
Conceptual Knowledge Discovery in Databases 
Using Formal Concept Analysis Methods 

Gerd Stumme I, Rudolf Wille 1, Uta Wille 2 

1 Technische Universit/it Darmstadt, Fachbereich Mathematik, D-64289 Darmstadt, 
Germany, {stumme, wille}@mathematik.tu-darmstadt.de 

2 IBM Research Division, Zurich Research Laboratory, CH-8803 Rfischlikon, 
Switzerland, wiUe_u@jelmoli.ch 

In this paper we discuss Conceptual Knowledge Discovery in Databases ( CKDD) 
as it is developing in the field of Conceptual Knowledge Processing (cf. [29],[30]). 
Conceptual Knowledge Processing is based on the mathematical theory of Formal 
Concept Analysis which has become a successful theory for data analysis during the 
last 18 years. This approach relies on the pragmatic philosophy of Ch. S. Peirce [15] 
who claims that we can only analyze and argue within restricted contexts where 
we always rely on pre-knowledge and common sense. The development of Formal 
Concept Analysis led to the software system TOSCANA, which is presented as 
a CKDD tool in this paper. TOSCANA is a flexible navigation tool that allows 
dynamic browsing through and zooming into the data. It supports the exploration 
of large databases by visualizing conceptual aspects inherent to the data. We want to 
clarify that CKDD can be understood as a human-centered approach of Knowledge 
Discovery in Databases. The actual discussion about human-centered Knowledge 
Discovery is therefore briefly summarized in Section 1. 

1 H u m a n - C e n t e r e d  K n o w l e d g e  D i s c o v e r y  

Knowledge Discovery in Databases (KDD) is aimed at the development of methods, 
techniques, and tools that support human analysts in the overall process of discov- 
ering useful information and knowledge in databases. Many real-world knowledge 
discovery tasks are both too complex to be accessible by simply applying a single 
learning or data mining algorithm and too knowledge-intensive to be performed 
without repeated participation of the domain expert. Therefore, knowledge discov- 
ery in databases is considered an interactive and iterative process between a human 
and a database that may strongly involve background knowledge of the analyzing 
domain expert. This process-centered view of KDD is the overall theme and contri- 
bution of the volume "Advances in Knowledge Discovery and Data Minin~' [7]. 

According to R.S. Brachman and T. Anand [3], much attention and effort has 
been focused on the development of data-mining techniques but only a minor ef- 
fort has been devoted to the development of tools that support the analyst in the 
overall discovery task. They see a clear need to emphasize the processorientation of 
KDD tasks and argue in favor of a more human-centered approach for a successful 
development of knowledge-discovery support tools (see also [24], p. 564). All in all, 
human-centered KDD refers to the constitutive character of human interpretation 
for the discovery of knowledge, and stresses the complex, interactive process of KDD 
as being lead by human thought. 

Real-world knowledge-discovery applications obviously vary in terms of underly- 
ing data, complexity, the amount of human involvement required, and their degree 
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of possible automation of parts of the discovery process. In most applications, how- 
ever, an indispensable part of the discovery process is that the analyst explores the 
data and sifts through the raw data to become familiar with it and to get a feel for 
what the data may cover. Often an explicit specification of what one is looking for 
only arises during an interactive process of data exploration, analysis, and segmen- 
tation. R.S. Brachman et al. introduced the notion of Data Archaeology for KDD 
tasks in which a precise specification of the discovery strategy, the crucial questions, 
and the basic goals of the task have to be elaborated during such an unpredictable 
interactive exploration of the data [4]. Data Archaeology can be considered a highly 
human-centered process of asking, exploring, analyzing, interpreting, and learning 
in interaction with the underlying database. 

Emphasizing the KDD process, comprehensive support of the analyst has to 
be provided that, according to [3], should be embedded into a knowledge-discovery 
support environment. A support environment should especially support the overall 
process of human-centered KDD, including Data Archaeology involved in many 
KDD applications. In this paper, we investigate and discuss how the process of 
human-centered KDD can be supported by Formal Concept Analysis methods. This 
is done with regard to the basic requirements formulated for human-centered KDD 
support tools. 

In order to formulate requirements for knowledge discovery support tools, it is 
necessary to reflect the underlying understanding of knowledge. A human-centered 
approach to KDD that supports the overall KDD process should be based on a com- 
prehensive notion of knowledge a part of human thought rather than on a restrictive 
formalization as it is used for the evaluation of automated knowledge-discovery or 
data-mining findings (for example [6], p. 8). The landscape paradigm of knowledge 
underlying conceptual knowledge processing as described in [30] provides such a 
comprehensive and human-centered notion of knowledge. Although there is some 
similarity with the archaeology metaphor, the landscape paradigm places more em- 
phasizes on the intersubjective character of knowledge. Following Peirce's pragmatic 
philosophy, knowledge is understood as always being incomplete, formed and con- 
tinuously assured by human argumentation within an intersubjective community of 
communication (cf. [30]). 

Knowledge discovery based on such an understanding of knowledge should sup- 
port knowledge communication as a part of the KDD process, both with respect to 
the dialog between user and system and also as a part of human communication 
and argumentation. This presupposes a high transparency of the discovery process 
and a representation of its (interim) findings that supports human argumentation 
to establish intersubjectively assured knowledge. Further fundamental requirements 
for human-centered KDD support tools have been stated by R.S. Brachman and 
T. Anand (see [3], p. 53). In addition to tools that support the individual phases 
of the KDD process, they basically demand support for the coupling of the overall 
process, for exploratory Data Archaeology, and some help in deciding what dis- 
covery techniques to choose. Most of the content of these claims is covered by the 
more explicit and detailed requirements formulated already in [4]. Requirements 1 
to 5 of the subsequent list are explicitely stated in [4], p. 164, while the remaining 
requirements are implicit in [3] and [4]. 
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I. The system should represent and present to the user the underlying domain in 
a natural and appropriate fashion. Objects from the domain should be easily 
incorporated into queries. 

2. The domain representation should be extendible by the addition of new cate- 
gories formed from queries. These categories (and their representative individ- 
uals) must be usable in subsequent queries. 

3. It should be easy to form tentative segmentations of data, to investigate the 
segments, and to re-segment quickly and easily. There should be a powerful 
repertoire of viewing an d analysis methods, and these methods should be appli- 
cable to segments. 

4. Analysts should be supported in recognizing and abstracting common analysis 
(segmenting and viewing) patterns. These patterns must be easy to apply and 
modify. 

5. There should be facilities for monitoring changes in classes or categories over 
time. 

6. The system should increase the transparency of the KDD process, and document 
its different stages. 

7. Analysis tools should Sake advantage of explicitly represented background knowl- 
edge of domain experts, but should also activate the implicit knowledge of ex- 
perts. 

8. The system should allow highly flexible processes of knowledge discovery re- 
specting the open and procedural nature of productive human thinking. This 
means in particular the support of intersubjective communication and argumen- 
tation. 

Before discussing Conceptual Knowledge Discovery in Databases with regard to 
these requirements in Section 3, we introduce some basic notions and ideas of Formal 
Concept Analysis and conceptual data systems in the next section. 

2 F o r m a l  C o n c e p t  A n a l y s i s  

Concepts are necessary for expressing human knowledge. Therefore, the process of 
discovering knowledge in databases benefits from a comprehensive formalization of 
concepts which can be activated to communicatively represent knowledge coded 
in databases. Formal Concept Analysis ([27],[28],[5]) offers such a formalization by 
mathematizing concepts that are understood as units of thought constituted by their 
extension and intension. To allow a mathematical description of extensions and in- 
tensions, Formal Concept Analysis always starts with a formal context defined as a 
triple (G, M, I), where Gis a set of (formal) objects, M is a set of (formal) attributes, 
and I is a binary relation between G and M (i.e. I C G x M); in general, gIm 
(r (g, m) E I) is read: "the object # has the attribute m". In Figure 1, a formal 
context is described by a table in which the crosses represent the binary relation I 
between the object set G (comprising the gates of Terminal 1 at Frankfurt Airport) 
and the attribute set M (consisting of certain gate types). A formal concept of a 
formal context (G, M, I) is defined as a pair (A, B) with A C G and B C_ M such 
that (A, B) is maximal with the property A x B C I; the sets A and B are called 
the eztent and the intent of the formal concept (A, B). The subconcept-superconcept 
relation is formalized by (A1, B1) < (A2, B2) :r A1 C_ A2 (r162 BI_D B2). The 
set of all concepts of a context (G, M, I) together with the order relation < is always 
a complete lattice, called the concept lattice of (G, M, [) and denoted by ~__(G, M, I). 
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Fig. 1. A formal context concerning gates at Frankfurt Airport and its concept lattice 
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In this example, the intents of the formal context are exactly the subsets of its at- 
tribute set; hence its concept lattice is a 16-element Boolean lattice, as can be seen 
in Figure 1, which visualizes the concept lattice by a (labeled) line diagram. In a line 
diagram of a concept lattice, the name of an object g is always attached to the circle 
representing the smallest concept with g in its extent (denoted by 7g); dually, the 
name of an attribute m is always attached to the circle representing the largest con- 
cept with m in its intent (denoted by #m). This labelling allows us to read the con- 
text relation from the diagram because g[m r 7g < t tm, in words: the object g has 
the attribute m if and only if there is an ascending path from the circle representing 
7g to the circle representing 7rn. The extent and intent of each concept (A, B) can 
also be recognized because A = {g E G I 7g -< (A, B)} and B = {m E M I (A, B) < 
/~m}. For example, the circle in the line diagram of Figure 1 labeled "A2-5 . . . .  " 
represents the concept with the extent {A1, A2, A3, A4, Ab, A8, A9, A22, B1, B2, 
B3, B4, Bb, B6, BT, B8, B9, C1} and the intent {Domestic Gate, Bus Gate}. A typicM 
information one can obtain from such a diagram is the fact that gates A10 to A23 
provide the flexibility of being used either as Domestic 0r International Gate, but 
that with the exception of bus gate A22 they all are terminal gates only. 

Graphically represented concept lattices have proven to be extremely useful in 
discovering and understanding conceptual relationships in given data. Therefore a 
theory of "conceptual data systems" has been developed to activate concept lattices 
as query structures for databases. A conceptual data system consists of a (rela- 
tional) database and a collection of formal contexts, called conceptual scales, to- 
gether with line diagrams of their concept lattices; such systems are implemented 
with the management system TOSCANA (see [20],[26]). For a chosen conceptual 
scale, TOSCANA presents a line diagram of the corresponding concept lattice in- 
dicating all objects stored in the database in their relationships to the attributes 
of the scale. For instance, as result of a TOSCANA query, Figure 3 shows the con- 
cept lattice of the conceptual scale Runway indicating as objects 18939 takeoffs at 
Frankfurt Airport (during one specific month). These objects are classified accord- 
ing to their runways, which are taken as attributes of the scale. The power of the 
TOSCANA systems lies in the possibility to refine a presented concept lattice by 
another one so that one obtains either a nested line diagram of a combination of 
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Fig. 2. The query structure Runway 

both lattices or a line diagram of the second lattice refining a specific concept of 
the first; the latter alternative may be used for zooming further and further, which 
potentially allows us to navigate through the entire database. 

3 C o n c e p t u a l  K n o w l e d g e  D i s c o v e r y  in  D a t a b a s e s  

Conceptual data systems activated by the management system TOSCANA can 
be considered as knowledge discovery support environments that promote human- 
centered discovery processes and representations of their findings. In this section, 
we want to discuss how such processes of conceptual knowledge discovery fulfil the 
requirements listed in Section 1. As illustrating example, we use a TOSCANA sys- 
tem established by U. Kaufmann [10] for exploring data of the information system 
INFO-80 of the "Flughafen Frankfurt Main AG". this information system supports 
planning, realization, and control of business transactions related to flight move- 
ments at Frankfurt Airport. 

In a TOSCANA system, the objects of the underlying domain are stored struc- 
turally in a relational database so that they can be activated by SQL-statements 
for establishing updated conceptual scales. The objects are represented for the user 
in line diagrams of the concept lattices of conceptual scales as demonstrated in 
Figure 3. In general, the objects are first listed in quantities describing the size of 
the extents of the represented concepts. For instance, in Figure 3 the number 8331 
attached to the circle labelled "18W" informs that there were 8331 takeoffs on Run- 
way 18 West. If one wants more specific information about objects, one can obtain 
the object names for an extent by clicking on the attached number, or even more 
information about a single object by clicking on its name. Of course, larger num- 
bers as in Figure 3 first have to be differentiated by further scales before considering 
single objects. But the distribution of the quantities may be already informative: 
in our example the number 8331 indicates that more than 40% of all takeoffs are 
from Runway 18 West; this high proportion is interesting because there was a strong 
controversy about the construction of this runway regarding noise pollution. 

Our discussion shows that the first requirement of appropriate object represen- 
tations is fulfilled in TOSCANA systems. The second requirement of extendibility 
of categorical structures is already realized by the great flexibility in forming con- 
ceptual scales; even during the process of discovery new insights may give rise to 
further conceptual scales. The third requirement of meaningful data segmentations 
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Fig. 3. The query structure Wingspan Code and Position Size 

is also fulfilled because the conceptual scales and their combinations yield an al- 
most unlimited multitude of conceptual segmentations and with that a powerful 
repertoire of different views for exploring and analyzing data. This flexible reper- 
toire supports analysts in recognizing and abstracting the interpretable patterns for 
which the fourth requirement asks. 

Let us demonstrate some of the discussed abilities of TOSCANA systems by 
continuing the investigation of Runway 18 West. In Figure 3 we zoom into the 
concept node labelled "18W" with the conceptual scale Wingspan Code and Position 
Size. Then we can study the size of the 8331 planes that took off from 18 West 
within the resulting line diagram shown in Figure 3. The Position Sizes indicate, 
in increasing order, the size of the docking position of the plane prior to takeoff, 
while the Wingspan Codes decrease by increasing wingspan (Code 0 stands for 
'helicopter'). The size of the extents is described by percentages instead of quantities. 
From the diagram we obtain that most of the machines that took off from Runway 
18 West had position size 4 or 5, hence are rather large. This might lead to the 
hypothesis that those machines contribute overproportionally to the noise pollution. 
We test this hypothesis by zooming into the two concept nodes labelled Posgr 5 
and Posgr 4 with the scale Noise Class of the Plane by ICAO-Annex 16. The two 
line diagrams in Figure 4 indicate that for both position sizes more than 95% of 
the planes that took off from Runway 18 West are quite silent (as classified by 
Chapter 3 of the Chicago Treaty). Hence the hypothesis is not supported by the 
data. Summarizing our investigation, we can conclude that the planes taking off 
from Runway 18 West are overproportionally large, but that more than 95% of 
them are categorized as silent. 

TOSCANA systems offer also facilities for fulfilling the other requirements listed. 
Changes in classes or categories over time may be documented in specific scales so 
that they can be easily monitored. Processes of knowledge discovery are developing 
in a network of conceptual scales that yields increasing transparency of the process 
and can be used for documenting the different phases of the process. K. Mackensen 
and U. Wille have even shown in [14] how such processes may be understood as 
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Fig. 4. The query structure Noise Class of the Plane by ICAO. mex 16 with respect to 
position sizes P4 and P5 

procedures of qualitativ e theory building. Background knowledge of domain experts 
enters the process of knowledge discovery via conceptual scales in which experts 
have explicitly coded formal aspects of their knowledge in structurally representing a 
certain theme, thereby also making connections to their implicit knowledge. Overall, 
a TOSCANA system offers a conceptually shaped landscape of structurally coded 
knowledge allowing diverse excursions, during which a learning process yields an 
increasingly better understanding of what to collect and where to continue (cf. [30]). 
The graphical representation of interesting parts of the landscape, in particular, 
supports intersubjective communication and argumentation. 

4 Applications 

TOSCANA systems have been successfully elaborated for many purposes in different 
research areas, but also on the commercial level. Its range covers a variety of ap- 
plications, that incorporate knowledge discovery. For instance, TOSCANA systems 
have been established for analyzing data of children with diabetes [20], for inves- 
tigating international cooperations [11], for exploring laws and regulations in civil 
engineering [13], for retrieving books in a library [12], [17], for assisting engineers in 
designing pipings [25], for developing qualitative theories in music esthetics [14], for 
studying semantics of speech-act verbs [8], and for examining the medical nomencla- 
ture system SNOMED [18]. As a Conceptual Knowledge Discovery tool, TOSCANA 
was used to investigate deficiencies of the control system of the incineration plant 
Darmstadt [9]. One of the leading German mail-order companies is currently imple- 
menting a prototype of a TOSCANA system for its customer database, which shall 
be compared to statistical KDD tools. 

Conceptual data systems can also be understood as On-Line Analytical Process- 
ing (OLAP) tools [22]. Roughly, the conceptual scales can be regarded as dimensions 
of a multi-dimensional data cube. The zooming-in on one of the concepts of a scale 
as described in the previous section corresponds to 'slicing' the data cube. 'Rotat-  
ing' and 'Drill-Down' are also supported. Figure 6 shows how different scales can 
be combined and represented in a nested line diagram to visualize dependencies be- 
tween different 'dimensions'. Here the positions of the aircraft are compared to the 
positions of the assigned baggage conveyors. In this application, it is not of interest 
to obtain general propositions, but to detect special cases. For instance, there are 
four aircraft that docked at Terminal 2, while their assigned baggage conveyors are 
in Terminal 1. Vice versa, 180 aircrafts at Terminal 1 were assigned conveyors in 
Terminal 2. The 7+17 cases in which the aircraft docks at one of the two terminals, 
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Fig. 5. Nested line diagram of the scales Position of baggage conveyor and Positions 

while the assigned conveyor is on the apron, should also be considered. In all these 
cases, one can drill down to the original data by clicking on the number to obtain the 
flight movement numbers, which in turn lead to the data set stored in the INFO-80 
system. 

Further research in Conceptual Knowledge Processing aims at developing concep- 
tual knowledge systems by extending the functionalities of conceptual data systems, 
especially by logic-based components. As Formal Concept Analysis and Description 
Logics are closely related and have similar purposes (see, e.g., [4],[19]), first steps in 
integrating both theories have been made ([1], [2], [16], [21]). For hybrid knowledge 
processing, an extension of conceptual data systems is foreseen by incorporating 
statistical and computational components [23]. This indicates a promising develop- 
ment in terms of extending TOSCANA systems toward a wider range of CKDD 
applications. 
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