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Abstract. This paper is an attempt at providing a fuzzy set-based formalization of case-based 

reasoning. The proposed approach assumes a principle stating that "the more similar are the 

problem description attributes, the more similar are the outcome attributes". If this principle 

is accepted it induces constraints on the fuzzy similarity relations which are acceptable with 

respect to the cases stored in the memory. The idea of having cases in the memory with 

different levels of typicality is also discussed. A weaker form of this principle concluding 

only on the graded possibility of the similarity of the outcome attributes, is also considered. 

These two forms of the case-based reasoning principle are modelled in terms of fuzzy rules. 

Then an approximate reasoning machinery taking advantage of this principle enables us to 

apply the information stored in the memory of previous cases to the current problem. 

Extensions of the proposed approach in order to handle incomplete or fuzzy descriptions is 

also considered and studied. The paper does not take into account the learning aspects of case- 

based reasoning. 

1. Introduction 

Case-based reasoning (CBR) systems (Kolodner, 1993; Aamodt  and Plaza, 1994) are a 

particular type of analogical reasoning systems which nowadays have an increasing number  

of  applications in different fields and specialized software products. As it is known,  the 

goal of  CBR is to infer a solution for a current case from solutions of a family of previously 

solved problems, the memory of precedent cases. Theoretical and empirical works have 

focused among others on the definition and elicitation of similarity measures, on retrieving 

the relevant cases, on extrapolating pieces of knowledge from cases in the memory,  on the 

logical model l ing of the inference mechanism and on the management  of  incomplete,  

imprecise or uncertain description of  cases. Although these different steps apparently 

require some graded notion of similarity and some approximate reasoning capabilities, there 

have been rather few attempts for introducing fuzzy set-based tools in analogical reasoning 

until  recently, up to some exceptions (Farreny and Prade, 1982; Bouchon-Meunier  and 

Valverde, 1993). However,  in case-based reasoning, some works have focused on the 
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handling of fuzzy descriptions in the retrieval step (Salotti, 1989, 1992; Jaczynski and 

Trousse, 1994), on the learning of fuzzy concepts from fuzzy examples (Plaza and L6pez 

de M~mtaras, 1990), on the integration with rule-based reasoning (Dutta and Bonissone, 

1993), and very recently on the logical modelling of the inference mechanisms based on 

similarity measures (Plaza et al., 1996a), in the use of  fuzzy predicates for expressing 
preferences when computing similarities (Bonissone and Cheetman, 1997) and in the use of 

fuzzy rules for guiding case-based reasoning (Dubois et al., 1997b). See (Dubois and 

Prade, 1994) for a general overview on similarity-based approximate reasoning and for an 

investigation of the potentials of  fuzzy logic for modeling the different steps mentioned 

above. 

Following a paper by the same authors (Dubois et al.1997b), this work only deals 

with problems where cases can be given as n-tuples of completely, incompletely or fuzzily 

described attribute values, this set of attributes being divided in two non-empty disjoint 

subsets: the subset of  problem description attributes and the subset of  solution or outcome 

attributes, denoted by ~ and cg respectively. These subsets are taken according to the 

problem we deal with. A case will be denoted as a tuple (s, t) where s and t stand for 

complete sets of precise attribute values of 8 and ~ respectively. In order to perform a 

case-based reasoning we assume that we have a finite set M of known cases or precedents, 

called case base or memory  (M is thus a set of  pairs (s,t)), and a current problem 

description, denoted by s 0, for which the precise values of  all attributes belonging to ~ are 

known. Then case-based reasoning aims at extrapolating or estimating the value t o of the 
attributes in ~ ,  for the current problem. 

Case-based reasoning, in general, assumes the following implicit principle: "similar 

situations give (or may give) similar outcomes". Thus, a similarity relation S between 

problem descriptions and a similarity measure T between outcomes are needed. In this 

paper we briefly discuss how to get them. In terms of  the relations S and T this implicit 
CBR-principle can be expressed as, 

"the more similar are the problem description attributes in the sense of  S, 

the more similar are the outcome attributes in the sense o fT '  

and will be modelled throughout this paper in the framework of fuzzy rules. A key idea is 

that each case in M, together with the CBR-principle, induces a fuzzy gradual rule. That is, 

for each (s,t) in M and a current case so, we have the following basic reasoning pattern. 
From the gradual rule "the closer a problem description to s, the closer its solution to t", 

and from the observation so, we conclude that a value to is possible for the current case if it 
is at least as close to t as so is close to s. 

Throughout this paper we will refer to what we call deterministic case-based 
problems when the above principle is applicable, otherwise we will refer to non- 

deterministic problems.(where only a weaker form of the principle, concluding only on the 

possibility that the outcome attributes are similar, can be used). 

Section 2 provides a refresher on similarities. Section 3 and 4 describe the fuzzy set 

modelling of deterministic and non-deterministic CBR problems respectively for completely 
described cases. Section 5 generalizes the two above models to deal with incompletely 

described cases. We use a running example for illustrative purposes. 



81 

2. Background on fuzzy similarity relations 

In CBR, the evaluation of the similarity between cases is a crucial matter. In this paper we 

model the notion of  similarity in a general sense by means of  fuzzy relations. Given a 

universe U of possible values for a feature, a fuzzy relation S on U is a mapping S: UxU 

--~ [0,1] 1 and the properties usually required for our purpose of similarity modelling are the 

following (Zadeh,1971): 

(i) V u E U, S(u,u) = 1, (reflexivity) 
(ii) V u,v ~ U, S(u,v) = S(v,u), (symmetry) 
(iii) V u,v,w ~ U, S(u,v) | S(v,w) < S(u,w), (| 

where | is usually a t-norm operation 2. While reflexivity and symmetry are minimum 

properties that are clearly required when evaluating the closeness of cases, transitivity, even 

graded, does not always seem compulsory. Indeed, in case-based reasoning, given a 

current situation so, in order to retrieve the most similar cases from the memory M, we 

estimate the similarity of so with each of the situations si in M pairwisely, and we do not 

compute the similarity between so and sj by transitivity from the similarity of so and si and 

that of si and sj. Transitivity may even be thought to be an undesirable property in some 

settings, since so may be somewhat intermediary between two situations which are not 

close themselves. Moreover we may also require the separating property ((i') V u,v ~ U, 

S(u,v) = 1 if and only if u = v). Besides, on ordered universes we shall also require that the 

similarity be convex, namely for all x,y,u,v ~ U such that Ix,y] D [u,v], then S(x,y) _< 

S(u,v). 

Example  1. Many similarity measures which are often used in CBR make a rather neat 

distinction between those elements which are considered to be similar from those which are 

considered dissimilar by means of some threshold. As an extreme case consider, on the set 

of  real numbers, the non-fuzzy similarity relation SE defined as 
1, if I x - y[_< e 

Se(x, y) = 0, otherwise 

This type of  relation is clearly not transitive. But even if a relation is | for some 

operation | the corresponding notion of  extended transitivity can be very different. For 

instance, in case | is the Lukasiewicz t-norm, |  does not restrict at all the 

value of S(x,z) as soon as S(x,y) + S(y,z) < 1 for all y. The situation in that sense would 

be very different if the relation is rain-transitive, which is much stronger. 

The more general relations we shall consider for CBR-problems are fuzzy relations 

satisfying (i) and (ii), which are called proximity relations. If  a proximity relation further 

satisfies (iii) w.r.t, a t-norm | it is called a | relation. In both cases we say that 

~In this paper, we use the notations S(Sl,S2) and T(tl,t2) for denoting the degrees of similarity for 
simplicity, rather than using the notations gS(Sl ,s2) and gT(tl,t2) commonly used in the fuzzy set literature 
where they distinguish between a fuzzy set F and its membership function gF. Thus, in this paper we shall 
write F(u) instead of p.F(U). 
2A t-norm | is a non-decreasing binary operation on [0,1] satisfying associativity, commutativity, 1 being 
the neutral element and 0 being an absorvent element. Noticeable t-norms are min, product and Lukasiewicz 
operation (a | b = max(0, a + b - 1)). 
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the relation is separating if it satisfies (i'). Nevertheless, for the sake of simplicity, from 

now on we will generally use the term similarity to denote both proximity and | 

relations whenever no further precision is required. See (Ovchinnikov, 1991) for a good 

overview on similarity relations. 

Usually, the global evaluation of  the similarity between two multiple-feature 

descriptions is obtained by aggregating degrees of  similarities for each feature. The 

aggregation has to be done in such a way that the resulting similarity relation should 

preserve properties, like reflexivity, symmetry (and possibly O-transitivity), of  the 

individual similarities. In general rain-combination preserves reflexivity and symmetry. 

With respect to transitivity, it is worth noticing that if S1 and $2 are | then both 

S,((Xl, x2), (Yl, Y2)) = Sl(Xl, Yl) | $2(x2, Y2) and Smin((Xl, x2), (Yl, Y2)) = min(Sl(Xl, 
Yl), $2(x2, Y2)) are still | It is clear that the min-combination gives the minimum 

value to the similarity, and thus keeps the most discriminating value as a global value of the 

similarity, while the max-combination would give as a value the least discriminating one. 

Other well-known combination operations like averages, take values between min and max 

(but do not usually preserve transitivity). 

Moreover we may think of a weigl~ed aggregation if we consider that we are 

dealing with a fuzzy set of features having different levels of importance. For instance, if 

we aggregate the similarity degrees by means of  the rain operation, a weighted version 

(e.g., Dubois and Prade, 1988) can be defined by 

S(x, y) = mini=l,n max(Si(x i, Yi), 1 - ~'i) 
with maxi=l,n ~'i = 1, where case x (resp. y) is described by the vector of  feature values 

(x 1 . . . . .  Xn) (resp. (Yl . . . . .  yn)) and ~-i is the level of importance of the i th feature. Clearly 
~,i = 1 means that the feature is fully important for the assessment of  the global similarity, 

while if ~,i = 0 ,  the feature is not taken into account. An easy computation shows that 
reflexivity, symmetry and | are preserved by this weighted aggregation, as 

pointed out by Fodor and Roubens(1994) who also suggest other weighted aggregations 

of fuzzy relations. Moreover separatingness is also preserved if ~.i ~ 0 for all i = i, 2 ..... n. 

In the following example, and in the next sections, different proximity and 

similarity relations are presented and used. 

E x a m p l e  2. Suppose we have a data base about second-hand cars. Suppose also that 

every car has exactly 6 attributes in our data base and suppose that the problem description 

attributes are the first five, i.e., 8 = {year, power, mileage, equipment, shape}, and the 
outcome attribute is the last one, i.e. cC= {price}. The ranges of year, power, mileage and 

price are numerical and the range of  the equipment and shape attributes consists of  4 
qualitative levels, linearly ordered: "bad"< "poor"< "good" < "excellent". The global 

similarity S will be defined by aggregation of  similarities S i (i = 1 . . . . .  5) for each 

description attribute. S ! and S 3, corresponding to year and mileage, are defined by, 

S i (u,v) = min(u,v) / max(u,v). 

This seems to be a reasonable similarity measure for these attributes because it is not 

uniform, that is, the greater are two values having the same difference, the more similar 

they are. Here the similarity relative to the power (S 2) is assumed to be linear w.r.t, the 
difference of power. For S 2 we use 
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S 2 ( u , v )  = 1 - ( [u  - v [ / 1 0 0 0 ) .  

Finally, the similarities S 4 and S 5, between the elements of  the qualitative range are taken 

as, 

I 1, if u = v 
2 / 3, if u and v are consecutive w.r.t, the attribute order 

Si(u'v) = ]1 / 3, if there is exactly one element between u and v 
[0, otherwise 

Obviously all these S i are reflexive and symmetric and thus they are proximity relations. 

Just for the sake of illustration, in Table 1 we present an small memory of cases (second 
hand cars), together with a car (case CO = (so, to), with so = (so l, so 2, so 3, so 4, soS)) whose 
market value is to be estimated. 

cases[[ 

(s ,  t) 

C1 

C2 

C3 

C4 

Co II 

years old power mileage equipement shape price 
(sl)  (S 2) (s 3) (s 4) (s 5) (t) 

1 1.300 20.000 poor good 8.000 

2 

1.600 

1.600 

1.500 

1.600 

30.000 

40.000 

60.000 

50.000 

exceHent 

good 

exceUent 

poor 

good 

poor 

poor ]good 

Table 1. Cases of the second hand cars example. 

7.000 

5.000 

5.000 

An important comment is in order here. The aggregation of the S i ' s  presupposes that they 

are commensurate. In practice it means that an expert should define meaningful fuzzy 

proximity relation, using the same scale, namely [0, 1]. Otherwise, different numerical 
encodings of  the proximity relations on each attribute domain (maintaining the same total 
orderings) can lead, whatever the chosen aggregation function is, to different global 
proximity relations. Once the S i ' s  are defined we can use different conjunctive aggregation 
functions, such as min and product, for obtaining the global similarity. For simplicity in 
this example we are not introducing any importance weighting in the aggregation although it 
may be natural to do it in such an example. 

I I i "~, 
500 2000 

Fig. 1 

Besides, only for illustrative purposes, a possible definition for T is T(u, v) = f(lu- 
v]), f(x) being the function depicted in Figure 1. In the next section, in the deterministic 
case, we will discuss the problem of coherence of the memory and of the gradual rules 
obtained from cases through the CBR-principle. We will also discuss which constraints T 
has to satisfy if we require that coherence be assured when M and S are given. 
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3. Determinist ic  CBR Problems 

In the deterministic setting, for each case (si,ti) of  the memory  M, the principle assumed to 

hold is that "the more similar is s i to the input So, the more similar is t i to the outcome". W e  

also assume that a similarity S on the set of problem description attribute values U (domain 

of  8 ) ,  and a s imilar i ty  T on the set of  solution attribute values V (domain of  cg) are 

available.  In terms of  the similarit ies S and T, the principle can be interpreted as the fuzzy 

gradual rule: 

the more X is S(si), the more Y is T(ti), 

where X and Y are variables ranging on S and ~ respectively,  S(si): U --) [0, 1] and T(ti): 

V ~ [0, 1] are fuzzy sets defined as S(si)(s) = S(si, s) and T(ti)(t) = T(ti, t) respect ively.  

The semantics of  such rules is given by the fol lowing constraint  on the jo in t  possibi l i ty  

distribution rcx,y (Dubois and Prade, 1992): 

~x ,y ( s ,  t) = S(s i, s) ---> T(ti, t) 

where --~ denotes the residuated implicat ion such as x ---) y = 1 if  x _< y, and x --~ y = y 

otherwise (G~del implication). 

It is worth noticing that the gradual  rule "the more X is S(si), the more Y is T(ti)" means  

that the similari ty of  any s with s i constrains the similarity of  t i with any t associated with s 

at a min imum level, i.e., S(si,s) is a lower bound of  T(ti,t). Thus, Vc t  ~ [0,1], we have 

s E S(si)ct =::> t ~ T(ti) a (1) 

where S(si)ct = {( si,s' ) I S(si,s') > ct} is the c~-cut of  S(si) and T(ti)ct is s imilar ly  defined. 

In particular, if S(si,s ) = 1, we should have T(ti,t) = 1. Moreover ,  if  T is such that T(ti,rj) = 

I r t i = tj (separating property of  T), then the classical functional dependency 

s i = s ~ t i = t, (2) 
is a consequence of  (1) using the reflexivity of  S. Constraint  (1) is then clearly stronger 

than (2). Obviously,  when S(si,s ) = 0, T(ti,t ) is no longer constrained. 

Given an input value s = so, the solution is a fuzzy set Fi with membership  grades 

Fi(s0)(t) = S(si,s0) ~ T(ti,t). In the fol lowing we only use the core of  this fuzzy set, i.e., 

the elements t with membership 1. Thus the solution set for Y is: 

Ei(s0) = {t I T(ti,t) > S(si,s0)}, 

i.e. the set of  t's such that the implicat ion S(si,s0) ~ T(ti,t) takes the value 1. This amounts 

to take the "crisp" implicat ion x ---)* y = 1 if  x < y, x ---)* y = 0 otherwise,  instead of  ---~. I f  

the memory  M contains n cases, then we have n fuzzy rules and the core of  the fuzzy set 

solution for an input value so is the intersection of  sets Ei(so), that is, 

E(s0) = ~'] i=l,...,n {tl  T(ti,t) > S(si,s0)}. (3) 
Notice that E(s0) can be empty if T is not permissive enough. This set is not  empty for any 

input so if  the family of  gradual rules "the more X is S(si), the more Y is T(ti) " fo r  (si,ti) in 

M is coherent in the sense of (Dubois et al., 1996). This coherence means that the family of  

crisp rules of  the form (1) for i= l , n  and for c ~  [0, 1] is coherent,  which is equivalent  to 

say that  if  the condi t ion  parts of  a subset  of  rules in this f ami ly  have a non-empty  

intersection, then their conclusion parts should also intersect. Formal ly  speaking,  it means 

that for any I contained in { 1,2 ..... n} and any (zig (0,1] for i~ I, it holds 

f-]i~ I S(si)ai  4: r ~ Fqi~ I T(ti)cq 4: r  (4) 
In summary, E(so) is not empty for any so if and only if  condition (4) is satisfied. 
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Besides, if we want to be coherent with respect to the memory M, the solution E(sj) for 

each sj appearing in M has to contain tj. This condition is equivalently expressed by the 

constraint 

V(si,ti),(sj,tj) ~ M, S(si,sj) __% T(ti,tj). (5) 
So (5) expresses that when s i and sj are close, t i and tj should be at least as close. 

Only if T is separating does (4) imply (5). Indeed if T is separating and (4) is 
satisfied, Ei(si) = {ti } and then from (3) condition (5) follows. But in general (4) does not 
imply (5) as it is shown in the following example. Let M = {(Sl,tl),  ( s2,t2)} and define 
two proximity relations S and T as follows: S(s, s ')  = 3/4 for any s ~ s' and T(tl,t") = 

T(t2,t") = 1 for some t" different from tl and t2, and T(t, t ') = 1/2 otherwise. Obviously 

condition (5) fails but (4) holds (t" is in all the intersections of T(ti)eq for any ai). 
On the other hand (5) does not imply (4) as it is shown in the continuation of 

example 2 below. Thus, once the "deterministic model" is adopted, and the similarity S is 
defined, the CBR principle induces constraints on the similarity relation T: both conditions 

(4) and (5) should be enforced when building T. 
It is worth noticing that the constraints (5) are easy to handle. The interesting T is 

the minimal one (in the sense of fuzzy set inclusion (T D T'  iff T(t,t ') > T'(t , t ' ))  yielding 
the most informative gradual rule. Formally speaking, given M and S, the minimal solution 

for convex T satisfying the constraints (5) is defined by 

T(t, t ')  = 1 if t = t ' ,  T(t, t ')  = max(si, ti),(sj, tj)6 M {S(si, sj)] t,t' ~ [ti, tj] } otherwise.(6) 

Even if S is separating, T may not be so; it happens when M contains two cases (s,t) and 

(s,t ') with t ~ t ' .  Moreover the transitivity of S does not entail the transitivity of  T. 
Transitivity of T can be obtained, if necessary, taking the transitive closure. 

Of course the relation T defined by (6) provides only a lower bound of the minimal 
T satisfying both (5) and (4). In this paper we shall not further discuss the computation of 
the minimal solution of this optimisation problem. 

E x a m p l e  2 (continued).  Let us compute Train and Tprod given by (6) with S being 
obtained using first the minimum and then the product aggregations: 

(i) Train(t, t ' )  = 1 if t =t ' ,  Tmiu(t, t ')  = 1/2 if t,t' E [5.000, 8.000] and Train(t, t ' )  =0 
otherwise. 

(ii) Tprod(t, t ') = 1 if t=t', Tprod(t, t ')  = 3/10 if t,t' 6 [5.000, 7.000], Tprod(t, t ' )  = 7/60 if 
t,t' ~ [5.000, 8.000] and one of t or t '  does not belong to [5.000, 7.000] and 

Tprod(t, t ') =0 otherwise. 
For an input so, it can be checked that the (core of  the fuzzy set) solution in case of  the 
minimum aggregation is {5.000} and the empty set in case of  the product. The last result 
shows that (5) can hold while (4) is not satisfied. This is the reason why it is important in 
practice to use a pair S, T such that both (4) and (5) are satisfied. 

Remark . -  We may think of the following generalisation of the deterministic model. The 
idea is to introduce some weighting s i associated to the cases (si,ti) of  M and thus, to 
weaken the constraints (5) in the following way: 
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V(s 1,tl),(s2,t2) ~ M, min(tx1, (22, S(s 1,$2) ) _< T(t 1,t2). (7) 

Moreover the gradual rule S(si) --~ T(ti) is changed accordingly into min(t~i,S(si)) --~ T(ti), 
which is also equivalent to S(si) -~ (r --~ T(ti) ) if the implication is residuated with respect 

to the minimum (G6del implication). This means that the case (si,t i) is changed into the 

imprecise case (si,T(ti)oq). Indeed cti ~ T(ti)(t) = 1 if cq < T(ti)(t ). Thus the solution is, 

E (so)= f-](si,ti)~ M Ei*(s0), 
where Ei*(s0) = {t'] min (~i,S(si,s0)) _< T(ti,t')}. Notice that when cti = 1 we have Ei*(s0) 

= Ei(s0) and when ~i = 0, Ei*(s0) becomes the whole set of  possible values for t and it 
amounts to delete the case (si,ti) from the memory M. 

This extension based on the introduction of degrees r is related to the so-called proximity 
entailment in (Dubois et al., 1997a; Dubois et al., 1997b). From an interpretation point of 

view we may think of cq as a kind of typicality weight and the modified gradual rule can be 

read as 

"the more similar is so to a typical case s, the more similar is tO to t". 

Generally speaking, memories of  cases are not usually well structured, and they may 

contain cases that can be considered as atypical or not coherent with the rest of  the cases 

stored in the memory. These cases could make the finding of  a meaningful proximity T 

satisfying (4) and (5) impossible. Thus the introduction of  a measure of typicality of the 

cases of the memory M could be interesting for assessing the relevance of  cases. 

4. Non-Determinis t ic  Problems 

The deterministic principle-based model may be felt too strong in some practical 

applications where M may for instance simultaneously include cases like (s,t) and (s,t') 

with t ~ t'. Indeed in such a case the enforcing the constraints (4) and (5) may lead to use a 

similarity relation T which is too permisive. An alternative solution is to use a weaker 

version of the CBR principle stating that 

"the more similar s 1 and s2, the more possible t 1 and t 2 are similar". 
In our context, this weak principle becomes a non-deterministic (fuzzy) dependency rule of 

the form "the more similar is s to s o (in the sense of  S), the more possible is the similarity 

of  t to t o (in the sense of T)". It should be pointed out that this rule only concludes on the 
possibil i ty  of to being similar to t. This acknowledges the fact that, often in practice, a 
database may contain cases which are rather similar with respect to the problem description 

attributes, but which are sensibly distinct with respect to outcome attribute(s). This 

emphasizes that case-based reasoning can only lead to cautious conclusions. 

The formal expression of the above principle requires to clarify the intended 

meaning of "possible" in it. Rules of the form "the more X is A, the more possible Y is B" 

correspond to a particular kind of fuzzy rules called "possibility rules" (Dubois and Prade, 

1996). They express that "the more X is A, the more possible B is a range for Y", which 
can be understood as "Vu, if X = u, it is possible at least at the degree A(u) that Y lies in 

B". When B is an ordinary subset, it clearly expresses that i) if v e B, v is possible for Y at 

least at the level A(u) if X = u, and ii) if v ~ B, nothing is said about the minimum 
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possibility level of  value v for Y. It leads to the following constraint on the joint possibility 

distribution 7ty] X representing the rule (where 7tYiX(V,U) estimates to what extent Y = v is 
possible when X = u), namely 

{ ~y[x(v) > A(u) if v ~ B 

nVlX(V) > 0 if v ~ B 

When both A and B are fuzzy sets it generalizes into 

V u e U, V v ~ V, min(A(u), B(v)) -< ny[x(v,u). (8) 

This clearly gives back the above expression when B(v) ~ {0,1 }. This model of fuzzy rule 

is close to Mamdani's (1977) original proposal in fuzzy logic-based control. 
Coming back to our CBR problem, since we apply the principle "the more similar 

are s and s o (in the sense of  S), the more possible is that t and t o are similar (in the sense of 

T)" then, according to (8), the fuzzy set of possible values t' for to with respect to case (s, 
t) is given by 

~Zto(t') = min(S(s, So), T(t, t')). (9) 

As it can be seen, what is obtained is the fuzzy set T(t) of  values t' T-similar to t, 
"truncated" by the global degree S(s,s0) of  similarity of  s and s 0. The inequality in (8), 
which leads to a max-based aggregation of the various contributions obtained from the 

comparison with each case (s,t) in the memory M of cases, acknowledges the fact that each 
new comparison may suggest new possible values for t o . Since (9) applies to all the pairs 

(s,t) ~ M, we obtain the following fuzzy set Es0 of possible values t' for to : 

Es0(t') = max(s,t)~ M min(S(s,s0), T(t,t')). (lO) 

T(t3) = T(t4) T(t2) T ' t  ~ ' / >x/\y, I 
213 

2/5 1,3r / A  \ \ 
- -  t �9 �9 i 

3000 4000 5000 7000 8000 10.000 

Fig. 2 

The representation of this set in the case of our second-hand cars example is given in Figure 
2 when S is the min-aggregation of the Si's and T is the proximity relation given at the end 
of Example 2. Notice that the resulting set E may be quite uninformative if rather similar 
cars have very different prices in M, as it is expected. However the maximal height part of  
the fuzzy set in Fig. 2 is informative enough since it suggest with strength 2/3, a price in 
the interval [4000, 6000]. 
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5. Deal ing  with incomplete  cases 

In this section we extend the fuzzy approach to CBR in order to deal with cases which may 

be incompletely described. To do this, we propose that each (possibly incompletely 

described) case (si, _ti) ~ M be understood as the generic fuzzy rule: 

If  X is s_i-similar, then Y is t_i-similar 
where si and t i a re  fuzzy sets, and si-similar and q-similar  are also fuzzy sets with 
membership functions: 

s_a-similar(s) = maxs, min(S(s', s), si(s')) and 
h-similar(t) = maxt, min(T(t', t), [i(t')), 

that is, the convex hulls of si and _ti with respect to S and T respectively. Then, taking a 
particular current (possibly incompletely described) problem as the fuzzy statement "X is 
so", we apply the traditional fuzzy logic machinery, namely the Generalized Modus Ponens 
(Zadeh,1979) in order to infer a fuzzy statement "Y is ti0 ", where li0 is the fuzzy solution 

set for so w.r.t, case (si, _ti) ~ M. [i 0 can be obtained as a sup-min composition of so with 

the fuzzy relation Ri(s, t) = si-similar(s) ---> [i-similar(t) (resp. Ri(s, t) = nfm(s_i-similar(s), 

h-similar(t)) ) in the deterministic (resp. non-deterministic) approach, namely: 

[i0(t) = sups min(s_0(s), Ri(s, t)) (11) 
Next we briefly show how to proceed for obtaining the general (fuzzy) solution set _to in the 
two models. 

�9 Determinis t ic  model.  In the deterministic model, the fuzzy rules are interpreted as 
gradual rules, and thus the solution from the i-th case is given by 

_ti0(t) = SUps min~0(s), s i-similar(s) ---) [i-similar(t)), 
but the general solution is not given by f-~i [i0 since the sups and the mini do no commute 
in the expression (12) below corresponding to the application of the fuzzy set machinery to 
the whole set of cases: 

E(so)(t) = SUps min(~(s),  mini Ri(s, t)) (12) 

['7i ti0 is only an upper bound of E(s0). It is easy to check that, when so, si, ti, are precisely 
known, we recover the approach of Section 3. 

Example  2 (continued). Suppose that we have a case (s, D that is only described for the 
year (2), power (1.600), mileage (30,000), shape (poor) and price (7.000) attributes, and 
the value for equipment attribute is missing. Then s = { (2, 1.600, 30.000, x, poor) [ 
x ~ {bad, poor, good, excellent} } and t = {7.000}. If  the current case is imprecisely 
defined by so={(2, x, 40.000, good, good) [ x~ [1.300, 2.000] }, the core of  the solution 3 
for s_ 0 with respect to the case (s, t_) is core(E(s0)) = {t' I max{T(t, t') I t ~ t} > 1/3} = 
[5.500, 8.500], i.e., the elements of E(.s__0) with membership 1. 

�9 Non-deterministic model .  In the non-deterministic model, the fuzzy rules are 
interpreted as possibility rules, that is, the relation Ri describing the rule is defined as 
Ri(s,t) = min(si-similar(s), [i-similar(t)), 

3when again S is the rain-aggregation of the Si's and T is the proximity relation given at the end of 
Example 2 
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!i0(t) = sups min(s_0(s), min(~-similar(s), [i-similar(t))). 
In this setting, the general solution E(s__0) is the disjunctive aggregation of  the -_ti0's, that is: 

E(so)(t) = maxi ti0(t). 

Again, it is easy to check that we recover the approach of  Section 4 when so, si, ti, are 

precisely known. 

6 Conclusion and Further Work 

In this paper we have been concerned with the modelling of some aspects of  CBR using 

fuzzy set-based techniques, as well as their applicability. The basic tool is the use of  fuzzy 

similarity relations both between problem descriptions and between outcomes of  the cases. 

Each case in the memory is interpreted either as a gradual fuzzy rule (deterministic model) 

or as a possibility rule (non-deterministic model). 

This fuzzy framework gives us the means of defining to what extent a memory M is 

coherent w.r.t, the use of  a pair (S, T) of  fuzzy similarity relations in the deterministic 

approach. Given a CBR-framework (M, S, T) its coherence Coh(M,S,T) is defined as a 

measure (between 0 and 1), which estimates how much the cases given in the memory are 

in agreement with our theoretical model, and in some sense the possibility to find a solution 

for a current case. We have 

Coh(M,S,T)= Min{S(si ,  sj) ---> T(t i ,  tj) / (s i ,  ti), (sj ,  tj) E M}. 

(M,S,T) is then said to be coherent iff Coh(M, S, T) = [. In particular, Coh({(Sl, tl), (s2, 

t2)}) = 1 iff S(Sl, s2) < T(tl,  t2). Moreover note that Coh(Mu{(s,  t)}) < Coh(M), i.e. the 

introduction of a new case cannot increase the coherence. Then, given a CBR problem (M, 

S, T, so), it can be checked that a value t is a solution for so in the deterministic approach iff 

Coh(Mu{(s0,t)}) = 1. A more detailed investigation of this notion of  coherence is left for 

further research. 
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