 2, 
4, 5, 11] in which approaches for discovering association rules are presented and 
compared. In a different context, the issue of exhibiting sequences is addressed 
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Customer Time 
C1 01/01/1998 
C1 02/02/1998 
C1 04/92/1998 
C~ 18/02/1998 
C2 11/01/1998 
C2 12/01/1998 
C2 29/01/1998 

Items Customer 
20,60 C3 
20 C3 
30 
80,90 
10 C4 
30 C4 
4O,6O,7O C4 

Time Items 
05/01/1998 30,50,70 
12/02/1998 10,20 

06/02/1998 20,30 
07/02/1998 40,70 
08/02/1998 90 

Fig. 1. A data-sequence database example 

in [3, 6, 10]. Since it is the basis of our approach, particular emphasis is placed 
on the GSP approach. 
Basically, exhibiting frequent sequences requires firstly retrieving all data  se- 
quences satisfying the specified time constraints. These sequences are consid- 
ered as candidates for being patterns. The support of candidate sequences is 
then computed by browsing the DB. Sequences for which the minimum support  
condition does not hold are discarded. The result is the set of frequent sequences. 
For building up candidate and frequent sequences, the GSP algorithm performs 
several iterative steps such as the k th step handles sets of k-sequences which 
could be candidate (the set is noted Ck) or frequent (in Lk). The latter set, 
called seed set, is used by the following step which, in turn, results in a new seed 
set encompassing longer sequences, and so on. 
The first step aims to compute the support of each item in the database. When 
completed, frequent items (i.e. satisfying the minimum support) are discovered. 
They are considered as frequent l-sequences (sequences having a single itemset, 
itself being a singleton). This initial seed set is the starting point of the sec- 
ond step. The set of candidate 2-sequences is built according to the following 
assumption: candidate 2-sequences could be any couple of frequent items, em- 
bedded in the same transaction or not. From this point, any step k is given a seed 
set of frequent (k-1)-sequences and it operates by performing the two following 
sub-steps: 

- The first sub-step (join phase) addresses candidate generation. The main 
idea is to retrieve, among sequences in Lk-1, couples of sequences (s, s ~) 
such that  discarding the first element of the former and the last element of 
the latter results in two sequences fully matching. When such a condition 
holds for a couple (s, s~), a new candidate sequence is built by appending 
the last item of s ~ to s. 

- The second sub-step is called the prune phase. Its objective is yielding the 
set of frequent k-sequences Lk. Lk is achieved by discarding from Ck, se- 
quences not satisfying the minimum support. For yielding such a result, it 
is necessary to count the number of actual occurrences matching with any 
possible candidate sequence. 

Candidate sequences are organized within a hash-tree data-structure which can 
be accessed efficiently. These sequences are stored in the leaves of the tree while 
intermediary nodes contain hashtables. Each data-sequence d is hashed to find 
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the candidates contained in d. When browsing a data sequence, time constraints 
must be managed. It is performed by navigating through the tree in a downward 
or upward way resulting in a set of possible candidates. For each candidate, 
GSP checks whether it is contained in the data-sequence. Because of the sliding 
window, minimum and maximum time gaps, it is necessary to switch during ex- 
amination between forward and backward phases. Forward phases are performed 
for dealing progressively items. Let us notice that  during this operation the min- 
gap condition applies in order to skip itemsets too close from their precedent. 
And while selecting items, sliding window is used for resizing transaction cut- 
ting. Backward phases are required as soon as the max-gap condition no longer 
holds. 

4 T h e  P S P  a p p r o a c h  

Our approach fully resumes the fundamental principles of GSP. Its originality 
is to use a different hierarchical structure than in GSP for organizing candidate 
sequences, in order to improve efficiency of retrievals. 
The general algorithm [7] is similar than in GSP. At each step k, the DB is 
browsed for counting the support of current candidates (procedure CANDIDATE- 
VERIFICATION). Then the frequent sequence set Lk can be built. From this 
set, new candidates are exhibited for being dealt at the next step (procedure 
CANDIDATE-GENERATION). The algorithm stops when the longest frequent se- 
quences, embedded in the DB are discovered thus the candidate generation pro- 
cedure yields an empty set of new candidates. Support is a function giving for 
each candidate its counting value stored in the tree structure. 
The tree structure, managed by the algorithms, is a prefix-tree close to the struc- 
ture used in [8]. At the k th step, the tree has a depth of k. It captures all the 
candidate k-sequences in the following way. Any branch, from the root to a leaf 
stands for a candidate sequence, and considering a single branch, each node at 
depth l (k > l) captures the I th item of the sequence. Furthermore, along with 
an item, a terminal node provides the support of the sequence from the root to 
the considered leaf (included). Transaction cutting is captured by using labelled 
edges. More precisely, let us consider two nodes, one being the child of the other. 
If the items emboddied in the nodes originally occurred during different trans- 
actions, the edge linking the nodes is labelled with a '-' otherwise it is labelled 
with a '+ '  (dashed link in figure 2). 

E x a m p l e  2 Let us assume that  we are given the following set of frequent 2- 
sequences: L2 -- {< (10) (30) >, < (10) (40) >, < (30) (20) >, < (30 40) >, < 
(40 10) >) .  It is organized according to our tree structure as depicted in figure 
2. Each terminal node contains an item and a counting value. If we consider the 
node having the item 40, its associated value 2 means that  two occurrences of 
the sequence {< (10) (40) >} have been detected so far. 

P r o p o s i t i o n  1 Our structure requires less memory than the tree used in the 
GSP approach. 



180 

 207 
301 402 202 402 103 

Fig. 2. Tree data structure 

In GSP, due to the adopted tree structure, all candidates sequences are pre- 
served and fully stored in the leaves. We argue that  our prefix-tree structure is 
less costly from a memory  viewpoint because it organizes candidates according 
to their common elements. In fact, initial sub-sequences common to several 
candidates are stored only once. 
Let us now detail how candidates and data-sequences are compared through 
the CANDIDATE-VERIFICATION algorithm. The data  sequence is progressively 
browsed start ing with its first item. Its t ime-s tamp is preserved in the variable 
la. Then successive items in d are examined and the variable Ua is used for 
giving the t ime-s tamp of the current item. Of course if Ua - l~ = 0, the couple 
of underlying items (and all possible items between them) appears  in a single 
transaction. When u~ becomes different from l~, this means tha t  the new 
selected item belongs to a different transaction. However, we cannot consider 
tha t  performed so far the algorithm has detected the first itemset of d because 
of the sliding window. Thus the examination must be continued until the 
selected item is too far from the very first i tem of d. The condition Ua - la >_ 
WS does no longer hold. At this point, we are provided with a set of items (Iv) .  
For each frequent i tem in Ip (it matches with a node at depth 1) the function 
FINDSEQUENCE is executed in order to retrieve all candidates supported by the 
first extracted itemset. The described process is then performed for exhibiting 
the second possible itemset, la is set to the t ime-s tamp of the first i temset 
encountered and once again ua is progressively incremented all along the 
examination. The process is repeated until the last itemset of the sequence has 
been dealt. 

CANDIDATE VERIFICATION ALGORITHM 
input :  T the tree containing all candidate and frequent sequences, a data-sequence d 
and its sequence identifier idseq. The step k of the General Algorithm. 
ou tpu t :  T the set of all candidate sequences contained in d. 
l~ = F i r s t l t e m S e t ( d ) . t i m e O ;  
while (la <--- L a s t l t e m S e t ( d ) . t i m e O )  do 

U a  : la  ; 

while ((u~ - l~) < ws) do 
Ip = {ip E d / ip . t ime  0 C [l~, u~]}; 
for each ip E Ip do  

if (ip E root .Chi ldren)  t hen  
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depth = 0; 
FindSequence(la, u~, root.Children(iv), iv, d, idseq, depth); 

u ~  = ( u o . s u e e ( ) ) . t i m e O  ; 

la : (la.suceO ).timeO; 

The function FINDSEQUENCE is successively called by the previous algorithm 
for retrieving candidate sequences firstly beginning with a sub-set of the first 
i tem of d, then with the second, and so on. When a leaf is reached, the examined 
sub-sequence supports  the candidate and its counting value must be incremented. 

FIND SEQUENCE ALGORITHM 
input :  Two integers l~, ua standing for the itemset size, N, a node of T, i the item in 
d, the depth of the go down on the tree (depth). 
ou tpu t :  T updated with respect to constraint times. 
if ( leaf (N)  and depth = k) t hen  

if (idseq r N.idlast) t h e n  
N.idlast = idseq; N.cpt + +; 

else 
/* same transaction */ 
Ip = {iv E d/iv follows i and iwtime 0 E [la,u~]}; 
for each i v E Ip do 

if (ip E N.Same)  t hen  
FindSequence(l~, Ua, N.Same(ip),  ip, d, idseq, depth + 1); 

/* other transaction */ 
Ib = (u~.succO ).timeO; /*mingap constraint*/ 
while ((Ib -- ua) < mingap) do Ib = (lb.suecO).timeO; 
while (lb • LastI tem(d) . t imeO) do 

ub = Ib; 
while ((Ub -- lb) < ws and (ub -- l~) < maxgap) do 

Ip = {ip E d/ip.t ime 0 E [Ib, Ub]}; 
for each ip E Ip do 
if (ip E N.Other) t hen  
FindSequence(Ib, ub, N.Other( ip), ip, d, idseq, depth + 1); 

~b = ( ~ . s ~ e e ( ) ) . t i . ~ e ( ) ;  

Ib = (Ib.succO ).timeO; 

When all the candidates to be examined are dealt, the tree is pruned in order 
to minimize required memory  space. All leaves not satisfying the minimum 
support  are removed. When such deletions complete, the tree no longer captures 
candidate sequences but  instead frequent sequences. 

T h e o r e m  1 For all data-sequence d and for all candidate sequence c in the tree 
T, i] c is a sub-sequence of d then c.support will be incremented by CANDIDATE- 
VERIFICATION and for all candidate sequence c' in T, if c' .support is incremented 
by CANDIDATE-VERIFICATION then c' is a sub-sequence o]d.  

Due to space limitation, we do not provide the proof of the theorems which could 
be found in [7]. 
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The algorithm of candidategenera t ion  (defined in [7]) builds, step by step, the 
tree structure. At the beginning of step 2, the tree has a depth of 1. All nodes 
at depth 1 (frequent items) are provided with children supposed to capture all 
frequent items. This means tha t  for each node, the created children are a copy 
of its brothers. When the k th step of the general algorithm is performed, the 
candidate generation operates on the tree of depth k and yields the tree of depth 
k + l .  For each leaf in the tree, we must  compute all its possible continuations of a 
single item. Exactly like at step 2, only frequent items can be valid continuations. 
Thus only items captured by nodes at depth 1 are considered. Moreover we 
refine this set of possible itemsets by discarding those which are not captured 
by a brother  of the dealt leaf. The basic idea under such a selection is the 
following. Let us consider a frequent k-sequence s and assume tha t  s extended 
with a frequent i tem i is still frequent. In such a case, s '  = < sls2. . .sk-1 i > 
must  necessarily be exibited during the candidate verification phase�9 Thus s '  is a 
frequent k-sequence and its only difference with s is its terminal item. Associated 
leaves, by construction of the tree, are brothers. 

T h e o r e m  2 Given a database D, for each sequence of length k, the structures 
used in GSP and in our approach capture the very same set of candidate s e -  

q u e n c e s .  

E x p e r i m e n t s  
The proposed approach is implemented on an Ultra Sparc with 256 MB main 
memory.  For experimentation, we generate synthetic customer transactions using 
the da ta  generation program of [2] 1 . Due to space limitation, we do not provide 
detailed results which could be found in [7]. Figure 3 gives the execution times 
of our algorithm applied to two DB examples. 

Temps  (sec) Temps (sec) 

15 50 

10 

1 

Access-Log 

PSP o 
GSP - - -o - - -  

/ 
/ 

/ 
/ 

i i i i i 

M i n i m u m  Support  

40 

30 

20 

10 

C20-D2-S4-N0�9 

PSP 
GSP --'~--- 

/ 

i 

/ 

~ - 7 � 9  i i ,~c-? ~ : 

M i n i m u m  Support  

Fig. 3. Execution times 

1 Available at the following URL (http://www.almaden.ibm.com/cs/quest). 
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Discuss ion  
Although our approach resumes GSP principles, we believe that the proposed 
prefix-structure is more efficient than the tree structure used in GSP. 
Before explaining why, let us have a comparative illustration. 

Example  3 Figure 4 depicts the data structures used in our approach (left tree) 
and in GSP (right tree), managed at the very same step of the general algorithm. 
More precisely, from the frequent 2-sequences given in example 2, candidate 3- 
sequences are obtained. Thus we have C3 = <  (10) (40 10) > < (10) (30) (20) > 
< (10) (30 40) > < (40 10) (30) > < (40 10) (40) >. As stated in proposition 
1, the number of items stored in our structure is significantly reduced compared 
with GSP. 

/ ~  20 3]0 4,0 
i 

~0 4,0 20 ~ , ,  ," 

20 40 10 30 40 

10 ~ 40 

Ii (10) (40 10) > < (40 10)(30) > 
(10) (30) (20) > < (40 10) (40) > 
(10) (30 40) > 

Fig. 4. Illustration of the prefix-tree and hash-tree structures 

During the candidate verification phase in GSP, a navigation is performed 
through the tree until reaching a leaf storing several candidates. Then the algo- 
rithm operates a costly backtracking for examining each sequence stored in the 
leaf. In our approach, retrieving candidates means a mere navigation through 
the tree. Once a leaf is reached, the single operation to be performed is incre- 
menting the support value. 
In the tree structure of GSP, sequences grouped in terminal nodes share a com- 
mon initial sub-sequence. Nevertheless, this feature is not used for optimizing 
retrievals. In fact, during the candidate verification phase, the GSP algorithm 
examines each sequence stored in the leaf from its first item to the last. In our 
approach, we make advantage of the proposed structure: all terminal nodes (at 
depth k) which are brothers stand for continuations of a common (k-1)-sequence. 
Thus it is costly and not necessary to examine this common sequence for all k- 
sequences extending it. 
Moreover, the advantage of our tree-structure is increased by applying the fol- 
lowing ideas. Let us imagine that a frequent k-sequence is extended to capture 
several (k+l)-candidates. Once the latter are proved to be unfrequent, they are 
of course pruned from the tree and the k-sequence is provided with a mark. 
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This mark  avoids to a t t empt  building possible continuations of the considered 
sequence during further steps. The mark  is also used in order to avoid testing 
j-sequences (2 < j < k). 
Furthermore,  at each step when a candidate k-sequence c is proved to be fre- 
quent, its possible sub-sequences of length 1 (2 < l < k) ending with the k-1 th 
i tem of c are examined. For each of which matching with a candidate/-sequence,  
the considered/-sequence is pruned from the tree. In fact, such sub-sequences 
are no longer relevant since longer sequences continuing them are discovered. 
Applying this principle reduces the number of stored candidates. 

5 C o n c l u s i o n  

The presented approach addresses the problem of mining sequential pat terns  
within a DB of behavioural facts. We adopt the general principles defined by the 
GSP algorithm but propose a different da ta  structure for storing candidate and 
frequent sequences. The proposed algorithms for handling this s tructure take 
advantages of its semantics for avoiding useless and costly operations when ver- 
ifying candidates. Furthermore, the presented tree structure is proved to require 
less memory  than in GSP for storing candidate sequences. 
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