
The PSP Approach for Mining Sequential
Patterns

F. Masseglia 2, F. Cathala 1'4, and P. Poncelet 1'3

1 LIM ESA CNRS 6077, Case 901, 163 Avenue de Luminy, 13288 Marseille Cedex 9,
France E-maih {poncelet,cathala}@lim.univ-mrs.fr

LIRMM UMR CNRS 5506, 161, Rue Ada, 34392 Montpellier Cedex 5, France,
E-mail: massegli@lirmm.fr
3 IUT d'Aix-en-Provence

4 Cemagref, division Aix-en-Provence, France

Abst rac t . In this paper, we present an approach, called PSP, for min-
ing sequential patterns embedded in a database. Close to the pIoblem
of discovering association rules, mining sequential patterns requires han-
dling time constraints. Originally introduced in [3], the issue is addressed
by the GSP approach [10]. Our proposal resumes the general principles
of GSP but it makes use of a different intermediary data structure which
is proved to be more efficient than in GSP.

1 I n t r o d u c t i o n

Motivated by decision support problems, data mining, also known as knowledge
discovery in databases, has been extensively addressed in the few past years
(e.g. [5]). Among takled issues, the problem of mining association rules, initially
introduced in [1], has recently received a great deal of attention [1, 2, 4, 5, 9, 11].
The problem of mining association rules is often referred to as the "market-
basket" problem, because purchase transaction data collected by retail stores
offers a typical application groundwork for discovering knowledge.
The concept of sequential pat tern is introduced to capture typical behaviours
over time, i.e. behaviours sufficiently repeated by individuals to be relevant for
the decision maker [3].The GSP algorithm, proposed in [10], is intended for min-
ing Generalized Sequential Pattern. It extends previous proposal by handling
time constraints and taxonomies (is-a hierarchies).
In this paper we present an approach for discovering sequential patterns. It is
widely inspired from the GSP algorithm, but it introduces some improvements
which makes it possible to perform retrieval optimizations.
This paper is organized as follows. In section 2, the problem is stated and il-
lustrated. An outline of GSP is given in section 3. Our proposal is detailed in
section 4, and compared with GSP.

2 M i n i n g m a x i m a l s e q u e n t i a l p a t t e r n

This section widely resumes the formal description of the "market-basket" prob-
lem, introduced in [10].

177

First of all, we assume tha t we are given a database D of customers ' transactions,
each of which having the following characteristics: sequence-id or customer-id,
t ransact ion-t ime and the items involved in the transaction. Such a database is
called a base of da ta sequences (Cf. Fig. 1).

D e f i n i t i o n 1 Let I -- {il, i2, ..., ira} be a set ofl i terals called i t ems . An i t e m s e t
is a non-empty set of items. A sequence s is a set of itemsets ordered according
to their t ime-stamp. It is denoted by < sls2.. .sn > where sj is an itemset. A
k-sequence is a sequence of k-items (or of length k). A sequence < SlS2...Sn >

I I I is a sub-sequence of another sequence < SlS2...Sm > if there exist integers il <
i2 < ... < in such that sl C s~l , s2 C s~2 , ...sn C s~n.

For aiding efficiently decision making, the aim is discarding non typical be-
haviours according to user 's viewpoint. Performing such a task requires provid-
ing da ta sub-sequence s in the DB with a support value (supp(s)) giving its
number of actual occurrences in the DB. In order to decide whether a sequence
is frequent or not, a minimum support value (a) is specified by user, and the
sequence s is said frequent if the condition supp(s) > a holds.
From the problem statement presented so far, discovering sequential pat terns
resembles closely to mining association rules. However, elements of handled se-
quences are itemsets and not items, and a main difference is introduced with
t ime concerns.
The user can decide that it does not mat te r if items were purchased separately
as long as their occurrences enfold within a given t ime window, thus itemsets in
the da ta sequence d could be grouped together with respect to the sliding win-
dow. Moreover when exhibiting from d, sub-sequences possibly matching with
the supposed pat tern, non adjacent itemsets in d could be picked up succes-
sively. Minimum and maximum t ime gaps are introduced to constrain such a
construction. Window size and t ime constraints as well as the minimum support
condition are parametr ized by user as defined in [10].

E x a m p l e 1 Let us consider the base D given in figure 1, reporting facts about a
population merely reduced to four customers. Let us assume that the minimum
support value is 50%, thus to be considered as frequent a sequence must be
observed for at least two customers. The only frequent sequences, embedded in
the DB are the following: < (20) (90) >, < (30) (90) > and < (30) (40, 70) >. By
introducing a sliding window of 2 days, a new frequent sequence < (20 30) (90) >
is discovered because it matches with the first t ransaction of C4 while being
detected for C1, within a couple of transactions respecting the window size.

3 R e l a t e d W o r k

This section is devoted for setting the groundwork of our proposal and not offer-
ing an overview of the whole domain. The interested reader could refer to [1, 2,
4, 5, 11] in which approaches for discovering association rules are presented and
compared. In a different context, the issue of exhibiting sequences is addressed

178

Customer Time
C1 01/01/1998
C1 02/02/1998
C1 04/92/1998
C~ 18/02/1998
C2 11/01/1998
C2 12/01/1998
C2 29/01/1998

Items Customer
20,60 C3
20 C3
30
80,90
10 C4
30 C4
4O,6O,7O C4

Time Items
05/01/1998 30,50,70
12/02/1998 10,20

06/02/1998 20,30
07/02/1998 40,70
08/02/1998 90

Fig. 1. A data-sequence database example

in [3, 6, 10]. Since it is the basis of our approach, particular emphasis is placed
on the GSP approach.
Basically, exhibiting frequent sequences requires firstly retrieving all data se-
quences satisfying the specified time constraints. These sequences are consid-
ered as candidates for being patterns. The support of candidate sequences is
then computed by browsing the DB. Sequences for which the minimum support
condition does not hold are discarded. The result is the set of frequent sequences.
For building up candidate and frequent sequences, the GSP algorithm performs
several iterative steps such as the k th step handles sets of k-sequences which
could be candidate (the set is noted Ck) or frequent (in Lk). The latter set,
called seed set, is used by the following step which, in turn, results in a new seed
set encompassing longer sequences, and so on.
The first step aims to compute the support of each item in the database. When
completed, frequent items (i.e. satisfying the minimum support) are discovered.
They are considered as frequent l-sequences (sequences having a single itemset,
itself being a singleton). This initial seed set is the starting point of the sec-
ond step. The set of candidate 2-sequences is built according to the following
assumption: candidate 2-sequences could be any couple of frequent items, em-
bedded in the same transaction or not. From this point, any step k is given a seed
set of frequent (k-1)-sequences and it operates by performing the two following
sub-steps:

- The first sub-step (join phase) addresses candidate generation. The main
idea is to retrieve, among sequences in Lk-1, couples of sequences (s, s ~)
such that discarding the first element of the former and the last element of
the latter results in two sequences fully matching. When such a condition
holds for a couple (s, s~), a new candidate sequence is built by appending
the last item of s ~ to s.

- The second sub-step is called the prune phase. Its objective is yielding the
set of frequent k-sequences Lk. Lk is achieved by discarding from Ck, se-
quences not satisfying the minimum support. For yielding such a result, it
is necessary to count the number of actual occurrences matching with any
possible candidate sequence.

Candidate sequences are organized within a hash-tree data-structure which can
be accessed efficiently. These sequences are stored in the leaves of the tree while
intermediary nodes contain hashtables. Each data-sequence d is hashed to find

179

the candidates contained in d. When browsing a data sequence, time constraints
must be managed. It is performed by navigating through the tree in a downward
or upward way resulting in a set of possible candidates. For each candidate,
GSP checks whether it is contained in the data-sequence. Because of the sliding
window, minimum and maximum time gaps, it is necessary to switch during ex-
amination between forward and backward phases. Forward phases are performed
for dealing progressively items. Let us notice that during this operation the min-
gap condition applies in order to skip itemsets too close from their precedent.
And while selecting items, sliding window is used for resizing transaction cut-
ting. Backward phases are required as soon as the max-gap condition no longer
holds.

4 T h e P S P a p p r o a c h

Our approach fully resumes the fundamental principles of GSP. Its originality
is to use a different hierarchical structure than in GSP for organizing candidate
sequences, in order to improve efficiency of retrievals.
The general algorithm [7] is similar than in GSP. At each step k, the DB is
browsed for counting the support of current candidates (procedure CANDIDATE-
VERIFICATION). Then the frequent sequence set Lk can be built. From this
set, new candidates are exhibited for being dealt at the next step (procedure
CANDIDATE-GENERATION). The algorithm stops when the longest frequent se-
quences, embedded in the DB are discovered thus the candidate generation pro-
cedure yields an empty set of new candidates. Support is a function giving for
each candidate its counting value stored in the tree structure.
The tree structure, managed by the algorithms, is a prefix-tree close to the struc-
ture used in [8]. At the k th step, the tree has a depth of k. It captures all the
candidate k-sequences in the following way. Any branch, from the root to a leaf
stands for a candidate sequence, and considering a single branch, each node at
depth l (k > l) captures the I th item of the sequence. Furthermore, along with
an item, a terminal node provides the support of the sequence from the root to
the considered leaf (included). Transaction cutting is captured by using labelled
edges. More precisely, let us consider two nodes, one being the child of the other.
If the items emboddied in the nodes originally occurred during different trans-
actions, the edge linking the nodes is labelled with a '-' otherwise it is labelled
with a '+ ' (dashed link in figure 2).

E x a m p l e 2 Let us assume that we are given the following set of frequent 2-
sequences: L2 -- {< (10) (30) >, < (10) (40) >, < (30) (20) >, < (30 40) >, <
(40 10) >) . It is organized according to our tree structure as depicted in figure
2. Each terminal node contains an item and a counting value. If we consider the
node having the item 40, its associated value 2 means that two occurrences of
the sequence {< (10) (40) >} have been detected so far.

P r o p o s i t i o n 1 Our structure requires less memory than the tree used in the
GSP approach.

180

 207
301 402 202 402 103

Fig. 2. Tree data structure

In GSP, due to the adopted tree structure, all candidates sequences are pre-
served and fully stored in the leaves. We argue that our prefix-tree structure is
less costly from a memory viewpoint because it organizes candidates according
to their common elements. In fact, initial sub-sequences common to several
candidates are stored only once.
Let us now detail how candidates and data-sequences are compared through
the CANDIDATE-VERIFICATION algorithm. The data sequence is progressively
browsed start ing with its first item. Its t ime-s tamp is preserved in the variable
la. Then successive items in d are examined and the variable Ua is used for
giving the t ime-s tamp of the current item. Of course if Ua - l~ = 0, the couple
of underlying items (and all possible items between them) appears in a single
transaction. When u~ becomes different from l~, this means tha t the new
selected item belongs to a different transaction. However, we cannot consider
tha t performed so far the algorithm has detected the first itemset of d because
of the sliding window. Thus the examination must be continued until the
selected item is too far from the very first i tem of d. The condition Ua - la >_
WS does no longer hold. At this point, we are provided with a set of items (Iv) .
For each frequent i tem in Ip (it matches with a node at depth 1) the function
FINDSEQUENCE is executed in order to retrieve all candidates supported by the
first extracted itemset. The described process is then performed for exhibiting
the second possible itemset, la is set to the t ime-s tamp of the first i temset
encountered and once again ua is progressively incremented all along the
examination. The process is repeated until the last itemset of the sequence has
been dealt.

CANDIDATE VERIFICATION ALGORITHM
input : T the tree containing all candidate and frequent sequences, a data-sequence d
and its sequence identifier idseq. The step k of the General Algorithm.
ou tpu t : T the set of all candidate sequences contained in d.
l~ = F i r s t l t e m S e t (d) . t i m e O ;
while (la <--- L a s t l t e m S e t (d) . t i m e O) do

U a : la ;

while ((u~ - l~) < ws) do
Ip = {ip E d / ip . t ime 0 C [l~, u~]};
for each ip E Ip do

if (ip E root .Chi ldren) t hen

181

depth = 0;
FindSequence(la, u~, root.Children(iv), iv, d, idseq, depth);

u ~ = (u o . s u e e ()) . t i m e O ;

la : (la.suceO).timeO;

The function FINDSEQUENCE is successively called by the previous algorithm
for retrieving candidate sequences firstly beginning with a sub-set of the first
i tem of d, then with the second, and so on. When a leaf is reached, the examined
sub-sequence supports the candidate and its counting value must be incremented.

FIND SEQUENCE ALGORITHM
input : Two integers l~, ua standing for the itemset size, N, a node of T, i the item in
d, the depth of the go down on the tree (depth).
ou tpu t : T updated with respect to constraint times.
if (leaf (N) and depth = k) t hen

if (idseq r N.idlast) t h e n
N.idlast = idseq; N.cpt + +;

else
/* same transaction */
Ip = {iv E d/iv follows i and iwtime 0 E [la,u~]};
for each i v E Ip do

if (ip E N.Same) t hen
FindSequence(l~, Ua, N.Same(ip), ip, d, idseq, depth + 1);

/* other transaction */
Ib = (u~.succO).timeO; /*mingap constraint*/
while ((Ib -- ua) < mingap) do Ib = (lb.suecO).timeO;
while (lb • LastI tem(d) . t imeO) do

ub = Ib;
while ((Ub -- lb) < ws and (ub -- l~) < maxgap) do

Ip = {ip E d/ip.t ime 0 E [Ib, Ub]};
for each ip E Ip do
if (ip E N.Other) t hen
FindSequence(Ib, ub, N.Other(ip), ip, d, idseq, depth + 1);

~b = (~ . s ~ e e ()) . t i . ~ e () ;

Ib = (Ib.succO).timeO;

When all the candidates to be examined are dealt, the tree is pruned in order
to minimize required memory space. All leaves not satisfying the minimum
support are removed. When such deletions complete, the tree no longer captures
candidate sequences but instead frequent sequences.

T h e o r e m 1 For all data-sequence d and for all candidate sequence c in the tree
T, i] c is a sub-sequence of d then c.support will be incremented by CANDIDATE-
VERIFICATION and for all candidate sequence c' in T, if c' .support is incremented
by CANDIDATE-VERIFICATION then c' is a sub-sequence o]d.

Due to space limitation, we do not provide the proof of the theorems which could
be found in [7].

182

The algorithm of candidategenera t ion (defined in [7]) builds, step by step, the
tree structure. At the beginning of step 2, the tree has a depth of 1. All nodes
at depth 1 (frequent items) are provided with children supposed to capture all
frequent items. This means tha t for each node, the created children are a copy
of its brothers. When the k th step of the general algorithm is performed, the
candidate generation operates on the tree of depth k and yields the tree of depth
k + l . For each leaf in the tree, we must compute all its possible continuations of a
single item. Exactly like at step 2, only frequent items can be valid continuations.
Thus only items captured by nodes at depth 1 are considered. Moreover we
refine this set of possible itemsets by discarding those which are not captured
by a brother of the dealt leaf. The basic idea under such a selection is the
following. Let us consider a frequent k-sequence s and assume tha t s extended
with a frequent i tem i is still frequent. In such a case, s ' = < sls2. . .sk-1 i >
must necessarily be exibited during the candidate verification phase�9 Thus s ' is a
frequent k-sequence and its only difference with s is its terminal item. Associated
leaves, by construction of the tree, are brothers.

T h e o r e m 2 Given a database D, for each sequence of length k, the structures
used in GSP and in our approach capture the very same set of candidate s e -

q u e n c e s .

E x p e r i m e n t s
The proposed approach is implemented on an Ultra Sparc with 256 MB main
memory. For experimentation, we generate synthetic customer transactions using
the da ta generation program of [2] 1 . Due to space limitation, we do not provide
detailed results which could be found in [7]. Figure 3 gives the execution times
of our algorithm applied to two DB examples.

Temps (sec) Temps (sec)

15 50

10

1

Access-Log

PSP o
GSP - - -o - - -

/
/

/
/

i i i i i

M i n i m u m Support

40

30

20

10

C20-D2-S4-N0�9

PSP
GSP --'~---

/

i

/

~ - 7 � 9 i i ,~c-? ~ :

M i n i m u m Support

Fig. 3. Execution times

1 Available at the following URL (http://www.almaden.ibm.com/cs/quest).

183

Discuss ion
Although our approach resumes GSP principles, we believe that the proposed
prefix-structure is more efficient than the tree structure used in GSP.
Before explaining why, let us have a comparative illustration.

Example 3 Figure 4 depicts the data structures used in our approach (left tree)
and in GSP (right tree), managed at the very same step of the general algorithm.
More precisely, from the frequent 2-sequences given in example 2, candidate 3-
sequences are obtained. Thus we have C3 = < (10) (40 10) > < (10) (30) (20) >
< (10) (30 40) > < (40 10) (30) > < (40 10) (40) >. As stated in proposition
1, the number of items stored in our structure is significantly reduced compared
with GSP.

/ ~ 20 3]0 4,0
i

~0 4,0 20 ~ , , ,"

20 40 10 30 40

10 ~ 40

Ii (10) (40 10) > < (40 10)(30) >
(10) (30) (20) > < (40 10) (40) >
(10) (30 40) >

Fig. 4. Illustration of the prefix-tree and hash-tree structures

During the candidate verification phase in GSP, a navigation is performed
through the tree until reaching a leaf storing several candidates. Then the algo-
rithm operates a costly backtracking for examining each sequence stored in the
leaf. In our approach, retrieving candidates means a mere navigation through
the tree. Once a leaf is reached, the single operation to be performed is incre-
menting the support value.
In the tree structure of GSP, sequences grouped in terminal nodes share a com-
mon initial sub-sequence. Nevertheless, this feature is not used for optimizing
retrievals. In fact, during the candidate verification phase, the GSP algorithm
examines each sequence stored in the leaf from its first item to the last. In our
approach, we make advantage of the proposed structure: all terminal nodes (at
depth k) which are brothers stand for continuations of a common (k-1)-sequence.
Thus it is costly and not necessary to examine this common sequence for all k-
sequences extending it.
Moreover, the advantage of our tree-structure is increased by applying the fol-
lowing ideas. Let us imagine that a frequent k-sequence is extended to capture
several (k+l)-candidates. Once the latter are proved to be unfrequent, they are
of course pruned from the tree and the k-sequence is provided with a mark.

184

This mark avoids to a t t empt building possible continuations of the considered
sequence during further steps. The mark is also used in order to avoid testing
j-sequences (2 < j < k).
Furthermore, at each step when a candidate k-sequence c is proved to be fre-
quent, its possible sub-sequences of length 1 (2 < l < k) ending with the k-1 th
i tem of c are examined. For each of which matching with a candidate/-sequence,
the considered/-sequence is pruned from the tree. In fact, such sub-sequences
are no longer relevant since longer sequences continuing them are discovered.
Applying this principle reduces the number of stored candidates.

5 C o n c l u s i o n

The presented approach addresses the problem of mining sequential pat terns
within a DB of behavioural facts. We adopt the general principles defined by the
GSP algorithm but propose a different da ta structure for storing candidate and
frequent sequences. The proposed algorithms for handling this s tructure take
advantages of its semantics for avoiding useless and costly operations when ver-
ifying candidates. Furthermore, the presented tree structure is proved to require
less memory than in GSP for storing candidate sequences.

R e f e r e n c e s

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets
of Items in Large Databases. In Proc. of the SIGMOD'93, Washington, 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Generalized Association
Rules. In Proc. of the VLDB'94, Santiago, Chile, September 1994.

3. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the ICDE'95,
Tapei, Taiwan, March 1995.

4. S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In Proc. of the SIGMOD'97.

5. U.M. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press, 1996.

6. H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery, 1(3), 1997.

7. F. Masseglia. Le pr6-calcul appliqu6 ~ l'extraction de motifs s~quentiels en data
mining. Technical report, LIRMM, France, June 1998.

8. A. Mueller. Fast Sequential and Parallel Algorithms for Association Rules Mining:
A Comparison. Technical Report CS-TR.-3515, Univ. Maryland-College, 1995.

9. A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. In Proc. of the VLDB'95, Zurich, 1995.

10. R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In Proc. of the EDBT'96, Avignon, France, Sept 1996.

11. H. Toivonen. Sampling Large Databases for Association Rules. In Proc. of the
VLDB'96, September 1996.

