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Abs t r ac t .  Industrial databases often contain millions oftuples but most 
data mining algorithms suffer from limited applicability to only small 
sets of examples. In this paper, we propose to utilize data reduction 
before data mining to overcome this deficit. We specifically present a 
novel similarity-driven sampling approach which applies two prepara- 
tion steps, sorting and stratification, and reuses an improved variant of 
leader clustering. We experimentally evaluate similarity-driven sampling 
in comparison to statistical sampling techniques in different classifica- 
tion domains using C4.5 and instance-based learning as data mining 
algorithms. Experimental results show that similarity-driven sampling 
often outperforms statistical sampling techniques in terms of error rates 
using smaller samples. 

1 Introduction 

Industrial  databases  often contain millions of tuples but  most  da ta  mining al- 
gori thms suffer from limited applicability to only small sets of examples. In 
principle, two main alternatives exist. First, scaling up da ta  mining algorithms 
makes their applications to larger da ta  sets more feasible. Second, da ta  reduction 
techniques lead to smaller da ta  sets, and if we then apply da ta  mining algorithms 
to these smaller da ta  sets, da ta  mining becomes more feasible. In this approach,  
we have to ensure tha t  reduced da ta  sets still contain enough information to 
reveal appropr ia te  results. 

In this paper,  we consider da ta  reduction techniques. We specifically present 
a novel similarity-driven sampling approach which reduces the number  of tuples 
ra ther  than  decreasing the number  of a t t r ibutes  or values. In the next section, we 
outline leader sampling as the core approach in similarity-driven sampling and 
propose two da ta  preparat ion steps, sorting and stratification, as well as auto- 
mat ic  est imation and adapta t ion strategies for similarity thresholds to overcome 
negative propert ies of leader sampling. Thereafter ,  we experimentally evaluate 
similarity-driven sampling in comparison to statistical sampling techniques in 
different classification domains. Finally, we discuss related efforts and outline 
issues for future work. 

2 S i m i l a r i t y - D r i v e n  S a m p l i n g  

Existing efforts towards da ta  reduction for da ta  mining utilize statistical sam- 
pling techniques or apply clustering and prototyping approaches (e.g., window- 
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ing (Quinlan, 1993) and IBL2 (Aha et al., 1991)). In this paper, we propose to 
unify clustering and prototyping. The key idea is to generate subsets of suffi- 
ciently similar tuples and to select representative prototypes within each subset. 
Then, we reduce the original data  set to the smaller set of prototypes. 

2.1 L e a d e r  S a m p l i n g  

The core approach in similarity-driven sampling reuses an improved variant of 
leader clustering (Hartigan, 1975). Leader clustering simultaneously generates 
partit ions of data  and selects leaders within each cluster by a single pass through 
the data. We propose to follow up leader clustering for data  reduction by select- 
ing leaders as representative prototypes without explicitly creating correspond- 
ing clusters. The resulting strategy, called leader sampling (LEASAM), works as 
follows. LEASAM selects the first tuple as the first prototype of the first clus- 
ter. For each following tuple, leader sampling considers similarities between this 
tuple and already selected prototypes. If the similarity between the tuple and 
the most similar prototype exceeds a pre-defined threshold J, LEASAM proceeds 
with the next tuple. Otherwise, leader sampling adds the current tuple to the 
sample. In this paper, we assume an Euclidian like weighted cumulated similarity 
measure. 

Besides an appropriate similarity measure, leader sampling mainly suffers 
from the following three drawbacks. First, prototype selection in leader sam- 
pling depends on the order of tuples. Second, execution time of leader sampling 
increases if the set of currently selected prototypes becomes large. Finally, leader 
sampling relies on appropriate settings of similarity threshold (~. In the following, 
we define two preparation steps, sorting and stratification, to overcome the first 
two drawbacks. Then, we develop automatic estimation and adaptation strate- 
gies for similarity thresholds. 

2.2 Sort ing 

Sorting ensures a fixed well-defined order of tuples. Therefore, we define the 
following order relation between tuples which considers a t t r ibute  values in order 
of a t t r ibute  relevance. If the most important  at tr ibute value in tuple t is larger 
than the corresponding value in tuple t, then sorting places t after ~ in the 
sorted table. If both  values coincide, sorting recursively proceeds with the next  
important  a t t r ibute  in the same way. If two tuples are completely identical, their 
relation remains the same. For comparisons between continuous at t r ibute  values, 
we use the regular numeric order, whereas for symbolic attr ibutes,  we employ 
the lexicographic order. Note, leader sampling still depends on the new fixed 
well-defined order of tuples, but  now LEASAM always selects the same sample 
independent of the original order of tuples. 

2.3 Stratif icat ion 

Stratification separates tuples into smaller subsets according to a t t r ibute  val- 
ues and again considers values in order of at t r ibute relevance. For continuous 
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attributes,  a s t ra tum contains tuples with values in the same interval, whereas 
for symbolic attr ibutes,  a s t ra tum includes tuples with the same value. Note, for 
continuous attributes,  stratification involves discretization approaches to gener- 
ate intervals (e.g., Dougherty et al., 1995). In the current implementation, we 
discretize into equal-frequency intervals. 

Stratification generates a s t ra ta  tree. At each level, stratification separates 
tuples according to single at t r ibute values. Stratification recursively iterates sep- 
aration according to the next important  a t t r ibute  until a s t ra tum contains less 
than a pre-defined maximum number of tuples, or no more at tr ibutes are avail- 
able. Stratification returns all leaves of the resulting s t ra ta  tree. 

In terms of leader sampling, stratification is advantageous for two reasons. 
First, stratification separates tuples into smaller subsets. If we then apply LEASAM 
within each s t ra tum separately, leader sampling becomes more efficient in terms 
of running time. Second, each s t ra tum contains locally similar tuples, and the 
more at tr ibutes stratification takes into account, the higher are cumulated sim- 
ilarities within a stratum. Hence, leader sampling is likely to consider the most 
similar prototypes for each tuple without processing the entire data  set. 

2.4 S i m i l a r i t y  T h r e s h o l d s  

In order to develop estimation and adaptat ion strategies for similarity thresh- 
olds in leader sampling, we relate different 5 values and resulting samples to 
hierarchical clustering. For example, we assume 5 < 6' < 5" and data  illustrated 
in figure 1 (black and white bullets). If we apply LEASAM with 5 and tuple 1 
is the first tuple, leader sampling selects only the first tuple. This prototype 
represents all tuples within the dotted circle with radius 1 - & In terms of hier- 
archical clustering, this prototype represents the root cluster. For threshold ~ ,  
leader sampling selects an additional prototype.  The final sample contains two 
tuples, and the corresponding clustering structure refines the initial clustering. 
If we now increase 5 again, leader sampling generates a third sample which again 
corresponds to a more fine-grained clustering structure. 
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Fig.  1. Increasing similarity threshold values 5 < 5' < 5" and resulting samples 
in leader sampling (left) correspond to refinements in hierarchical clustering 
(right). 



426 

In summary, increasing similarity thresholds correspond to more fine-grained 
clustering structures. In similarity-driven sampling, we a t tempt  to callibrate (~ 
until prototypes represent subsets of tuples at an appropriate level. Appropriate- 
ness of specific levels in hierarchical clustering depends on homogeneity within 
clusters and heterogeneity between clusters. The general goal is to construct 
clusterings such that  homogeneity within clusters is higher than heterogeneity 
between clusters. We use minimum similarities between tuples within clusters 
as a measure of homogeneity and maximmn similarities between tuples within 
different clusters as a measure of heterogeneity. 

If we consider each subset of tuples represented by the same prototype in 
leader sampling as a single cluster, homogeneity depends on similarity threshold 
5. High threshold values correspond to high homogeneity. Vice versa, we calli- 
brate ($ such that  homogeneities within subsets of tuples represented by the same 
prototype approximately match true homogeneities at the most appropriate level 
in hierarchical clustering. 

Occurring similarities between tuples and their prototypes yield estimates for 
t rue homogeneities. Hence, we adapt  5 according to observed similarity values 
in leader sampling. For this reason, we keep minimum, average, and maximum 
similarities as aggregated information. If similarity-driven sampling adapts 5 to 
the minimum of observed similarities, homogeneity within clusters is low, but  
heterogeneity between clusters is high. In this case, similarity-driven sampling 
only selects a few prototypes within a few clusters. If similarity-driven sampling 
applies the maximum strategy, homogeneity within clusters is high, but  hetero- 
geneity between clusters is low. Then, similarity-driven sampling selects more 
prototypes that  represent small homogeneous clusters. The average strategy re- 
sults in a compromise between homogeneity and heterogeneity. 

2.5 Working Sets 

In general, it is advisory to adapt  similarity threshold values during sampling. 
If we fix 5, similarity-driven sampling only draws representatives at a single 
level in the corresponding hierarchical clustering. If we vary 5, it is possible to 
select representatives at different levels of granularity and to seek for the most 
appropriate value by moving up and down in the corresponding hierarchical 
clustering. 

In order to reveal appropriate estimations of homogeneities within clusters 
and dynamically adapt 5, we propose to select intermediate working sets. We 
apply leader sampling to each working set and use occurring similarities to esti- 
mate  the current similarity threshold. After each working set, we decide whether 
to adapt  ~ to a different value. Since similarity-driven sampling utilizes sorting 
in advance, we suggest to apply systematic sampling to generate intermediate 
working sets. 

2.6 Algorithm SIMSAM 

Now, we integrate sorting, stratification, and leader sampling with automatic  es- 
t imation and adaptat ion of similarity thresholds into an algorithm for similarity- 
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driven sampling (SIMSAM). SIMSAM starts sampling with sorting and stratifying 
the original input data. Within each stratum, similarity-driven sampling utilizes 
leader sampling on intermediate working sets with varying start  positions. As 
soon as SIMSAM completes processing a working sample, it compares the last 
and the current sample size. If sampling does not make progress, i.e., the sample 
size does not increase, SIMSAM updates similarity threshold 5 according to a 
pre-specified adaptat ion strategy. SIMSAM iterates leader sampling on ,working 
sets until either SIMSAM already processed all tuples in the current s tratum, or 
if similarity-driven sampling does not make progress for a pre-defined number of 
iterations. 

3 Experimental Evaluation 
In this section, we experimentally evaluate similarity-driven sampling in com- 
parison to statistical sampling techniques in different classification domains. 

3.1 E x p e r i m e n t a l  P r o c e d u r e  

In order to validate benefits of sorting and stratification as well as appropriate- 
ness of similarity-driven sampling, we conduct an experimental s tudy on eight 
different data  sets from the UCI repository (Murphy & Aha, 1994). Table 1 out- 
lines characteristics of these data  sets and data  mining results. For each data  set, 
we first separate the original da ta  set into training and test set. The training set 
is a random sample which contains approximately 80% of the entire data,  and 
the test set includes remaining tuples. We start  data  mining by applications of 
two different classification algorithms to the entire training set. In this study, we 
compare C4.5 (Quinlan, 1993) and inducer IB in A/Is (Kohavi et al., 1996). 
We apply both  algorithms with default settings, and for C4.5, we only consider 
accuracies of pruned decision trees. 

T a b l e  1. Data  Characteristics 

LName Training Test Number of 
Set Size Set Size At t r ibu tes  

Abalone 3342 
Balance 500 
Breast 560 
Car 1383 
Credit 552 
German 800 
Pima 615 
Tic-Tac-Toe 767 

835 9 
125 5 
139 11 
345 7 
138 16 
200 21 
153 9 
i911 10 

Error in % Time 
C4.51 IB C4.5 

79.4 82.0J 10.7 106.5 
30.4 16.0 0.1 3.5 
6.5 5.8 0.2 5.1 
8.7 7.3 0.1 13.0 

16.7 21.0 0.4 6.0 
26.0 25.5 1.1 22.8 
30.7! 30.7 0.6 4.8 
10.5 0.0 0.1 6.7 

iniBSeC. I 
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Then, we apply different sampling approaches to each training set and use re- 
sulting samples for data  mining. We examine six different sampling approaches: 
Simple random sampling with replacement (R), stratified simple random sam- 
pling with replacement (RS), systematic sampling (S), systematic sampling with 
sorting (SS), leader sampling (L), and similarity-driven sampling with maximum 
adaptat ion (SM). First, we apply leader sampling with varying similarity thresh- 
olds between 6 = 0.9 and 6 = 0.99. LEASAM determines its sample size according 
to the specified threshold. Similarly, SIMSAM chooses as many prototypes as it 
regards as necessary according to the selected adaptation strategy. For random 
and systematic sampling, we modify sample sizes within the range of sample 
sizes of leader and similarity-driven sampling. 

For all non-deterministic sampling approaches, we repeat sampling and data  
mining ten times and present average results. In all experiments, we compute 
at t r ibute  relevance weights according to information gain ratio as if we select 
the first a t t r ibute  at top of a decision tree (Quinlan, 1993). 

3 . 2  E x p e r i m e n t a l  R e s u l t s  

Table 2 summarizes experimental results. For each data  set, for each sampling 
approach, and for each data  mining algorithm, we show error rate differences in 
comparison to leaxning on the entire training set, relative reduced training set 
size in comparison to the original training set, as well as relative execution time 
of sampling and data  mining in comparison to data  mining on the entire training 
set. Note, each entry in table 2 refers to best results in terms of error rate for 
samples which contain less than 50% of the original data. 

Negative error rate differences indicate that  data  mining on samples yields 
more accurate classifiers than learning on the original training set, whereas pos- 
itive differences depict worse results. For execution time, values below 100 mean 
that  sampling and data  mining on resulting samples is faster than data  mining 
on original training sets, whereas values above 100 indicate that  sampling and 
data  mining take more t ime than data  mining without reducing the training set. 

For each data  set and for each data  mining algorithm, bold entries refer to 
best results among different sampling approaches if we consider each aspect sep- 
arately. For comparisons between sampling approaches, we consider a sampling 
approach as more appropriate than another sampling approach, if the former 
yields lower (or equal) error rates on smaller (or equally sized) samples than the 
latter. If the former approach results in lower error rates but  uses larger samples 
than the lat ter  (or vice versa), we regard these approaches as not comparable. 

Detailed analyses of all results (including results not presented here) axe 
beyond the scope of this paper. In summary, we stress the following conclusions: 

- Stratification is useful as an enhancement to simple random sampling in 
some domains. In the majority of domains, both  sampling approaches are 
not comparable. 

- Sorting is generally beneficial in combination with systematic sampling. Only 
in two domains with applications of C4.5, pure systematic sampling outper- 
forms systematic sampling with sorting. 
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Tab le  2. Experimental  Results 

r-~ u'9 u'9 r r  

�9 r  

r  r - ~  ~ Cq 

- If experiments of leader sampling and similarity-driven sampling are compa- 
rable, SIMSAM always produces bet ter  results than LEASAM. We also notice 
tha t  similarity-driven sampling is faster than leader sampling in all domains, 
except on tic-tac-toe if we apply instance-based learning. 

- Although about  50% of experimental results are not comparable if we relate 
statistical sampling techniques to similarity-driven sampling, we recognize 
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tha t  SIMSAM always outperforms simple random sampling as well as sys- 
tematic sampling in domains where comparisons are reasonable. 
All in all, these results indicate that  both  preparation steps, sorting and 

stratification, are useful enhancements and that  similarity-driven sampling is an 
appropriate alternative to statistical sampling techniques. 

4 R e l a t e d  W o r k  

The origin of all efforts to learn on subsets of tuples is Quinlan's windowing ap- 
proach in ID3. Wirth and Catlett  (1988) showed that costs of using windowing 
in ID3 are almost always significantly increase running time or do not lead to 
improvements. Catlet t  (1991) considered windowing in C4.5 which uses stratifi- 
cation as  SIMSAM but only according to the class attribute. Experimental  results 
indicate that  windowing increases accuracy for noisy domains with continuous 
attributes.  In general, effects of windowing are not significant but  it slows down 
induction. 

John and Langley (1996) discuss static versus dynamic sampling for data  
mining. Dynamic sampling uses the PCE (probably close enough) criterion, and a 
sample meets this criterion if the probability is low that  da ta  mining on the entire 
data  set achieves higher accuracy. For naive bayes, their comparison showed only 
minor differences between static and dynamic sampling. 

Toivonen (1996) and Zaki et al. (1997) examine applications of random sam- 
pling for finding association rules. They both  report  that  sampling speeds up 
computat ion of large itemsets by reducing I /O  costs. Zaki et al. only consider 
computat ion of large itemsets and demonstrate that  up to 80% of true large 
itemsets can be found on a random sample. Toivonen uses itemsets produced on 
a sample as hypotheses that  are tested on the entire database. 

Ester et al. (1995) describe sampling on representatives for data  mining with 
CLARANS (Clustering Large Applications based on Randomized Search). They 
use R*-trees to determine center points for each data  page in a spatial database, 
and then run their clustering algorithm on the set of center points. In terms of 
efficiency, focusing on representatives gains a significant speed-up. In terms of 
effectiveness, their sampling approach is slightly worse than clustering the entire 
database. 

5 C o n c l u s i o n  

In this paper, we introduced similarity-driven sampling for data mining. In sum- 
mary, similarity-driven sampling often outperforms statistical sampling tech- 
niques in terms of error rates using smaller samples if we train C4.5 and instance- 
based learning on reduced data  sets and estimate their accuracy on separate test 
sets. Systematic sampling with sorting also yields astonishing good results. 

We propose several technical enhancements for future work. For example, 
SIMSAM'S performance will benefit from more sophisticated discretization ap- 
proaches in stratification. We also plan alternative uses of different similarity 
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measures. Future work also includes efforts to re-implement similarity-driven 
sampling such that  SIMSAM utilizes direct access to databases. 

The experimental study also raises more basic research questions. Differences 
in success between statistical sampling techniques and more intelligent smnpling 
approaches are less significant than generally expected. The best sampling ap- 
proach depends on both  data  characteristics and the selected data  mining algo- 
rithm. The ult imate goal is to provide a set of sampling approaches accompanied 
by guidelines which context requires which data  reduction approach. 
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