From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Point-Based Approaches to Qualitative Temporal Reasoning

J. Delgrande, A. Gupta,
School of Computing Science,
Simon Fraser University,
Burnaby, B.C., Canada, V5A 1S6.
E-mail: {jim, arvind}@cs.sfu.ca

Abstract

We address the general problem of finding algorithms
for efficient, qualitative, point-based temporal reason-
ing over a set of operations. We consider general rea-
soners tailored for temporal domains that exhibit a par-
ticular structure and introduce such a reasoner based
on the series-parallel graph reasoner of Delgrande and
Gupta; this reasoner is also an extension of the Time-
Graph reasoner of Gerevini and Schubert. Test results
indicate that for data with underlying structure, our
reasoner performs better than other approaches. When
there is no underlying structure in the data, our rea-
soner still performs better for query answering.

Introduction

Reasoning about temporal events is a central problem
in the design of intelligent systems for such diverse ar-
eas as planning, reasoning about action and causality,
and natural language understanding. Allen (A1183) pro-
posed the inierval algebra (IA) of temporal relations
wherein time intervals are taken as primitive; reasoning
within this algebra is NP-complete (VK86). The point
algebra (PA), introduced in (VK86; VKvB90), is based
on time points as primitives. Many important temporal
problems are expressible in the point algebra, and the
existence of significantly more efficient algorithms than
in the interval algebra has lead to its extensive study.
Here, we are interested in the general problem of effi-
cient, qualitative, point-based temporal reasoning.

A major problem in temporal reasoning is scalability.
An O(n?) algorithm, while seemingly efficient, can be
unacceptable for very large database. Matrix based de-
ductive closure techniques for qualitative point based
reasoning (VKvB90) require O(n?) space and O(n?)
time and are only useful when data sets are small and
“dense” (O{n?) assertions) and the number of queries is
large. Research ((GS95; GM89)) has focused on meth-
ods which, by sacrificing query speed, achieve faster
compilation and require less storage. Such approaches
are appropriate for large, sparse data sets and are com-
plementary to the matrix based approach.

Another consideration is the nature of the appli-
cation domain. The underlying structure in a re-
stricted domain may admit significantly faster algo-
rithms. Gerevini and Schubert in their seminal work

T. Van Allen
Department of Computing Science,
University of Alberta,
Edmonton, Alberta, Canada T6G 2H1
E-mail: vanallen@cs.ualberta.ca

(GS95) study reasoners where the domain is dominated
by chains of events. Building on this, (DG96) con-
sider a reasoner for domains that may be modelled by
series-parallel graphs. These restricted structures may
be exploited for general point-based reasoning by first
decomposing a general graph into components of the
restricted graphs, computing the closure of each com-
ponent, and then using lookup and search to answer
queries (see {GS95; GM&9)).

Here we explore and compare different approaches to
point-based reasoning. We first describe point relations
and the point algebra, define entailment with respect
to this algebra, and discuss operations on the language.
We develop two basic reasoners, the first using standard
graph operations, and a second that also uses rankings
of nodes to improve query-answering times. We also
consider two general reasoners tailored to temporal do-
mains that likely exhibit a particular structure. We
develop and describe an implementation of a general
reasoner based on series parallel graphs, subsuming and
improving on (DG96). We also reimplement the chain-
based approach of Gerevini and Schubert, describing
how our implementation differs from the original.

The four reasoners are tested on random data sets
from different domains. The series-parallel reasoner is
consistently the fastest for query answering and is faster
than the Gerevini and Schubert approach for compila-
tion even for those domains specifically tailored for this
latter approach. Consequently, the series-parallel rea-
soner gives the best expected performance.

Preliminaries

Our results rely substantially on graph theoretic con-
cepts (see (BM76) for terms not defined here). All
graphs ¢ are simple, finite and directed. The node and
edge sets of G are denoted by V(G) and E(G) respec-
tively. For v € V(G), incoming(G, v) (outgoing(G, v))
are the edges terminating (starting) at . We use n
to denote |V(G)] as well as the number of points in a
database of point relational constraints (these are nor-
mally the same). Similarly, e denotes the number of
edges in a graph or the number of constraints in the
database. For u,v € V(G), an unlabeled edge (or an
edge where the label is implicit) is denoted by (u,v)

and a labeled edge by (u,m,v), where m is the label.
We assume that edge labels support the standard oper-
ations of composition and summation, which we denote
® and & respectively (see (CLR90) for more details).
Via these operations we extend the notion of edge labels
to path labels. We use u ~» v to indicate that there is
a path from u to v, where a path may have length 0.
A subscript will denote a path label: u ~, v indicates
that some edge in the path is labeled by r.

We assume that basic operations on log n bit integers
are performed in constant time and the numbers require
unit space. This is a standard complexity-theoretic as-
sumption consistent with other work in the area.

Point Relations

Qur primitive objects are points which can be viewed
as “events in time” or points on the real line (but
we make no such assumption). We denote the infi-
nite set of points by P. The point relations are a set
R = {0,<,>,=,<>,<=,>=,<=>} where each ele-
ment can be viewed as a subset of {<,=,>}, the prim-
itive point relations. A point relation in R is a disjunc-
tion of primitive relations; thus @ is the relation that
never holds and <=> is the relation that always holds.
The standard set operations U,N, C, . . .are defined over
the point relations, with obvious interpretations. Rela-
tion 7y is stronger than ry iff vy C ro.

We also have two functions, sequence: R x R — R
and inverse: R — R. Sequence is the transitive relation
entailed by a sequence of two point relations. It is the
composition operation for edge labels over R. Inverse
maps a single relation onto the relation that holds in
the opposite direction.

Constraints The language C is the set of all sentences
S ::= P R P; a constraint is an element of C. At times
we use assertion to mean constraint. For A C C, P(A)
is the set of all points “mentioned” in A. Entailment in
C can be axiomatized as follows:
{}Ez==zforallzeP
{}Fe<=>y,foralz,ye P

{zry} F yinverse(r) ¢

{zrmyllEazrUry forallr, € R

. Azriy, yre 2} | z sequence(ry, o) z

{griy, zrylternnry

. {$<= Re<=w,v<>wv<=y,w<= y} l: <y
Note that in Axiom 7, if a <> b then either ¢ < b
or b < a. But then, if 2z <= @ and z <= b, then
either £ < a or £ < b. This is a valid entailment in
propositional logic but one which we cannot express in
C. However, since a <= y and b <= y, it follows that
z < y. (GS95) prove completeness for this formulation.
We will call inconsistent any set of assertions which
entails z @ y for any z,y € P.

Operations on Constraint Sets We are interested
in the general problem of computing the entailments of
a given set of point relational constraints. There are
three basic subproblems:

1. Compilation: compile a set of constraints in C into a
representation that allows efficient reasoning,.

2. Querying: given such a representation, compute the
strongest relation between two points.

3. Updating: change the representation to reflect the
addition of a new assertion.

Generally, there is a tradeoff between compilation and
query answering. In some applications it might be more
efficient to precompute all strongest relations and ex-
plicitly store these; since there are O(n?) strongest re-
lations which can be stored in a table, query answering
can be performed in O(1) time. However, computing
deductive closure on a set of point relation constraints
is not a particularly efficient process because of axiom
7 (deductive closure is not transitive closure for tempo-
rally labeled graphs). We can compute the transitive
closure of the <, <= labels with an O(ne) algorithm,
but to handle implicit < relations entailed by axiom 7
we must resort to an O(|E<s| - |Ec=|) = O(e?) algo-
rithm. The approach of (GS95) and (VKvB90) yields a
O(n?) algorithm, as opposed to O(en?) by using simple
search to compute all strongest relations.

For applications with static unstructured data and
a large number of queries, our results suggest a “lazy”
scheme which adds strongest relations to a hash table
as they are computed. To maintain linear space, the
table would be an O(n) array with collisions resolved
by overwriting previous information. With structured
data however, our query answering algorithms are sig-
nificantly faster than any other to date.

Temporally Labeled Graphs

Temporally labeled graphs (GS95) are used to represent
“compiled” consistent sets of point relations.

Definition 1 For A C C, the temporally labeled graph
representing A is a graph G with V(G) the set of all =
points mentioned in A and E(G) the constraints of A
labeled by one of <, <=, <>.

Note that edges labeled < or <= are directed but
those labeled <> are undirected. E(G) can be parti-
tioned into the sets E«, E<=,and E.~ based on edge la-
bels. The graph composed of only edges from E . UE -
is the (<, <=)-subgraph of G. Algorithms for compiling
a set of assertions into such a graph and testing it for
consistency are given in (GS95) and (vB92). They show
that any set of constraints from C can be translated into
constraints using only the relations {<, <=,<>}. The
set of assertions is inconsistent iff a <> or < edge spans
a cycle. We make G into a directed acyclic graph (DAB)
by collapsing all directed cycles into single vertices.

Compilation takes O(e) time using Tarjan’s strongly
connected components algorithm to isolate maximal cy-
cles {see (CLR90)). The strongest relation between two
points is found in O(e) time using depth-first search to
find the strongest path between the points.

For updates, suppose the assertion zr1y is added. We
compute the strongest relation, r¢, between z, and y.
If 7 is consistent with r; the update proceeds but any

new cycle is “collapsed” to a single node of the graph;
this algorithm takes O(e) time.

Ranking We can speed up multiple searches in a DAG
by bounding search depth. We define the rank of a
node as the length of the longest path from the source
to that node. To search all paths between two nodes we
can confine our search to those nodes with intermediate
ranks. We have developed both ranked and non-ranked
base reasoners for comparison with other approaches.

Series Parallel Graphs

The point algebra provides a very general framework for
reasoning which can be used in any domain modeled as
points on a line. However, certain restricted domains
lend themselves to more efficient reasoning strategies.

Consider a domain in which sets of events are re-
lated to others via some simple operations. For exam-
ple, two events may occur sequentially (in series) or
they may occur during some common time frame (in
parellel). If the structure of our events is defined recur-
sively by these series and parallel operations, we obtain
series parallel graph (sp-graph) structures. We will see
that more eflicient, general, point-based reasoners can
be constructed from this structure.

Definition 2 A sp-graph G with properties source(G),
sink(Q), label(@), is given by:
1. (Base case) G = edge(v,r, w), where:

(a) V(G) = {v,w}, E(G) = {(v,r,)}

(b) source(G)=wv, sink(G)=w, label(G)=re€ {<,<}
2. (Inductive case) G = series(G1,G2) where:

(a) Gy and G2 are sp-graphs

(b) V(G) = V(G1)UV(G2)

(c) V(G1) NV (G2) = {sink(G1)} = {source(Ga)}

(d) E(G) = BE(G1) U E(G3), E(G1) N E(G2) = {}

(e) source(G) = source(G1), sink(G) = sink(G2)

(f) label(G) = label(G1) ® label(G2)
3. (Inductive case) G = parallel(G1, Gy) where:

(a) Gy and Gy are sp-graphs

(b) V(G) = V(G1)UV(Ga)

(¢) V(G1) NV (G2) = {source(G1), sink(G1)}

(d) E(G) = BE(G1)U E(Gy), E(G1) N E(G3) = {}

(e) source(GQ) = source(G1) = source(Ga)

(f) sink(G) = sink(G1) = sink(G2)

(g) label(G) = label(G1) & label(G2)

Note that sp-graphs have a single source and sink. The
label summarizes all paths from the source to the sink.

Transitive Closure

It is straightforward to compute the transitive closure
of sp-graphs in O(n?) time and space when the edge la-
bels support O(1) composition and intersection. For
G an edge (u,r,w), the closure is r. If G is either
series(Gy,Ga) or parallel(Gy, G2) we inductively com-
pute the closure of G4 and G,. Additionally in the series
case, for u in G4 and v in G we must compose the path
from u to sink(G;) and the path from source(G2) to v.

The structure of sp-graphs allows more efficient al-
gorithms for special cases. (DG96) show that the com-
plexity of determining path closure is O(n). This in-
volves associating each node v with a point (z,,y,) in
the n x n integer lattice. For v,w € V(G) there is a
path from v to w iff 2, < zy and yy < Yuo.

Given path closure, we will compute the <, <= clo-
sure in an sp-graph G in O(n) time.

Definition 3 For v € V(G), let s(v) be the maximum
number of < edges on any path from source(G) to v.

Definition 4 For v € V(G), if v = sink(G) or, for
some w, (v, <,w) € E(G) then define a(v) = s(v) oth-
erwise define a(v) = min{a(w) : (v, <=,w) € E(G)}.

Lemma 1 For any v € V(G), s{v) < a(v).

Proof: The proof is by induction. Suppose that for
every child w of v, s(w) < a(w). We show s(v) < a(v).
If v = sink(G) or v has an outgoing < edge, then by
definition s(v) = a(v). If v has no outgoing < edge,
then a(v) = min{a(w) : (v,<=,w)} and a(v) = a{w)
for some child w of v. Since s(v) < s(w) and s(w) <
a(w) = a(v), the lemma follows. ED

Theorem 1 For v, w € V(G) such that v ~ w, a(v) <
s(w) iff v~ w.

Proof: Suppose v, w € V(G) such that v~ w. If v ~¢
w there there is an edge (z, <, y) such that v ~ z and
y ~» w. Since ¢ and s are non-decreasing, a(v) < a(z) =
3(2) < s(y) < s(w).

Conversely assume a(v) < s(w) but v o< w. Since
s(source(@)) < s(v) < a(v) < s(w), s(source(G)) <
s(w). Then there is an edge (z,<,y) such that
source(Q) ~ ®, y ~ w and s(w) = s(y). Since a(v) <
s(w) < a(w) < a(sink(G)), there is an edge (u,<, 2)
such that v ~ u, z ~ sink(G), and a(v) = a(u). Since
v e w, z 9k w and v 4 . Because G is a sp-graph,
the three paths

1. v~ ursg 2z~ sink(G)
2. source(G) ~ 2~ Yy~ w
3. source(G) ~ v~ w~ sink(G)

have a common node (say j). Since v b w:
vV~ jrowand Yoo §ar u.

Then a(v) < a(j) < a(u) = a(v) so a(j) = e(v) and
s(y) < s(j) < s(w) = s(y) so s(j) = s(w). Thus S(]) <
a(j) = a(v) < s(w) = s(j), a contradiction. ED

We can compute {s(v)} using depth first sea.rch on
G and compute {a(v)} from {s(»)} using depth first
search on the transpose of GG. Both these computations
require O(n) time. This yields the following:

Theorem 2 For G a temporally labeled sp-graph, the
< and <= closures can be computed in O(n) time with
O(n) bits of storage.

Notice that our technique strictly improves on that in
(DGY6) who also claim O(n) time and space but require
arbitrary real number precision (O(n?) bits of storage).

Metagraphs
We slightly generalize the terms metagraph, metaedge
and metanode introduced in (GS95).

Definition 5 A graph G’ is a metagraph of a DAG G

iff V(G') C V(G) and there is an onto function m :

E(G) — E(G") such that, for m((z,y)) = (u,v):

1. Either & = u or for all (w,z) € E(G), m((w,2)) =
(u,v) (and at least one such (w, z) exists); and

2. Either y = v or for all (y,w) € E(G), m((y,w)) =
(u,v) (and at least one such (w, z) exists).

The nodes and edges of G’ are called metanodes and
metaedges respectively. Metaedges correspond to (edge
disjoint) single source, single sink components of G.
The edge label of (u,v) € E(G’) is the intersection of
the labels of all paths from u to v in G.

Metagraphs are a convenient way to encapsulate sub-
graphs. Metaedges correspond to components. Rela-
tions between nodes inside a metaedge are determined
by the subgraph corresponding to that metaedge; rela-
tions between metanodes are determined by the meta-
graph; while relations between nodes inside different
metaedges are determined by their relationship to the
sources and sinks of their metaedges, and by the rela-
tions between the source/sink metanodes.

Metagraphs are useful for representing domains
where relational data is composed of “self-contained”
units connected only through common sources and
sinks. Using a metagraph may improve efficiency when
graphs are largely composed of substructures that lend
themselves to more efficient implementation of basic op-
erations (search, closure, updates, etc.).

Series Parallel Metaedges

We present a method for partitioning the edge set of a
graph into maximal series parallel metaedges. We start
with a very high level algorithm that collapses all series
parallel components into single edges. Let G be a DAG.

Rule A If v € V(G) has only one incoming edge
(u,m,v) and only one outgoing edge (v,n,w) then
remove these edges and add the edge (u,m ® n,v).

Rule B If (u,m,v), (¢, n,v) € E(G) then remove these
edges and add the edge (v, m @ n,v).

These rules are iterated so that in the resulting meta-

graph, each metaedge represents an edge disjoint, max-

imal, series parallel component of the original graph.

We can label metaedges with sp-graphs and define ®

as a series step and @ as a parallel step. In (VDG98)

we show that this algorithm correctly reduces a graph
to its maximal series parallel components.

Our Temporal Reasoner

So far we have presented a base point algebra reasoner,
closure algorithms for sp-graphs, and an algorithm for
transforming a graph into series parallel metaedges.
Our hybrid scheme is unique in constructing a tem-
porally labeled graph, transforming it into maximal se-
ries parallel metaedges and then computing the inter-
nal closure of the metaedges. Queries for two points in

the same metaedge take constant time; for points not
in the same metacdge we only search the metagraph.
Updating the structure follows a similar pattern. This
approach will be useful in domains where temporal in-
formation is hierarchically structured, and when queries
tend to reflect that structure.

Implementation and Testing

For comparison, we implemented four temporal reason-

ing algorithms:

1. The simple graph-based approach.

2. The graph-based approach using ranking.

3. The TimeGraph approach of Gerevini and Schubert
(GS95), updated as described below.

4. Our metagraph algorithm based on decomposing a
DAG into series parallel components.

Our implementations are in Common Lisp with data
structures kept consistent between the four approaches.

Reimplementing TimeGraph

The TimeGraph approach, of (GS95), is arguably the
first metagraph-based approach. We implemented a re-
vised version of TimeGraph that is significantly faster
than the original but did not implement those portions
of TimeGraph, dealing with disjunctive relations since
they are not directly relevant to us (see (VDGY8) for
details.) We briefly describe our version, noting where
we diverge from the original.

TimeGraph differs from the series parallel metagraph
approach in several significant ways:

1. The underlying components are chains instead of se-
ries parallel graphs. '

2. Entailed < relations involving <> are compiled out.

3. Chains may be connected via cross-edges (edges that
originate and terminate in different chains). Com-
puting closure within a chain involves following paths
outside the chain, which takes O(ne) time.

Making the Graph Explicit We must add < edges so
that all <> relations between nodes involve a < edge.
For each (u,v) € E.5 we find the least common an-
cestors and descendants of v and v and add the cross
product of these two sets to £.. The total complexity
is O(|E<s| - |E<=]). Notice that this algorithm adds
at most O(e) edges to the graph. Our algorithms for
computing nearest common ancestors and descendants
are based on an algorithm in (GS95).
Computing Closure for the Chains A chain G is a
DAG such that for v,w € V(G), either v ~ w or w ~»
v. A timechain is an sequence of nodes, [v1,vs...v5],
with (v;, <=,vi4+1) € E(G) for i < n. A timechain
may also contain < links between any two nodes (in the
consistent direction). To determine < relations, each
node is labeled with the index of the next > node on
the chain and n»+ 1 if no such node exists. These labels
can be determined with a single depth first search.
Since chains can be connected by cross-edges between
arbitrary nodes, computing the internal closure of a

chain requires searching the entire region of the graph
reachable from the nodes of the chain (bounded by the
rank of the last node on the chain). For ¢ chains, this
step requires O(c(n + e)) time; since ¢ is O(n), the
complexity is O(n(n + e)). To compute a nextGreater
value (ie rank of the next greater node) for each node,
(GS95) use the metagraph to speed up the search. This
necessitates breaking the algorithm into two parts —
one to compute the nextGreater value based only on
edges internal to the chain, and one to “refine” these
nextGreater values by searching the graph. We use an
algorithm that computes the neztGreater values with
one depth first search for each chain.

Constructing the Metagraph The metagraph must
reflect all relationships between metanodes so that any
relation between two metanodes can be determined by
search. (GS95) define metavertices as “cross-connected
vertices” (the sources and termini of cross-edges) and
the metagraph of a timegraph T as:

... the graph G' = (V', E’) where V! = {v:v is
a metavertex in T} and E' = {(v,l,w) : (v,l,w) is
a cross-edge in T} U {(v, nexztout(v)), (v, nextin(v))
for all v € V'}.

where nextout(v) gives the next node on v’s chain with
an outgoing cross-edge, and nextin(v) gives the next
node on v’s chain with an incoming cross-edge.

However, this graph does not contain sufficient
information to deduce all relations between metan-
odes. Consider the chains [a,b,¢,d,€] and [f,g,h],
cross-edges (a,<=, f),(¢c,<=,9),(e,<=,h) and the
transitive edge (b,<,d). The metagraph in the
definition above would be: V' = {a,c,e,f,g,h}
and E' = {(a,<=,¢),(a,<=,f),(c,<=,¢),(c,<=
,9), (f,<=,9),(e,<=,h),(g,<=,h)} In the original
graph, a < e and a < h, but the metagraph does not
allow us to deduce this. To fix this, we must include b
and d in V/, and (b, <,d) in E’. Therefore, we slightly
modify the above definition to:

Definition 6 (v,r,w) is a metaedge, and v,w are
metanodes, iff one of the following holds:
1. chain(v) # chain(w).
2. w is the nexztGreater value for v and r is <.
3. All of:
(a) v, w are metanodes as defined above.
(b) chain(v) = chain(w).
(¢) No metanode lies between v and w on the chain.
(d) 7 is the internal relation between v and w.

Our definition allows us to compute all relations be-
tween metanodes. We construct the metagraph by find-
ing all edges of the first two kinds, labeling their sources
and sinks as metanodes, and then adding the edges of
the third kind by going through the chains and adding
links between nearest metanodes.

Queries Queries in the revised TimeGraph are basi-
cally the same as in our series parallel metagraph: if the
two nodes are on the same chain then their strongest

relation is computed with an O(1) test; otherwise a
search is conducted from the next metanode of the low-
est ranked node to the previous metanode of the highest
ranked node. The relation so obtained is composed with
the relation each holds to the appropriate metanode to
yield the strongest relation between the two nodes.

Testing

To compare approaches, we generated random sets of
constraints (DAG’s) and compared compile and query
times. To generate a DAG over the nodes v3,vs, ... vy,
we let the ordering on nodes define a topological sort of
the intended graph, and defined the graph by enumerat-
ing the forward edges, adding an edge with some prob-
ability. For the purpose of testing the approaches pre-
sented in this paper, we were interested only in sparse
graphs, that is, when e is O(n). To produce sparse
graphs we add an edge with a probability of approxi-
mately k/n, for some fixed k. Then we randomly as-
signed labels from {<, <=, <>} to the edges. This set
of edges corresponds to a set of assertions.

Test Domains We experimented with various mod-
ifications to the basic graph generation scheme. We
investigated data sets with no <> assertions, data sets
based on series parallel graphs with a certain amount of
“noise” (random edges) introduced, and data sets based
on chains where, again, a certain amount of noise was
added. Here we describe three test domains:

1. Sparse graphs with all edge labels equiprobable.

2. Sparse graphs based on chains (no <> edges).

3. Sparse graphs based on sp-graphs (no <> edges).
Test Results Thirty data sets were generated with the
average time to compile and the average time to answer
100 queries given below. Times are in milliseconds; the
tests were run on a Sun UltraSparc 1 workstation.

Domain 1

Approach | Nodes (Edges = ~ 5x nodes)
100 | 200] 300 400] 500
Base 5 9 13 17 22
Compile | Ranked 4 10 16 21 27
Time TG 304 | 1150 | 2477 | 4501 | 6857
SP 6 1381 207 | 286 | 354
Base 38 56 69 78 91
Query Ranked 19 25 28 31 35
Time TG 21 25 31 35 38
SP 18 25 30 33 35
Domain 2
Approach | Nodes (Edges = ~ 1.2X nodes)
100 | 200 | 300 | 400 500
Base 3 6 10 | 13 15
Compile | Ranked 3 6 10| 16 20
Time TG 16] 41] 82]133 200
SP 171 341 521 69 86
Base 421 61] 70| 77 84
Query Ranked 201 261 26| 27 28
Time TG 1 131 14] 15 17
SP 11 12 13 14 16

Domain 3

Approach | Nodes (Edges = ~ 1.6x nodes)

100 | 200 | 300 | 400 500

Base 5 6 g 12 15

Compile | Ranked | 5 71 1] 16 19
Time TG SI[103 214|375 557
SP 211 42| 62| 83 107

Base 45| 89| 133] 172 225

Query Ranked 21 35 44 58 65
Time TG 20| 34| 441 55 63
SP 13| 16| 21| 28 30

Discussion of Test Results

The test results indicate that, as expected, the sim-
ple approaches have much lower compile times. In
all domains, adding ranking (“Ranked”) to brute force
searching (“Base”) yields significantly faster query
times with little increase in compile times. When the
data has no underlying structure (Domain 1), ranking
and the series parallel approach perform optimally for
query but because of its reduced compile time, ranking
is the better approach.

The situation changes dramatically when the data
has some underlying structure. When there are many
chains in the database (Domain 2) both the Time-
Graph approach (“T'G”) and the series parallel ap-
proach (“SP”) yield query times that are half those of
ranking. While the query times for both approaches
is similar, the compile time for SP is about half that
for TG. This may seem surprising but notice that when
the number of edges is linear, sp-graphs effectively en-
compass chains. Thus the SP approach will likely have
metanodes that contain many chains thus speeding up
the query answering. When there are many sp-graphs
in the database (Domain 3), the SP approach answers
queries about twice as fast as either ranking or TG.

We conclude that, when the data exhibits no struc-
ture, ranking is a feasible approach. It is easy to imple-
ment, allows for quick compilation, and is the fastest
(or near-fastest) in almost all cases. When the data ex-
hibits chains or series parallel structures, SP is the best
choice especially when a large number of queries must
be performed. When query time significantly domi-
nates compile time, the SP approach seems the best
all-round approach, since it performs no worse in an-
swering queries than other approaches, yet is able to
exploit any structure in the time constraints.

Conclusion

We have addressed the general problem of qualitative,
point-based temporal reasoning. To this end, we have
developed two basic reasoners, one a straightforward
implementation of standard graph operations, and a
second that also incorporates a ranking of nodes to im-
prove query-answering times. We also developed gen-
eral reasoners tailored for temporal domains that are
expected to exhibit a particular structure. This leads
naturally to the notion of a metagraph, and metagraph

reasoners. We implemented the chain-based approach
of Gerevini and Schubert and developed and imple-
mented a series-parallel graph approach, roughly analo-
gous to the Gerevini and Schubert approach but where
series-parallel graphs replace chains.

Our test results indicate that when there is some un-
derlying structure in the data, our reasoner performs
better than the Gerevini and Schubert reasoner or sim-
ple search algorithms. When there is no underlying
structure in the data, the series parallel reasoner still
performs better for query answering than these other
approaches. Hence, when there is no known structure
in the data, we argue that our reasoner will provide
the best expected performance: if the domain is indeed
unstructured, our approach performs generally better
than the others for the (presumably) dominant opera-
tion of query answering; if there is some structure in the
date, this structure will be exploited by our reasoner for
overall superior results.

References
James Allen. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(1):832-
843, 1983.
J. Bondy and U.S.R. Murty. Graph Theory with Ap-
plications. North-Holland, 1976.
T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Iniro-
duction to Algorithms. The MIT Press, Cambridge,
1990.
J.P. Delgrande and A. Gupta. A representation for effi-
cient temporal reasoning. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages
381-388, Portland, Oregon, August 1996.
Malik Ghallab and Amine Mounir Alaoui. Managing
efficiently temporal relations through indexed span-
ning trees. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1297-1303,
Detroit, 1989.
Alfonso Gerevini and Lenhart Schubert. Efficient algo-
rithms for qualitative reasoning about time. Artificial
Intelligence, T4(2):207—248, April 1995.
Peter van Beek. Reasoning about qualitative temporal
information. Artificial Intelligence, 58(1-3):297-326,
1992.
T. Van Allen, J. Delgrande, and A. Gupta. Point-
based approaches to qualitative temporal reasoning.
Technical Report CMPT TR 98-16, Simon Fraser Uni-
versity, 1998.
Marc Vilain and Henry Kautz. Constraint propaga-
tion algorithms for temporal reasoning. In Proceedings
of the AAAI National Conference on Artificial Intel-
ligence, pages 377-382, Philadelphia, PA, 1986.
Marc Vilain, Henry Kautz, and Peter van Beek. Con-
straint propagation algorithms for temporal reasoning:
A revised report. In Readings in Qualitative Reason-
ing about Physical Systems, pages 373-381. Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1990.

