
Similarity-Driven Sampling for Data Mining

Thomas Reinartz

Daimler-Benz AG, Research & Technology, FT3/KL
P.O. Box 2360, 89013 Ulm, Germany

e-mail: reinart z@dbag.ulm.daimlerbenz.com

Abs t r ac t . Industrial databases often contain millions oftuples but most
data mining algorithms suffer from limited applicability to only small
sets of examples. In this paper, we propose to utilize data reduction
before data mining to overcome this deficit. We specifically present a
novel similarity-driven sampling approach which applies two prepara-
tion steps, sorting and stratification, and reuses an improved variant of
leader clustering. We experimentally evaluate similarity-driven sampling
in comparison to statistical sampling techniques in different classifica-
tion domains using C4.5 and instance-based learning as data mining
algorithms. Experimental results show that similarity-driven sampling
often outperforms statistical sampling techniques in terms of error rates
using smaller samples.

1 Introduction

Industrial databases often contain millions of tuples but most da ta mining al-
gori thms suffer from limited applicability to only small sets of examples. In
principle, two main alternatives exist. First, scaling up da ta mining algorithms
makes their applications to larger da ta sets more feasible. Second, da ta reduction
techniques lead to smaller da ta sets, and if we then apply da ta mining algorithms
to these smaller da ta sets, da ta mining becomes more feasible. In this approach,
we have to ensure tha t reduced da ta sets still contain enough information to
reveal appropr ia te results.

In this paper, we consider da ta reduction techniques. We specifically present
a novel similarity-driven sampling approach which reduces the number of tuples
ra ther than decreasing the number of a t t r ibutes or values. In the next section, we
outline leader sampling as the core approach in similarity-driven sampling and
propose two da ta preparat ion steps, sorting and stratification, as well as auto-
mat ic est imation and adapta t ion strategies for similarity thresholds to overcome
negative propert ies of leader sampling. Thereafter , we experimentally evaluate
similarity-driven sampling in comparison to statistical sampling techniques in
different classification domains. Finally, we discuss related efforts and outline
issues for future work.

2 S i m i l a r i t y - D r i v e n S a m p l i n g

Existing efforts towards da ta reduction for da ta mining utilize statistical sam-
pling techniques or apply clustering and prototyping approaches (e.g., window-

424

ing (Quinlan, 1993) and IBL2 (Aha et al., 1991)). In this paper, we propose to
unify clustering and prototyping. The key idea is to generate subsets of suffi-
ciently similar tuples and to select representative prototypes within each subset.
Then, we reduce the original data set to the smaller set of prototypes.

2.1 L e a d e r S a m p l i n g

The core approach in similarity-driven sampling reuses an improved variant of
leader clustering (Hartigan, 1975). Leader clustering simultaneously generates
partit ions of data and selects leaders within each cluster by a single pass through
the data. We propose to follow up leader clustering for data reduction by select-
ing leaders as representative prototypes without explicitly creating correspond-
ing clusters. The resulting strategy, called leader sampling (LEASAM), works as
follows. LEASAM selects the first tuple as the first prototype of the first clus-
ter. For each following tuple, leader sampling considers similarities between this
tuple and already selected prototypes. If the similarity between the tuple and
the most similar prototype exceeds a pre-defined threshold J, LEASAM proceeds
with the next tuple. Otherwise, leader sampling adds the current tuple to the
sample. In this paper, we assume an Euclidian like weighted cumulated similarity
measure.

Besides an appropriate similarity measure, leader sampling mainly suffers
from the following three drawbacks. First, prototype selection in leader sam-
pling depends on the order of tuples. Second, execution time of leader sampling
increases if the set of currently selected prototypes becomes large. Finally, leader
sampling relies on appropriate settings of similarity threshold (~. In the following,
we define two preparation steps, sorting and stratification, to overcome the first
two drawbacks. Then, we develop automatic estimation and adaptation strate-
gies for similarity thresholds.

2.2 Sort ing

Sorting ensures a fixed well-defined order of tuples. Therefore, we define the
following order relation between tuples which considers a t t r ibute values in order
of a t t r ibute relevance. If the most important at tr ibute value in tuple t is larger
than the corresponding value in tuple t, then sorting places t after ~ in the
sorted table. If both values coincide, sorting recursively proceeds with the next
important a t t r ibute in the same way. If two tuples are completely identical, their
relation remains the same. For comparisons between continuous at t r ibute values,
we use the regular numeric order, whereas for symbolic attr ibutes, we employ
the lexicographic order. Note, leader sampling still depends on the new fixed
well-defined order of tuples, but now LEASAM always selects the same sample
independent of the original order of tuples.

2.3 Stratif icat ion

Stratification separates tuples into smaller subsets according to a t t r ibute val-
ues and again considers values in order of at t r ibute relevance. For continuous

425

attributes, a s t ra tum contains tuples with values in the same interval, whereas
for symbolic attr ibutes, a s t ra tum includes tuples with the same value. Note, for
continuous attributes, stratification involves discretization approaches to gener-
ate intervals (e.g., Dougherty et al., 1995). In the current implementation, we
discretize into equal-frequency intervals.

Stratification generates a s t ra ta tree. At each level, stratification separates
tuples according to single at t r ibute values. Stratification recursively iterates sep-
aration according to the next important a t t r ibute until a s t ra tum contains less
than a pre-defined maximum number of tuples, or no more at tr ibutes are avail-
able. Stratification returns all leaves of the resulting s t ra ta tree.

In terms of leader sampling, stratification is advantageous for two reasons.
First, stratification separates tuples into smaller subsets. If we then apply LEASAM
within each s t ra tum separately, leader sampling becomes more efficient in terms
of running time. Second, each s t ra tum contains locally similar tuples, and the
more at tr ibutes stratification takes into account, the higher are cumulated sim-
ilarities within a stratum. Hence, leader sampling is likely to consider the most
similar prototypes for each tuple without processing the entire data set.

2.4 S i m i l a r i t y T h r e s h o l d s

In order to develop estimation and adaptat ion strategies for similarity thresh-
olds in leader sampling, we relate different 5 values and resulting samples to
hierarchical clustering. For example, we assume 5 < 6' < 5" and data illustrated
in figure 1 (black and white bullets). If we apply LEASAM with 5 and tuple 1
is the first tuple, leader sampling selects only the first tuple. This prototype
represents all tuples within the dotted circle with radius 1 - & In terms of hier-
archical clustering, this prototype represents the root cluster. For threshold ~ ,
leader sampling selects an additional prototype. The final sample contains two
tuples, and the corresponding clustering structure refines the initial clustering.
If we now increase 5 again, leader sampling generates a third sample which again
corresponds to a more fine-grained clustering structure.

I ~ \ \] - S '

/

l - ~ " ~ /

" ' '

1-B

1-8

1-8 '

1 - 6 "

Fig. 1. Increasing similarity threshold values 5 < 5' < 5" and resulting samples
in leader sampling (left) correspond to refinements in hierarchical clustering
(right).

426

In summary, increasing similarity thresholds correspond to more fine-grained
clustering structures. In similarity-driven sampling, we a t tempt to callibrate (~
until prototypes represent subsets of tuples at an appropriate level. Appropriate-
ness of specific levels in hierarchical clustering depends on homogeneity within
clusters and heterogeneity between clusters. The general goal is to construct
clusterings such that homogeneity within clusters is higher than heterogeneity
between clusters. We use minimum similarities between tuples within clusters
as a measure of homogeneity and maximmn similarities between tuples within
different clusters as a measure of heterogeneity.

If we consider each subset of tuples represented by the same prototype in
leader sampling as a single cluster, homogeneity depends on similarity threshold
5. High threshold values correspond to high homogeneity. Vice versa, we calli-
brate ($ such that homogeneities within subsets of tuples represented by the same
prototype approximately match true homogeneities at the most appropriate level
in hierarchical clustering.

Occurring similarities between tuples and their prototypes yield estimates for
t rue homogeneities. Hence, we adapt 5 according to observed similarity values
in leader sampling. For this reason, we keep minimum, average, and maximum
similarities as aggregated information. If similarity-driven sampling adapts 5 to
the minimum of observed similarities, homogeneity within clusters is low, but
heterogeneity between clusters is high. In this case, similarity-driven sampling
only selects a few prototypes within a few clusters. If similarity-driven sampling
applies the maximum strategy, homogeneity within clusters is high, but hetero-
geneity between clusters is low. Then, similarity-driven sampling selects more
prototypes that represent small homogeneous clusters. The average strategy re-
sults in a compromise between homogeneity and heterogeneity.

2.5 Working Sets

In general, it is advisory to adapt similarity threshold values during sampling.
If we fix 5, similarity-driven sampling only draws representatives at a single
level in the corresponding hierarchical clustering. If we vary 5, it is possible to
select representatives at different levels of granularity and to seek for the most
appropriate value by moving up and down in the corresponding hierarchical
clustering.

In order to reveal appropriate estimations of homogeneities within clusters
and dynamically adapt 5, we propose to select intermediate working sets. We
apply leader sampling to each working set and use occurring similarities to esti-
mate the current similarity threshold. After each working set, we decide whether
to adapt ~ to a different value. Since similarity-driven sampling utilizes sorting
in advance, we suggest to apply systematic sampling to generate intermediate
working sets.

2.6 Algorithm SIMSAM

Now, we integrate sorting, stratification, and leader sampling with automatic es-
t imation and adaptat ion of similarity thresholds into an algorithm for similarity-

427

driven sampling (SIMSAM). SIMSAM starts sampling with sorting and stratifying
the original input data. Within each stratum, similarity-driven sampling utilizes
leader sampling on intermediate working sets with varying start positions. As
soon as SIMSAM completes processing a working sample, it compares the last
and the current sample size. If sampling does not make progress, i.e., the sample
size does not increase, SIMSAM updates similarity threshold 5 according to a
pre-specified adaptat ion strategy. SIMSAM iterates leader sampling on ,working
sets until either SIMSAM already processed all tuples in the current s tratum, or
if similarity-driven sampling does not make progress for a pre-defined number of
iterations.

3 Experimental Evaluation
In this section, we experimentally evaluate similarity-driven sampling in com-
parison to statistical sampling techniques in different classification domains.

3.1 E x p e r i m e n t a l P r o c e d u r e

In order to validate benefits of sorting and stratification as well as appropriate-
ness of similarity-driven sampling, we conduct an experimental s tudy on eight
different data sets from the UCI repository (Murphy & Aha, 1994). Table 1 out-
lines characteristics of these data sets and data mining results. For each data set,
we first separate the original da ta set into training and test set. The training set
is a random sample which contains approximately 80% of the entire data, and
the test set includes remaining tuples. We start data mining by applications of
two different classification algorithms to the entire training set. In this study, we
compare C4.5 (Quinlan, 1993) and inducer IB in A/Is (Kohavi et al., 1996).
We apply both algorithms with default settings, and for C4.5, we only consider
accuracies of pruned decision trees.

T a b l e 1. Data Characteristics

LName Training Test Number of
Set Size Set Size At t r ibu tes

Abalone 3342
Balance 500
Breast 560
Car 1383
Credit 552
German 800
Pima 615
Tic-Tac-Toe 767

835 9
125 5
139 11
345 7
138 16
200 21
153 9
i911 10

Error in % Time
C4.51 IB C4.5

79.4 82.0J 10.7 106.5
30.4 16.0 0.1 3.5
6.5 5.8 0.2 5.1
8.7 7.3 0.1 13.0

16.7 21.0 0.4 6.0
26.0 25.5 1.1 22.8
30.7! 30.7 0.6 4.8
10.5 0.0 0.1 6.7

iniBSeC. I

428

Then, we apply different sampling approaches to each training set and use re-
sulting samples for data mining. We examine six different sampling approaches:
Simple random sampling with replacement (R), stratified simple random sam-
pling with replacement (RS), systematic sampling (S), systematic sampling with
sorting (SS), leader sampling (L), and similarity-driven sampling with maximum
adaptat ion (SM). First, we apply leader sampling with varying similarity thresh-
olds between 6 = 0.9 and 6 = 0.99. LEASAM determines its sample size according
to the specified threshold. Similarly, SIMSAM chooses as many prototypes as it
regards as necessary according to the selected adaptation strategy. For random
and systematic sampling, we modify sample sizes within the range of sample
sizes of leader and similarity-driven sampling.

For all non-deterministic sampling approaches, we repeat sampling and data
mining ten times and present average results. In all experiments, we compute
at t r ibute relevance weights according to information gain ratio as if we select
the first a t t r ibute at top of a decision tree (Quinlan, 1993).

3 . 2 E x p e r i m e n t a l R e s u l t s

Table 2 summarizes experimental results. For each data set, for each sampling
approach, and for each data mining algorithm, we show error rate differences in
comparison to leaxning on the entire training set, relative reduced training set
size in comparison to the original training set, as well as relative execution time
of sampling and data mining in comparison to data mining on the entire training
set. Note, each entry in table 2 refers to best results in terms of error rate for
samples which contain less than 50% of the original data.

Negative error rate differences indicate that data mining on samples yields
more accurate classifiers than learning on the original training set, whereas pos-
itive differences depict worse results. For execution time, values below 100 mean
that sampling and data mining on resulting samples is faster than data mining
on original training sets, whereas values above 100 indicate that sampling and
data mining take more t ime than data mining without reducing the training set.

For each data set and for each data mining algorithm, bold entries refer to
best results among different sampling approaches if we consider each aspect sep-
arately. For comparisons between sampling approaches, we consider a sampling
approach as more appropriate than another sampling approach, if the former
yields lower (or equal) error rates on smaller (or equally sized) samples than the
latter. If the former approach results in lower error rates but uses larger samples
than the lat ter (or vice versa), we regard these approaches as not comparable.

Detailed analyses of all results (including results not presented here) axe
beyond the scope of this paper. In summary, we stress the following conclusions:

- Stratification is useful as an enhancement to simple random sampling in
some domains. In the majority of domains, both sampling approaches are
not comparable.

- Sorting is generally beneficial in combination with systematic sampling. Only
in two domains with applications of C4.5, pure systematic sampling outper-
forms systematic sampling with sorting.

429

Tab le 2. Experimental Results

r-~ u'9 u'9 r r

�9 r

r r - ~ ~ Cq

- If experiments of leader sampling and similarity-driven sampling are compa-
rable, SIMSAM always produces bet ter results than LEASAM. We also notice
tha t similarity-driven sampling is faster than leader sampling in all domains,
except on tic-tac-toe if we apply instance-based learning.

- Although about 50% of experimental results are not comparable if we relate
statistical sampling techniques to similarity-driven sampling, we recognize

430

tha t SIMSAM always outperforms simple random sampling as well as sys-
tematic sampling in domains where comparisons are reasonable.
All in all, these results indicate that both preparation steps, sorting and

stratification, are useful enhancements and that similarity-driven sampling is an
appropriate alternative to statistical sampling techniques.

4 R e l a t e d W o r k

The origin of all efforts to learn on subsets of tuples is Quinlan's windowing ap-
proach in ID3. Wirth and Catlett (1988) showed that costs of using windowing
in ID3 are almost always significantly increase running time or do not lead to
improvements. Catlet t (1991) considered windowing in C4.5 which uses stratifi-
cation as SIMSAM but only according to the class attribute. Experimental results
indicate that windowing increases accuracy for noisy domains with continuous
attributes. In general, effects of windowing are not significant but it slows down
induction.

John and Langley (1996) discuss static versus dynamic sampling for data
mining. Dynamic sampling uses the PCE (probably close enough) criterion, and a
sample meets this criterion if the probability is low that da ta mining on the entire
data set achieves higher accuracy. For naive bayes, their comparison showed only
minor differences between static and dynamic sampling.

Toivonen (1996) and Zaki et al. (1997) examine applications of random sam-
pling for finding association rules. They both report that sampling speeds up
computat ion of large itemsets by reducing I /O costs. Zaki et al. only consider
computat ion of large itemsets and demonstrate that up to 80% of true large
itemsets can be found on a random sample. Toivonen uses itemsets produced on
a sample as hypotheses that are tested on the entire database.

Ester et al. (1995) describe sampling on representatives for data mining with
CLARANS (Clustering Large Applications based on Randomized Search). They
use R*-trees to determine center points for each data page in a spatial database,
and then run their clustering algorithm on the set of center points. In terms of
efficiency, focusing on representatives gains a significant speed-up. In terms of
effectiveness, their sampling approach is slightly worse than clustering the entire
database.

5 C o n c l u s i o n

In this paper, we introduced similarity-driven sampling for data mining. In sum-
mary, similarity-driven sampling often outperforms statistical sampling tech-
niques in terms of error rates using smaller samples if we train C4.5 and instance-
based learning on reduced data sets and estimate their accuracy on separate test
sets. Systematic sampling with sorting also yields astonishing good results.

We propose several technical enhancements for future work. For example,
SIMSAM'S performance will benefit from more sophisticated discretization ap-
proaches in stratification. We also plan alternative uses of different similarity

431

measures. Future work also includes efforts to re-implement similarity-driven
sampling such that SIMSAM utilizes direct access to databases.

The experimental study also raises more basic research questions. Differences
in success between statistical sampling techniques and more intelligent smnpling
approaches are less significant than generally expected. The best sampling ap-
proach depends on both data characteristics and the selected data mining algo-
rithm. The ult imate goal is to provide a set of sampling approaches accompanied
by guidelines which context requires which data reduction approach.

References

Aha, D.W., Kibler, D., ~ Albert, M.K. (1991). Instance-Based Learning Algorithms.
Machine Learning, 6, p. 37-66.

Catlett, J. (1991). Megainduction: Machine Learning on Very Large Data-bases. Ph.D.
Thesis, University of Sydney, Australia.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and Unsupervised Dis-
cretization of Continuous Features. in: Prieditis, A., & Russell, S. (eds.). P*vceedings
of the 12th International Conference on Machine Learning. July, 9-12, Tat~oe City,
CA. Menlo Park, CA: Morgan Kaufmann, pp. 194-202.

Ester, M., Kriegel, H.-P., ~ Xu, X. (1995). Knowledge Discovery in Large Spatial
Databases: Focusing Techniques for Efficient Class Identification. in: Egenhofer,
M.J., ~ Herring, J.R. (eds.) Proceedings of the 4th International Symposium on
Spatial Databases. August, 6-9, Portland, Maine. New York, NY: Springer, pp. 67-
82.

Hartigan, J.A. (1975). Clustering Algorithms. New York, NY: John Wiley & Sons, Inc.
John, G.H., & Langley, P. (1996). Static Versus Dynamic Sampling for Data Mining.

in: Simoudis, E., Han, J., & Fayyad, U. (eds.) Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining. August, 2-4, Portland, Ore-
gon. Menlo Park, CA: AAAI Press, pp. 367-370.

Kohavi, R., Sommerfield, D., ~c Dougherty, J. (1996). Data Min-
ing Using ak4f~C++: A Machine Learning Library in C++. http: / /
robotics.st anford.edu/,~ronnyk.

Murphy, P.M., & Aha, D. (1994). UCI Repository of Machine Learning Databases.
ftp://ies.uci.edu/pub/machine-learning-dat abases.

Quinlan, J.R. (1993). C~.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Toivonen, H. (1996). Sampling Large Databases for Finding Association Rules. in:
Vijayaraman, T.M., Buchmann, A.P., Mohan, C., & Sarda, N.L. (eds.) Proceedings
of the 22nd International Conference on Very Large Databases. September, 3-6,
Mumbai, India. San Mateo, CA: Morgan Kaufmann, pp. 134-145.

Wirth, J., & Catlett, J. (1988). Experiments on the Costs and Benefits of Windowing in
ID3. in: Laird, J. (ed.) Proceedings of the 5th International Conference on Machine
Learning. June, 12-14, University of Michigan, Ann Arbor. San Mateo, CA: Morgan
Kaufmann, pp. 87-99.

Zaki, M.J., Parthasarathy, S., Li, W., & Ogihara, M. (1997). Evaluation of Sampling
for Data Mining of Association Rules. in: Scheuermann, P. (ed.) Proceedings of the
7th Workshop on Research Issues in Data Engineering. April, 7-8, Birmingham,
England. Los Alamitos, CA: IEEE Computer Society Press.

